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Abstract

Although there has been considerable debate about the
existence of metarepresentational capacities in non-human
animals and their scope in humans, the well-confirmed
temporal difference reinforcement learning models of reward-
guided decision making have been largely overlooked. This
paper argues that the reward prediction error signals which
are postulated by temporal difference models and have been
discovered empirically through single unit recording and
neuroimaging do have metarepresentational contents.
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Introduction

It is often argued that the capacity for metarepresentation is
a particularly  sophisticated cognitive achievement
(Carruthers, 2008). In the animal literature authors debate
whether success on tasks that seem to require self-
monitoring can be achieved without metarepresentation
(Carruthers, 2009; Hampton, 2001; Smith, 2009). The same
question is debated about tasks that seem to require keeping
track of the mental states of others (Hare, Call, &
Tomasello, 2001; Heyes, 1998). It is assumed that evidence
that non-human animals are processing metarepresentations
is a sign of considerable psychological sophistication, even
consciousness (Cowey & Stoerig, 1995; Smith, Shields, &
Washburn, 2003; Stoerig, Zontanou, & Cowey, 2002);
although some have argued that some forms of
metarepresentation can be achieved more easily (Shea &
Heyes, 2010). In developmental psychology the capacity to
have beliefs about others’ belief states is seen as a
particularly important developmental transition (Leslie,
1987; Perner, Frith, Leslie, & Leekam, 1989; Wimmer &
Perner, 1983), although here too there is increasing evidence
that some forms of very early behaviour depend upon
representing or keeping track of others’ representations
(Apperly & Butterfill, 2009; Onishi & Baillargeon, 2005;
Surian, Caldi, & Sperber, 2007).

This paper argues that there is already strong evidence of
metarepresentation in a different literature — one in which
issues about metarepresentation have seldom been
canvassed. Research on reward-guided decision making has
produced an impressive body of converging evidence that
midbrain dopamine neurons generate a reward prediction
error signal (RPE) that is causally involved in choice
behaviour (Rushworth, Mars, & Summerfield, 2009). I
argue that such RPEs carry a metarepresentational content.
The system is conserved across primates and rodents, and
perhaps more widely (Claridge-Chang et al., 2009). Some
animals doubtless make more sophisticated use of
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metarepresentations than this. But this result does show that
there is at least one variety of metarepresentation that is
found very widely in the animal kingdom.

Metarepresentations are representations whose content in
part concerns the content of another representation. The
sentence: ‘The main headline in the Post today is in huge
letters’ is not metarepresentational. It concerns another
representation, but not its content. The sentence: ‘The main
headline in the Post today is about Gaza’ is
metarepresentational.

To assess whether reward prediction error signals are
metarepresentational I examine the standard information-
processing account of their role in generating behaviour and
ask what content RPEs would have to have for that account
to be vindicated.

Reward Prediction Errors

The prediction error signal postulated by temporal
difference learning models of reward-guided decision
making (Sutton & Barto, 1998) was discovered empirically
through single unit recording in the awake behaving
macaque (Schultz, Dayan, & Montague, 1997). The central
idea is that the brain keeps track of the expected value of
various possible actions. When the animal performs an
action, it computes an expected value of the current
behaviour. When feedback does not match that expected
value a prediction error signal is generated. The signal is
used to update the stored representation of the value
associated with that behaviour, by an amount given by the
learning rate. For example if an animal pulls a lever for the
first time and obtains a reward, that will generate a
prediction error signal. The actual reward will have
exceeded any expectation of reward. (If the animal has
some general expectation of there being some rewards in
this environment, then it will have a mild general
expectation of reward.) So the unexpected reward will
generate a prediction error signal.

Normative models of reinforcement learning attempt to
capture the best way of calculating what to do given a
history of rewarded and unrewarded actions (under various
computational constraints). The popular temporal
difference models suggest that reward prediction error
signals will be used to update the expected value of the
chosen action. As a result, on future occasions the animal
will expect slightly more from pressing the lever. How
much more depends upon the learning rate.

After enough learning, the animal will come to expect
reward when it presses the lever. If it presses the lever and
receives no reward, that will again create a RPE, but in the
opposite direction. The effect will be to reduce the animal’s



expectation of obtaining a reward from that action in the
future.

The fact that an animal’s behaviour in experimental
situations is well-described by a temporal difference
learning model is not enough to show that it is really
processing over internal representations that represent the
quantities found in the model. On an instrumentalist
approach to representation it would be enough to show that
the model is adequate to the data and predictively accurate.
But that fact also gives us some evidence that the animal
really is processing over real internal variables that
correspond to the quantities in the model: expected values
and prediction errors. We get stronger evidence by
investigating brains directly.

Of course, there could be real internal representations that
are coded in a very non-obvious format. So if the search for
evidence of internal representations in the brain were to
deliver a negative result, that would be far from conclusive
evidence against the existence of internal representations.
Fortunately in the case of RPEs, it looks as if there are
internal representations with a fairly stable, tractable neural
basis. There are midbrain dopamine neurons whose firing
patterns correspond to the quantities found in the model.

In single unit recording in monkeys, dopaminergic
neurons in the ventral tegmental area (VTA) and substantia
nigra pars compacta have been found to have a firing profile
corresponding to the RPEs posited for appetitive
conditioning (Bayer & Glimcher, 2005; Schultz, 1998;
Schultz et al., 1997). Functional magnetic resonance
imaging (fMRI) in humans shows a similar pattern of
effects. By fitting temporal difference learning models to
the behavioural data, trial-by-trial estimates of a subject’s
representations of value and RPE are generated and
correlated with the fMRI response. These find a BOLD
response consistent with RPEs both in the VTA (D'Ardenne,
McClure, Nystrom, & Cohen, 2008) and in areas of the
ventral striatum receiving dopaminergic inputs (Haruno &
Kawato, 2006; McClure, Berns, & Montague, 2003;
O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003).

Content in the Model

What do these prediction error signals represent? To answer
that question we need to examine the way they are produced
and how they enter into subsequent processing. In order to
have a fixed target, we shall presuppose that the current
state of the evidence supports the conclusion that the
calculations hypothesized by temporal difference learning
models are being performed in the brains of humans and
other animals when they make rapid simple decisions for
probabilistic rewards, and that these calculations are
responsible for the observed patterns of choice behaviour.
At the outset of a trial, when a number of behavioural
options are presented, sometimes following a cue, the
system activates an expected value for each option. A
decision rule makes use of these values to choose an option.
For example a softmax decision rule increases the

probability of choosing one option as its value relative to
other options increases.

When the agent has made his choice and feedback has
been received, the system calculates a prediction error: the
(signed) difference between the expected reward and the
actual reward. For example, if a moderate reward was
expected with only low probability, a large positive RPE
will be generated if the reward is delivered. The same level
of reward would produce a much smaller RPE if it were
anticipated. The omission of an expected reward generates a
large negative prediction error.

The RPE is then used to update the expected reward for
that action, which in turn is used to make the next decision.
The updated expected reward is moved in the direction of
the reward received. The extent to which it is moved is
moderated by the learning rate. If the learning rate is low,
the expected value is adjusted only slightly in the direction
of the reward just delivered. If the learning rate is high, the
adjustment is more substantial. At the limit, were the
learning rate equal to one, the expected value would be reset
to the value of the last reward.

So the putative representations of interest that figure in
the information processing story are as follows.'

Expected value at t of option 1 V1,
Expected value at t of option 2 V2,
Chosen behaviour at t Bi (B1, B2)
Actual reward at t It
Prediction error (having chosen i) o=r,— Vi,
Learning rate a

Updated expected values:
Chosen behaviour i
Unchosen behaviour j

Vi&l: Vl[ + a5t
Viei= Vi

What should we think of these values as representing if
the information processing story is to make sense? We have
to use words to capture these contents, but the with the
caveat that the words are not aiming to capture either (a)
what the system or the agent understands the contents of the
states to be; or (b) constituent structure — the states whose
contents we are describing have none of the constituent
structure that is found in the sentences we use to describe
them.

Reward and Value Representations

Quantity r, is straightforward: it represents the value of
the reward actually received t (the value of so many ml of
juice, for example): r, was received. Bl and B2 are also
straightforward. Bi has a directive content: do action i, or
choose the action that will select option i.

V1, and V2, seem to be stating facts about causal
conditionals. However, they do not simply predict the value
of the next chosen action. Rather, they predict the reward
that will be obtained on average if an option is repeatedly

! The symbols are used both to refer to the representations

involved, and to pick out the quantities variably represented by
those representations.
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chosen in the current environment. That is, they represent
expected values in the probabilistic sense of expectation
(summing probability x magnitude): if option 1 is chosen,
then the expected reward will be V1,. Here expected reward
is an objective quantity of which V1, is the agent’s current
estimate. Expected rewards should not be confused with the
agent’s (subjective, represented) expectations about
rewards. So the success condition for behaviour driven by
representation V1, looks to be something like this: the
average reward payoff that would be achieved by repeatedly
choosing option 1 in the current environment would be V1.2
If the actual expected gain from option 1 is higher than this,
then the agent’s behaviour will be suboptimal in that it will
choose option 1 less than it should. Conversely, if the
actual expected gain from option 1 is lower than that
represented by V1, then the agent’s behaviour will be
suboptimal in that it could increase its chances of receiving
higher overall rewards by selecting option 1 less frequently.
When an actual reward is received when there is a
relatively low V1, that could be because the estimate of
expected value is wrong, or it could be that this is one of
those low-probability occasions where option 1 is rewarded.
Temporal difference learning models finesse this
information gap by re-jigging the value representation in
every case, in effect treating it as possible that this bit of
feedback is a sign that the current estimate is wrong (either
because of insufficient learning or because the environment
has changed). This leads the estimate of expected reward to
be altered for future trials. That recalculation is mediated by
the magnitude and sign of the difference between
represented expected value and feedback: the RPE 3..

Reward Prediction Error

Characterizing the content of d, is more tricky. An input-
driven approach to content looks at the parameters with
which a representation covaries and uses them to ascribe
content (Dretske, 1981). The notorious difficulty is that a
given representation that correlates with some inputs will
thereby correlate with very many others too (Fodor, 1987).
Considered informationally &, will carry some information
about the actual reward, some information about the
expected reward, and even more reliable information about
the difference between them. There are good reasons to be
suspicious of the idea that the content of a representation is
that feature with which it correlates most strongly (Millikan,
1984). For example, consider a predator-detector set up to
produce lots of false positives. Its strongest correlation may
be with shadows, rather than predators.

This suggests that we should also look at how a
representation is used (Godfrey-Smith, 2006). The firing of
a predator detector leads to avoidance behaviour whether or
not the stimulus was just a shadow. Thus, the way a
representation enters into downstream processing helps us

2 Note that we can talk sensibly about this quantity in

counterfactual terms even if the environment is changing so that
the agent does not have the opportunity repeatedly to sample
option 1 in the current environment.
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to focus in on its content. Downstream, J, is used to update
the expected value of the reward for future trials. The best
way of describing how & is being acted on cannot help but
advert to the fact that it is used, not directly to select an
action, but to update a second internal register — to update
another internal representation.

Sometimes hierarchical information processing involves a
series of steps (e.g. filters) or the combination of
information from different sources to form a new
representation (e.g. conjunctive feature detectors). These
are also cases where downstream representations are
changed in reliance on upstream representations. But in
those cases the upstream representations are relied upon for
information they carry about some external fact of the
matter. RPEs, by contrast, are acted upon to update value
representations not directly because of information they
carry about reward, but because they carry information
directly about the accuracy of previous estimates. Whether
a reward has just been received or not, the job of §; is to
reset the expected value Vi, by a lot if the feedback on the
current occasion was a long way from the average that was
expected over repeated trials, Vi, and by only a little if Vi,
closely matches the current feedback.

Consider the kinds of things that could go wrong in neural
processing and why, according to the temporal difference
learning model, these would constitute errors. Suppose that
because of some glitch a large positive prediction error were
generated on an occasion where the chosen option B1 was
not expected to be very rewarding and was not rewarded.
We can’t understand this error straightforwardly in terms of
some mistaken behaviour on the next trial, because the
decision rule might well lead B2 to be chosen on the next
trial. The error is not in how the system acts on the next
trial, but in how it changes its expectations on the next trial,
because it will have mistakenly increased V1, its expected
reward for option 1. Correlatively, suppose d; is produced
in the regular way so it does reflect the difference between r;
and V1, but is then ignored in downstream processing.
Here we would say that it correctly represented the
possibility that the previous prediction V1, was mistaken,
but that it wasn’t acted on correctly to update V1, for the
next trial.

While these commonsense considerations do not amount
to an unassailable argument, they do give us good reason to
take the assumptions of the normative model at face value.
Surprisingly, it has been little-remarked that temporal
difference learning models attribute metarepresentational
content to 6,. Its content can be roughly described as having
both descriptive and directive aspects (Millikan, 1996) as
follows:

The reward for the current chosen option is
higher/lower than the predicted expected value Vi, by an
amount o, increase/decrease Vi..; in proportion to the
magnitude 0.



Notice that both the descriptive and directive aspects of
the content make reference to the content of another
representation: Vi, / Vigy. The reward prediction error
signal does not just describe some aspect of the agent’s
environment. Nor does it just direct a particular action on
the part of the agent. Instead we should take seriously the
assumption in the temporal-difference learning literature
that the RPE’s content partly concerns the content of
another representation. That is to say, it is a
metarepresentation.

A Competing First-Order Interpretation

In a series of papers Proust has elucidated a form of what
we have been calling metarepresentation that differs from
the kind of explicit conceptual-level attribution of mental
states to oneself and others that is often the focus of the
literature on metacognition (J. Proust, 2007, 2008; 2009).
She identifies metacognitive ‘feelings’, like the feeling you
know a list of names, as a locus of non-conceptual but meta-
level cognition. That is a complementary body of work,
which supports the direction taken here by showing how
meta-level cognitive phenomena arise within non-
conceptual thought, well before the level of explicit,
conceptual re-representation of representational contents.

In the course of one of her discussions Proust considers an
argument that the signals processed according to temporal
difference learning models are first-order and do not involve
metarepresentations (Proust 2007, pp. 282-285). This is one
of very few existing discussions of whether RPEs are
metarepresentational, so merits investigation.  Proust’s
response to the argument is that, in the kinds of self-
monitoring paradigms she is interested in, it is not possible
to explain performance in terms of the agent keeping track
of its objective chance of success. In experiments such as
Hampton (2001) the animal seems to be drawing on
information beyond that delivered by the problem situation,
but that depends upon keeping track of trial-by-trial
variation in the agent’s own informational resources. That
is, the animal’s performance (one of the two animals, in the
Hampton experiment) seems to depend upon procedural
self-knowledge.

Proust’s own response leaves the original objection, as it
applies to the ordinary cases of reward-guided decision
making captured by temporal difference learning models,
standing — namely that subjects’ behaviour in these
experiments can be fully captured in first order terms. The
argument is that there is no substantive difference between
keeping track of the reliability of one’s estimates of
expected value (second order) and keeping track of one’s
chances of succeeding when performing particular
behaviours (first order) (Proust 2007. p. 283). That
argument does indeed apply to the agent’s representation of
expected reward (the Vi, above). Although we could
describe these as measuring how well the agent knows that a
given option will be rewarding, we have seen above that a
first order explanation is preferable. The content to be
attributed to the Vi, is rather subtle, involving a subjective

164

estimate of an objective probabilistic expectation, but the
temptation to think of this as metarepresentational is just a
mistake. It probably derives from the ambiguity of
‘expectation’. In Vi, the agent is keeping track of an
expectation, but ‘expectation’ here is not what the agent (or
anyone else) expects, but an expected value in sense of
probability theory: the average of the magnitudes of the
available options weighted by their objective probabilities.
Vi, is keeping track of this quantity, which is fixed by
external parameters of the problem space, rather than
anything about what the agent itself expects.

However, the fact that the expected values Vi should be
ascribed first-order contents is not the end of the matter.
The argument above was only that the RPE signal was
second-order.  The objection Proust considers, when
levelled against RPE, would then be that &, can be
understood in terms of the agent’s chances of succeeding,
rather than keeping track of any kind of internal state. But it
cannot. A very small RPE is compatible with there being a
very high chance of succeeding, for example if reward
expectations were already high and matched the reward
actually received on the current trial. But a very small RPE
is also compatible with there being a very low chance of
succeeding, for example if reward expectations were low
and no reward was delivered. Conversely, a large RPE is
compatible both with a high and a low chance of
succeeding. What the RPE is telling the agent is not well
captured by its connection to the chance of succeeding in
future behaviour. If the temporal difference models are
anything like on track, what the RPE signal is doing is
telling the agent something about how well or badly its
representations of expected value for an option match the
current feedback. What it does with that information,
namely to re-jig its reward expectations proportionately,
also makes much more sense in the light of meta-level
contents. In short, there is no easy way to replace the meta-
level contents inherent in temporal difference models of
reward-guided decision making with a first-order
reinterpretation.

Conclusion

The conclusion that non-conceptual metarepresentations are
processed during reward-guided decision making in many
animals opens up several questions for further research.
What distinguishes these representations from the more
sophisticated forms of metarepresentation involved in
keeping track of the mental states of others, or of the agent’s
own mental states? To what extent does the temporal
difference model connect with decision making at the
personal level, or does it just describe a subpersonal system?
How inferentially promiscuous are the representations
involved in model-free reward guided decision making?
Are they conscious or do they have some impact on
consciousness?

All these questions are interesting and important. A less
obvious question also merits attention. In temporal
difference learning models of model-free reward-guided



decision making we have a well-understood, normatively-
based model of behaviour with a well-confirmed neural
basis. The whole amounts to one of the strongest results of
the project of cognitive neuroscience: of finding
psychological-level information-processing accounts of
behaviour that can be mapped onto neural processes. Once
we have a good grip on the kinds of content ascriptions that
are supported by these theories, including the
metarepresentational contents discussed here, they provide
us with an excellent arena against which to test
philosophical theories of content. That is, they provide
another test case, quite different from the usual repertoire
from perception and the cognitive psychology of concepts,
of which we can ask: in virtue of what do these
representations have the content they do? It will be an
important  constraint on  that theorizing  that
metarepresentational contents can already be realized these
relatively low-level systems.
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