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Abstract

Unlike laboratory experiments, real-world visual search can
contain multiple targets. Searching for an unknown number
of targets creates a unique set of challenges for the observer,
and often produces serious errors. We propose a Bayesian op-
timal foraging model to predict and describe behavior in such
search scenarios, and investigate whether people adapt their
search strategies based on complex statistics of target distribu-
tions. Separate groups searched arrays drawn from three target
distributions with the same average number of targets per dis-
play, but different target-clustering properties. As predicted,
participants searched longer when they expected more targets
to remain and adjusted their expectations as searches unfolded,
indicating that searchers are sensitive to the target distribution,
consistent with both an optimal foraging framework and an
ideal Bayesian observer. However, compared to the ideal ob-
servers, searchers systematically under-adjusted to the target
distribution, suggesting that training could improve multiple-
target search in radiology and other crucial applications.
Keywords: Visual search; Optimal foraging theory; Bayesian
modeling.

Introduction
When should a radiologist stop searching for abnormalities
on your X-Rays? How long should an airport baggage screen-
ing officer search through your bag? Searching for important
objects in clutter is a ubiquitous real-world task, which has
been most systematically studied in vision (see Nakayama
& Martini, 2010, for a review). The bulk of this literature
focuses on search for a single target (e.g., looking for your
keys); however, some of the most important real-world vi-
sual search tasks (e.g., those conducted by radiologists, bag-
gage screeners, and military personnel) are multiple-target
searches—searches where there might be many targets in a
given display (e.g., an X-ray can contain an unknown and un-
bounded number of potential abnormalities). This presents an
interesting problem to the searcher: when to stop searching?

It is sometimes possible to search exhaustively by inspect-
ing every potential target; however, in most situations this is
prohibitively costly and inefficient. When the number of pos-
sible targets is unknown, searching efficiently requires tai-
loring a stopping decision to the expected target distribution.
Evidence suggests that people do adapt their search behavior
to environmental statistics. Multiple-target search errors re-
flect, in part, the probability of a target being present, with
less frequent targets being missed more often (e.g., Fleck,
Samei, & Mitroff, 2010). Similarly, prevalence in single-

target search influences decision criteria, resulting in more
false alarms at high target prevalence and more misses at
low target prevalence (Godwin, Menneer, Cave, & Donnelly,
2010; Wolfe & Van Wert, 2010). Moreover, these prevalence
effects may be driven by experiences prior to the immedi-
ate task (Lau & Huang, 2010). Although these data suggest
that human search behavior adapts to environmental statistics,
there has been no test of the sophistication of these adapta-
tions, nor is there a theory to explain how people decide to
stop searching when the number of targets is unknown. Here
we propose two related models of human stopping behavior
in multi-target search and test whether people are as sensitive
to complex target distributions as these models.

Figure 1: A sample search array. All displays contained 40 items,
0–12 of which were targets (perfectly aligned T shapes, 6 present
here).

Optimal Searcher Models
We expect common, effortful, cognitive tasks to efficiently
exploit environmental statistics to improve performance.
While there has been little work in this area for human search,
there is an extensive animal literature on optimal foraging the-
ory that has formalized how animals may make use of the
statistical properties of their environments (see Stephens &
Krebs, 1986, for a review). Optimal foraging is typically used
to explain the behavior of animals consuming food and to an-
swer questions such as “when should a bird eating berries off
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Figure 2: Histograms of the number of targets present in each display. Each participant saw a distribution of targets drawn from a truncated
geometric distribution with an expected value of 1 target per trial, but with groups differing on the proportion of trials that had targets.

a bush move on to another bush?” The key insight of optimal
foraging theory is that an organism should strive to maximize
its rate of energy intake—rather than, say, ensuring that it
has consumed all available food—and should leave one patch
and move to the next when the instantaneous rate of energy
intake for the current patch falls below the expected rate for
the environment as a whole. In short, a forager should aim
to spend time in above-average patches and leave them be-
fore they drop below average. While this technique has been
used almost exclusively to analyze animal behavior, a recent
study of human vigilance employing such a model found that
humans were sensitive to patchy, negative binomial distribu-
tions of stimuli (Hutchinson, Wilke, & Todd, 2007). More-
over, optimal foraging theory can be adapted into a Bayesian
ideal observer model, where the instantaneous rate of return
is estimated based on a continuously updated posterior over
the value of the search area.

We investigate whether people adjust their search strategy
in a manner consistent with these optimal foraging/search
models. Three groups of participants searched for visual tar-
gets under different distributions of the number of targets
present per display. Each group saw, on average, one tar-
get per display, but targets were ‘clustered’ differently across
conditions. In one condition, only 25% of trials contained tar-
gets, but those trials tended to contain many targets, whereas
in the other extreme condition, 75% of trials contained tar-
gets, but those trials tended to contain only one target each.
Do human search strategies adapt to these manipulations of
higher-order target distribution statistics?

Methods
Experiment
Participants Forty-five members of the Duke University
community (28 female; aged 18 to 48 years, median = 23)
were asked to find ‘T’s (characterized by a perfectly bisect-
ing line) among ‘L’s (imperfectly bisecting line; see Figure
1). Participants were awarded 15 points for each target found
and the experiment ended when they reached 2000 points.1

1These selected values were based on pilot testing to ensure that
the experimental session would not exceed 1 hour.

There were no penalties for misses or false alarms.
Critically, participants were randomly assigned to one of

three between-participants conditions that manipulated the
target distributions while holding constant the expected num-
ber of targets per trial at a value of one (Figure 2). The num-
ber of targets present in each trial was sampled from a geo-
metric distribution with the rate parameter adjusted per con-
dition to yield the same average number of targets per trial. In
the 25% condition, only one-quarter of the trials had at least
one target, but those trials were likely to contain many targets.
In the 50% condition, half of the trials had at least one target
and of those trials, half had one target and half had more than
one. In the 75% condition, three-quarters of the trials had at
least one target, but those trials were unlikely to contain more
than one target. These target distributions provided complex,
but informative, target prevalence statistics which could be
exploited to attain a high rate of point acquisition.Procedure Prior to the main experiment, there was a prac-
tice block with a 120-point goal to familiarize participants
with the experiment and the target distribution (which was
matched to their condition). Each trial began with a cross ap-
pearing for 0.5 s at the center of the screen. The cross was
replaced with a search array of 40 grey items on a cloudy
grey background (Figure 1), targets and distracters were ran-
domly positioned within the search array. Items randomly
varied between 27–65% black. Participants clicked on each
T they found (with the location of the click marked with a
small blue circle) then clicked a button labeled “Done”, end-
ing the trial. Feedback after each trial revealed all the targets
that were present in order to provide all participants the same
information about the target distribution, regardless of their
performance.

Predictions

How would people perform if they adjusted their search strat-
egy based on target distribution statistics? We can formalize
our predictions via a Bayesian ideal observer that starts every
trial with a prior over the number of targets (P(T )) matched
to the distribution of targets across displays, and computes
a posterior (P(T |F,S)), after having found F targets having
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Figure 3: Expected rates of return for the different conditions as a function of the number of targets found (different lines, from 0 to 12), and
the number of items searched since the last target was found. The dashed horizontal line in each plot corresponds to the maximum expected
rate of return of switching to a new trial. The ideal observer should continue searching on the current trial so long as the instantaneous
expected rate of return exceeds the maximum expected rate of return of switching.

searched S items: P(T |F,S) ∝ P(F |T,S)P(T ).
For P(F |T,S) we used a sampling distribution without re-

placement of targets: When a target is found, it cannot be
marked again, but when a distracter is found, it continues
to be sampled during the rest of the search (Horowitz &
Wolfe, 2001). Thus, when searching for 5 targets among
40 items, the probability of finding a target is 5/40 on each
draw until the first target is found, then the probability of
finding the second target on subsequent draws becomes 4/39,
etc. The pseudo-hypergeometric distribution that results from
such half-replacement has no analytical form, but it can be
numerically calculated with high precision for the range of F,
S, and T values we use here.

The posterior over the number of targets yields a predictive
distribution: the probability of finding K more targets when
searching R more items by marginalizing over all possible
total numbers of targets.

P(K|R,F,S) = ∑
T

(P(K|T,R)P(T |F,S))

where P(K|T,R) corresponds to the same distribution as used
for P(F |T,S). This predictive distribution defines an expected
return rate arising from searching R more items:

E[K|R,F,S]
R

= ∑K(K ∗P(K|R,F,S))
R

Since the probability of finding another target after sampling
one more item is less than 1, E[K|R,F,S] increases more
slowly than R; thus the peak value is always at R = 1, meaning
that the anticipated instantaneous rate of return corresponds
to the maximum expected rate of return. And just as in opti-
mal foraging theory, the ideal observer will switch trials when
the instantaneous expected rate of return for the current trial
falls below the maximum expected rate of return of switching
to a new trial.

The expected rate of return for switching to a new trial can
be calculated similarly, based only on the prior over the target

distribution:

E[K|R]
R+ τ

=
∑K,T (K×P(K|T,R)P(T ))

R+ τ

where τ reflects the forgone search opportunity during the 3s
period between trials. Unlike the expected instantaneous rate
of return, E[K|R]/(R+τ) has a peak value at an R > 1. Figure
3 shows the expected instantaneous rates of return for each
number of targets found for each condition, as a function of
time spent searching after the last identified target was found.
When the expected rates of return fall below the maximum
expected rate of return of switching to a new trial, the ideal
observer should end the trial.

The ideal Bayesian observer captures the intuitive predic-
tion (Figure 4B): in the 25% condition, before the first target
is found, the trial is likely to contain few targets, so it does
not make sense to search it for a long time, but once a single
target is found, many more are likely, so it would be best to
continue searching for a longer period of time. In contrast,
in the 75% condition, a target is likely to be present in the
display, but once it is found, a second one is not likely. This
crossover is a characteristic of optimally using these target
distributions during search.

Results
In order to assess how valuable searchers considered a given
display, we used the amount of time spent searching after
finding a target as a proxy for display quality, with partici-
pants assumed to be willing to search longer in displays that
they determined were likely to contain more targets. Specif-
ically, we measured the time between finding the last target
actually found in a display (even if not all targets were found)
and clicking Done to end the search. Figure 4A plots this
difference measure for each condition against the number of
targets found. The main pattern is clear: the more targets
that were likely to be in a display, the longer participants con-
tinued searching before terminating their search. This was
confirmed with a 3 × 4 mixed model ANOVA with condi-
tion (25%, 50%, or 75%) and number of targets found (0,
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Figure 4: (A) The time spent searching after finding the last target found in a particular display, plotted as a function of the number of targets
found (not necessarily all the targets present) for each condition. The value for 4 targets is not plotted for the 75% condition, as fewer than
half the participants in this condition found 4 targets in a single display. (B) Predictions of a Bayesian ideal observer. When 0 targets have
been found, observers in the 75% condition have cause for optimism, and are expected to search for a long time before stopping; while those
in the 25% condition should be pessimistic about the prospects of the display containing any targets at all. However, once a target has been
found, these expectations reverse: the observers in the 75% condition should not expect to find any more targets, while observers in the 25%
condition should expect to find many more. This should result in participants in the 25% condition searching longer for the 2nd, 3rd, 4th,
target, etc. (C) Potential Value theorem model results with an optimal Bayesian value threshold. (D) Model results assuming only partial
(50%) learning of the target distributions.

1, 2, or 3)2 as factors. There were significant main effects
of condition (F(2,126) = 4.86, p = 0.013) and of number of
targets found (F(3,126) = 161.48, p < 0.001) and a signifi-
cant interaction between the variables (F(6,126) = 5.08, p <
0.001).

This interaction confirms the qualitative predictions of the
Bayesian ideal observer: finding the first target made people
search longer in the 25% condition, but made them stop ear-
lier in the 75% condition. However, there is a substantial de-
viation between the magnitude of the predicted and observed
effects. It seems that despite adapting to the target distribu-
tion statistics, as predicted, participants did not optimally de-
termine their stopping times, but tended to search overly long
when no targets had been found and in the 25% condition and
not long enough when 1 target had been found in the 25% and
50% conditions.

Potential Value Model

The marginal value theorem (Charnov, 1976), states that an
optimal forager should abandon search at the current location
when the rate of return of the current location reaches the
rate for the environment. The potential value theorem (PVT;
McNamara, 1982) extends the marginal value theorem via a
stopping rule that takes into account information gained by
finding a target. Like the marginal value theorem, the PVT
assumes that searchers are aware of the overall distribution
of targets in their environments, their overall target encounter
rate, and their target encounter rate for the current trial. Here
we employ a Bayesian potential value rule (Olsson & Brown,
2006) that builds upon the Bayesian ideal observer model de-
scribed previously.
Overall Rate of Target Finding Searchers are presumed
to maximize Γ, their rate of finding targets across the whole

2Fewer than half of the participants in the 75% condition found
more than 3 targets on any trial.

experiment (or in our case, minimizing the total time to accu-
mulate 2000 points and finish the experiment):

Γ =
n

t + τ

where n is the average number of targets found per trial, t
is the average time spent searching per trial and τ is the con-
stant inter-trial interval. A higher Γ indicates that the searcher
spent less time searching fruitless displays and more time
searching trials with many targets. Guiding behavior to max-
imize Γ requires estimating two values: the current trial’s
quality (updated continuously) and the quality threshold be-
low which the searcher should switch trials (a constant value
for a given searcher).

We calculated Γ—the overall rate at which targets were
found—for each searcher. A 1-way ANOVA with condition
as a factor revealed that Γ did not differ between distribu-
tion conditions (Γ25 = 0.045±0.008 targets/s, Γ50 = 0.042±
0.006 targets/s, Γ75 = 0.044± 0.010 targets/s; F(2,42) =
0.44, p = 0.647). Despite searching under different target
distributions, each group settled on the same average target
acquisition rate. Such a result would not be predicted by sim-
ple foraging models such as fixed search time models, and
strongly suggests that searchers were adapting their behavior
to the statistics of their search environment in order to achieve
a high rate of target detection.

Estimated Trial Quality Under the PVT, trial quality—
how much a trial is worth to the searcher—is estimated in
targets per second, and denoted as Π:

Π =
E(n)
E(t)

where E(n) is the expected number of targets remaining in
the display, and E(t) is the how long it is expected to take
to find them. We computed the estimated trial quality, Π,
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at each 500ms intervals of each search trial. E(n) and E(t)
were computed based on the number of targets found and
the amount of time already spent searching using the ideal
observer model described above. Figure 5 shows Π as it un-
folds over a representative trial from each condition. The esti-
mated trial quality decays exponentially as search continues,
but changes discontinuously when a target is found. These
changes represent the information gained by finding a target.
For example, in the 25% condition, before the first target is
found, knowledge of the distribution gives a 0.75 likelihood
of the display containing zero targets, and a 0.25 likelihood
of the display containing one or more targets. Once a target is
found, however, the chance of the display containing at least
one additional target jumps to 0.75. This additional informa-
tion accounts for the increase in estimated quality of the 25
% condition trial in Figure 5 seen at about 2s. In contrast,
for the 75% condition, finding a target actually decreases the
estimated trial value: half of the displays in the 75% condi-
tion have exactly one target, so finding one target indicates
that finding another target in that display is unlikely. This can
be seen Figure 5 in the large drop in estimated quality for the
75% condition trial at about 3s.

For each participant we calculated the estimated trial qual-
ity at the time of search termination. These values were
submitted to the same 3 × 4 mixed model ANOVA as the
quitting times, above. There was not a significant main ef-
fect of condition (F(2,126) = 2.37, p = 0.106), but there
was a significant main effect of number of targets found
(F(3,126) = 114.52, p < 0.001) and a significant interac-
tion between the factors (F(6,126) = 172.23, p < 0.001).
While there was no overall difference across conditions, post-
hoc one-way ANOVAs revealed that condition differences
were significant at all four levels of number of targets found
(0: F(2,42) = 196.88, p < 0.001; 1: F(2,42) = 7.30, p =
0.002; 2: F(2,42) = 12.82, p < 0.001; 3: F(2,42) =
11.56, p < 0.001; Šidák-corrected threshold=0.010). This
suggests that participants are adjusting to the target distribu-
tion statistics, in terms of their rate of target discovery, Γ, and
their raw stopping times, by finding very different quitting
thresholds for each condition. Interestingly, while the PVT
implements a set quitting threshold across all trials, the main
effect of number of targets found suggests that participants
had more variable thresholds.

Optimality of Search Termination
Two components affect when searches are terminated, esti-
mated trial quality and the trial value quitting threshold. Un-
der the potential value theorem each searcher has a fixed quit-
ting threshold across all trials. This threshold determines how
many targets are found and how much time is spent searching.
An extreme threshold of very near zero would indicate ex-
haustive search with all targets found after a long time search-
ing, while a very high threshold would result in search being
terminated very quickly, without finding any targets. The op-
timal threshold, Π∗, should be between these extremes and
should be sensitive to the characteristics of the environment.
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Figure 5: Estimated trial quality, Π, over time for three representa-
tive trials. Note that finding a target increased estimated trial quality
at the beginning of the trial in the 25% and 50% conditions but de-
creased it toward the end of those trials and immediately in the 75%
condition.

In order to find Π∗ we examined the actual search time-
courses for each trial and tallied the number of targets that
would have been found and amount of time that would have
been spent searching over a large range of quitting thresholds.
To account for trials in which the actual search terminated be-
fore the candidate quitting threshold had been reached, Π was
calculated out to 90s of simulated searching, with random tar-
get finding events generated based on each participant’s over-
all search speed and the remaining target density in the dis-
play. The Γ values for each candidate quitting threshold were
compared and the threshold that produced the largest Γ for
each searcher was deemed to be their Π∗. Group averages of
Π∗ and their resulting Γs are shown in Figure 4C.

The clearest result is that searchers in the 75% condi-
tion could have done much better by searching longer when
no targets had been found and then giving up immedi-
ately upon finding a second target (Γobserved = 0.0448 ±
0.008; ΓΠ∗ = 0.0514±0.008; t(28) = 2.24, p = 0.033). Con-
versely, searchers in the 25% condition could have done bet-
ter by quitting their search more quickly before finding a
target but searching longer after the first target was found
(Γobserved = 0.0447± 0.010; ΓΠ∗ = 0.0476± 0.010). This
deviation between optimal searching and human behavior is
seen when compared to both the Bayesian ideal observer
(Figure 4B) as well as PVT threshold model (Figures 4B
& C). The searchers in the 50% condition performed quite
closely to the Bayesian potential value prediction, slightly,
but non-significantly outperforming the model (Γobserved =
0.0420±0.006; ΓΠ∗ = 0.0415±0.004).

Together, these results suggest that searchers in the 50%
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condition are accurately using their expectation about trial
quality to influence their performance and adjust these expec-
tations to new target distributions. However, searchers do not
adjust their strategies to take sufficient advantage of the more
extreme target distributions. One possible explanation is that
despite practice, participants may have a strong prior that half
of trials ought to have a target—an exceedingly common sce-
nario in psychology experiments. Figure 4D illustrates the
effects on the model when the extreme distributions are only
50% learned (i.e., that they are assumed to be less extreme),
which is a much closer approximation of the actual data. If
such a prior accounts for human deviations from optimality,
it may be possible to improve applied multiple-target search
performance by training with specially-tuned target distribu-
tions.

Discussion

The present experiment demonstrates that searchers adapt in
sophisticated ways to the complex statistics of their search
environment: participants terminated their searches quickly
when finding an additional target was unlikely but searched
longer when finding an additional target was more likely.
This was observed both within participants (with a main ef-
fect of number of targets found), and between groups (with an
interaction between condition and number of targets found),
suggesting that people optimize their search strategies to
the environment. While the searchers in the 50% condition
performed nearly optimally, searchers in the 25% and 75%
groups deviated from optimal predictions by not adjusting
sufficiently to the target distributions.

Only one other study to date that has examined sensitiv-
ity to patchy target distributions in a human visual cognition
task. Hutchinson et al. (2007) presented participants with a
simulated fishing task in which fish appeared at a rate de-
pendent on the number remaining in the pond. Participants
could switch to a new pond at any time (with a fixed tran-
sition duration). They found that participants generally re-
sponded appropriately when presented with clustered targets,
but dwelled longer than optimal on a given pond. Our fine-
grained analysis shows deviations in both directions from op-
timality depending on the number of targets found and the
target distribution: while searchers adjust to the target distri-
bution, they do not adjust as much as is optimal.

To date, no model of multiple-target visual search has been
put forward to explain search termination behavior. Here we
propose a class of models that predict how search termina-
tion behavior is strategically adjusted based on the expecta-
tions for the current and subsequent trials. Our experiment
demonstrates that although participants do not adjust their
strategies as much as would be optimal, they are sensitive
to the same factors used by the ideal observers to determine
stopping times. We suspect that the same strategic considera-
tions underlying the behavior we observed likely account for
target prevalence (Wolfe & Van Wert, 2010) and satisfaction
of search (Fleck et al., 2010) effects in visual search. The

generality of this mechanism has broad implications, sug-
gesting that artificially modifying target distribution statis-
tics, such as priming baggage screeners with daily training
runs of multiple-target bags (c.f., Wolfe et al., 2007), may be
an effective way to enhance performance in critical multiple-
target visual searches and could curtail early termination er-
rors which may be responsible for up to half of missed ab-
normalities in radiology (Berbaum, Franken, Caldwell, &
Schartz, 2010).
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