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Abstract 

The literature currently contains a dichotomy in explaining 
how humans learn lexical semantic representations for words. 
Theories generally propose either that lexical semantics are 
learned through perceptual experience, or through exposure to 
regularities in language. We propose here a model to integrate 
these two information sources. The model uses the global 
structure of memory to exploit the redundancy between 
language and perception in order to generate perceptual 
representations for words with which the model has no 
perceptual experience. We test the model on a variety of 
different datasets from grounded cognition experiments.  

Keywords: Semantic memory; co-occurrence models; LSA. 

Introduction 

Modern computational models of lexical semantics (e.g., 

latent semantic analysis (LSA); Landauer & Dumais, 1997) 

infer representations for words by observing distributional 

regularities across a large corpus of text. Although their 

specific learning mechanisms may differ considerably, all 

members of this class of model rely on statistical 

information in text to infer semantic structure. Distributional 

models have seen considerable success at accounting for an 

impressive array of behavioral data in tasks involving 

semantic cognition. Since their beginning, however, 

distributional models have been heavily criticized for their 

exclusive reliance on linguistic information (e.g., Perfetti, 

1998), essentially making them models of learning meaning 

―by listening to the radio‖ (McClelland).  

More recently, empirical research has demonstrated that 

distributional models fail to account for a variety of 

semantic phenomena in the realm of embodied cognition 

(e.g., Glenberg & Robertson, 2000). This failure is not a 

great surprise given that distributional models do not receive 

perceptual input, and they actually perform surprisingly well 

on many tasks believed to require perceptual learning due to 

the amount of perceptual information redundantly coded in 

both language and the environment (for a review, see 

Riordan & Jones, 2010). Distributional models do not argue 

that perceptual information is unimportant to semantic 

learning. Perceptual information is still statistical 

information; what is required is a mechanism by which 

these two sources of information may be integrated. 

Attempts to integrate linguistic and perceptual information 

in a unified distributional model are now emerging (e.g., 

Andrews, Vigliocco, & Vinson, 2009; Jones & Recchia, 

2010).  However, there is little connection in these models 

to existing theories of modal perceptual symbol learning.  

Perceptual symbol systems theory (PSS; Barsalou, 1999), 

one of the cornerstones of the grounded cognition 

movement (Barsalou, 2008), has been proposed as a 

competitor to distributional models as an explanatory theory 

for the emergence of lexical semantic structure in memory. 

The basis of PSS is the dismissal of amodal symbols as the 

central component underlying human mental representation. 

Rather, the PSS approach proposes that the symbols used in 

reasoning, memory, language, and learning are grounded in 

sensory modalities.  

In the realm of lexical semantics, PSS proposes that the 

mental representation of a word is based on the perceptual 

states that underlie experiences with the word‘s physical 

referent (Barsalou, 1999). Across many experiences with 

words, the underlying neural states tend to stabilize and 

create an accurate perceptual representation of a word that is 

grounded across sensory areas in the cortex. There is 

considerable evidence, across both behavioral and 

neuroimaging experiments, that the perceptual associates of 

words do play a central role in language processing (for a 

review see Barsalou, 2008). 

Although distributional models and PSS are often 

discussed as competing theories, the two are certainly not 

mutually exclusive. PSS is unable to make claims about the 

meanings of words that have no physical manifestation—it 

is fairly limited to concrete nouns and action verbs 

(although these are the most commonly used experimental 

stimuli). Further, PSS is silent regarding the simple 

observation that humans are quite capable of forming 

sophisticated lexical representations when they have been 

given nothing to ground those representations in. This is the 

situation in which distributional models excel—inferring the 

meaning of words in the absence of perceptual information. 

However, distributional models certainly fail when given 

tests that stress the use of perceptual information—the 

situation in which PSS excels. Hence, the two theories 

should not be viewed as competitors, but rather as 

complimentary (see Riordan & Jones, 2010). What is 

needed is research into how humans might integrate the two 

types of information to make full use of both the structure of 

language and the perceptual environment.  

Here we explore whether a central component of PSS, 

perceptual simulation, may be integrated with a 

distributional model to infer perceptual information for 

words that have never been ―perceived‖ by the model based 

on global lexical similarity to words that have been 

perceived. Further, we test the model‘s ability to infer the 
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likely linguistic distributional structure for a word in 

absence of linguistic experience from its perceptual 

similarity to words with which the model has had linguistic 

experience. In this sense, the model‘s goals are similar to 

previous integrative attempts (Andrews et al., 2009; Jones & 

Recchia, 2010), but is theoretically linked to important 

mechanisms in PSS.  

PSS proposes that simulations (based on past experiences) 

play a central role in conceptual and semantic processing, 

and there is a considerable amount of evidence that this is a 

mechanism of central importance in human cognition 

(Barsalou, et al., 2003). PSS presumes that each lexical 

representation is a multi-modal simulation of the perceptual 

experience of that word (e.g. the simulator for horse may 

contain what a horse looks like, feels like, sounds like, how 

you ride one, etc…), which is reinstated whenever one 

experiences a word. For example, when reading the word 

metal, your semantic representation is a simulation of 

previous perceptual experiences with the word‘s referent, 

including its texture, experiences of hard and cold, etc. The 

word‘s meaning is not disembodied from its perceptual 

characteristics.  

We by no means have a solution as to how to formalize 

this simulation process, but instead evaluate a type of 

simulation that may underlie our ability to make correct 

inferences about the perceptual representation of 

ungrounded words. Instead of relying upon the structure of 

neural states during experience, it instead relies upon the 

grounded representations of other words. That is, a word‘s 

perceptual simulator can be constructed not by the current 

perceptual state, but by the perceptual states of similar 

words in memory. The importance of a given word‘s state is 

determined by the associative strength between the two 

words, derived from the statistical structure of how those 

words are used in the language environment. Hence, global 

lexical similarity (similarity of a word to all other words in 

memory) may be used by a generation mechanism to ‗fill-

in‘ the perceptual representation for a specific word. We 

integrate this idea of experiential simulation into a global 

memory model of semantics, based loosely on Hintzman‘s 

(1986) MINERVA 2 model. 

Generating Perceptual Representations  

It is important that we are clear at the outset in our 

definitions of linguistic, perceptual, and lexical information 

in this model, as they are clearly oversimplifications. A 

word‘s linguistic information in the model is simply a 

vector representing its co-occurrence structure across 

documents in a text corpus. If the word is present in a given 

document, that vector element is coded as one; if it is 

absent, it is coded as zero. A word‘s perceptual information 

in the model is a probability vector over perceptual features 

generated by human subjects. For example, the feature 

<has_fur> will have a high probability for dog, but a low 

probability for pig, and a zero probability for airplane. It is 

important to note that these types of feature norms include 

much information that is non-perceptual (e.g., taxonomic, 

situational), and are unable to represent more complex 

perceptual information such as embodied interaction; 

nonetheless, they are a useful starting point. A word‘s full 

lexical representation in the model is simply the 

concatenation of its linguistic and perceptual vectors (even 

if one of the two is completely empty). We demonstrate that 

this model is able to use a simple perceptual simulation 

mechanism to account for a diverse set of both behavioral 

and neuroimaging results in studies of language processing.  

Linguistic co-occurrence vectors for words were 

computed from counts across 250,000 documents extracted 

from Wikipedia (Recchia & Jones, 2009). Perceptual 

vectors will depend on the particular simulation, but will 

include feature generation norms (McRae, Cree, Seidenberg, 

& McNorgan, 2005; Vinson & Vigliocco, 2008), and 

modality exclusivity norms (Lynott & Connell, 2009). Each 

word‘s representation in the full memory matrix is a 

concatenation of its linguistic and perceptual vectors. The 

goal of the model is to infer the perceptual vector for a word 

from global linguistic similarity to other words, using this 

limited data to generalize to the entire lexicon.  

Borrowing from Hintzman‘s MINERVA model (see also 

Kwantes, 2005), our model attempts to create an abstraction 

of a word‘s full lexical vector using a simple retrieval 

mechanism. When a partial probe is compared to memory 

(say, a word with a linguistic vector, but a zero perceptual 

vector), a composite ‗echo‘ vector is returned consisting of 

the sum of all lexical vectors in memory weighted by their 

similarity to the probe. Across the lexicon, this returns a 

stable full lexical estimate for a word, including an inferred 

perceptual vector. Specifically, perceptual representations 

are constructed in a two-step abstraction process, based on 

Hintzman‘s process of ‗deblurring‘ the echo. 

In step 1 each representation in memory with a zero 

perceptual vector has an estimated perceptual vector 

constructed based on its weighted similarity to lexical 

entries that have non-zero perceptual vectors:  
 

      ∑     (     )
  

    ,           (1) 
 

Where M represents the size of the lexicon, T represents the 

lexical trace for a word, S is similarity function (here, vector 

cosine), and  is a similarity weighting parameter. Lambda 

is typically set to 3 (Hintzman, 1986), but we will fit this 

parameter for each of the different norms (due to differences 

in their dimensionality and structural characteristics), and 

also for the two different steps of inference (due to 

differences in the number of traces being used to create an 

echo). Step 1 utilizes only a limited number of traces and so 

each trace should add more information, while in Step 2 the 

entire lexicon is used, and so each word trace should be 

more limited in its importance. 

In step 2, the process from step 1 is iterated, but inference 

for each word is made from global similarity to all lexical 

entries (as they all now contain an inferred perceptual 

vector). Hence, representations in step 1 are inferred from a 

limited amount of data (only words that have been 

―perceived‖ by the model). In step 2, representations for 
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each word are inferred from the full lexicon—aggregate 

linguistic and perceptual information inferred from step 1.  

This two-step process is illustrated in Figure 1. Prior to 

the inference process, only linguistic information is 

contained in memory with a limited amount of perceptual 

information. Across the two-step abstraction process, the 

model is able to use the associative structure of memory, 

along with this initially limited amount of data, and infer a 

perceptual representation for each word. The essential claim 

of this model is that the global similarity structure that is 

contained in the lexicon is sufficient to make sophisticated 

predictions about the perceptual properties of words. 

 

 
 

Figure 1. The two-step process of global construction. 

1. Testing Model Foundations 

Our preliminary examination of this model will be done by 

manipulating core aspects of the framework, including 

training the model with different perceptual norms, 

changing the lexicon size, and testing on different corpora. 

 

Simulation 1.1: Word Norms 

Two different types of perceptual norms were used for 

evaluation: feature generation norms (McRae, et al., 2005; 

Vinson & Vigglioco, 2008) and modality exclusivity norms 

(Lynnott & Connell, 2009). Feature generation norms are 

created from hundreds of subjects producing the perceptual 

features for a set of target words. Aggregated across 

subjects, the result is a vector across possible features for 

each word, with elements representing the generation 

probability of a given feature for a given word. Modality 

exclusivity norms are created by having subjects rate how 

much a target word is based in each of the five sensory 

modalities. The result is a five-element vector per word, 

with each element representing the strength of that modality 

for a given word.  

To evaluate how well the model is able to infer a word‘s 

perceptual representation, we used a cross-validation 

procedure. For each sample, a word was randomly selected 

from the perceptual norm of interest, and its perceptual 

vector in the lexicon was zeroed out. The model then infers 

a perceptual representation for the blanked out word based 

on its associative similarity to other words in the lexicon 

across our two inference steps. Finally, the correlation is 

computed between the inferred perceptual vector and the 

true perceptual vector in the norms for the target word. This 

procedure was conducted across all words in each of the 

norms. For perceptual norm and step, the   parameter was 

hand fit to the data. 

 

Table 1. Model Predictions for each Word Norm 

 

Word Norm Step 1 Step 2 

McRae, et al. 0.42 0.72 

Vinson & Vigglioco 0.42 0.77 

Lynott & Connell 0.83 0.85 
* All correlations significant at p < 0.001 

 

The correlations for each of the word norms across the 

two steps are displayed in Table 1. This table shows that for 

each of the norms that model is able to infer an accurate 

perceptual representation is at a high level, with all three 

norms achieving a correlation above 0.7. 

 

Simulation 1.2: Effect of Lexicon Size 

A second simulation was conducted to manipulate the 

number of words in the lexicon used to create the inferred 

perceptual representations. This was done by varying the 

number of words in the lexicon from 2,000  24,000 in 

steps of 2,000. The lexicon was arranged by frequency from 

the TASA corpus such that only the most frequent set of 

words are included. This simulation exclusively used the 

norms from McRae, et al. (2005). 

The magnitude of correlation as a function of lexicon size 

is shown in Figure 2. This figure shows that a consistent 

increase in fit is attained as the size of the lexicon grows, 

until about a size of 14,000. From that point on, the model 

produces a reduced fit. The reason for this is that after 

14,000 words the amount of noise that is accumulated 

within the echo vector exceeds the benefits of the added 

resolution created by the additional associative structure 

provided by the increased lexicon size. In the following 

simulations only the first 14,000 words will be utilized by 

the generation mechanism. 

 

 
  

Figure 2. Effect of lexicon size 
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Simulation 1.3: Effect of Corpus Size 
Recchia & Jones (2009) have demonstrated that increasing 

the size of a corpus (i.e. increasing the number and diversity 

of the contexts that a word appears in) also increases the fit 

to semantic similarity ratings, independent of abstraction 

algorithm. To evaluate this trend for inferring perceptual 

representations in our global similarity model, we compared 

the goodness-of-fit for the model predictions of the McRae, 

et al. (2005) norms over a small corpus (the TASA corpus, 

composed of 37,600 documents) and a large corpus (a 

Wikipedia corpus, composed of 250,000 documents). The 

fit for the TASA corpus was r = 0.34 after the first step, and 

r = 0.64 after the second step. However, with the larger 

Wikipedia corpus, a correlation of r = 0.42 after the first 

step, and an r = 0.77 after the second step. This shows that 

there is an impressive increase in fit between the model‘s 

predictions and data with the use of a larger corpus, even 

though the TASA corpus is of higher quality. This is an 

important result: It demonstrates that the greater the amount 

of experience the model has with language, the better its 

inferences are about a word‘s perceptual representation.  
 

Simulation 1.4: Reverse Inference 
An interesting aspect of this model is that it is capable of 

making reverse inferences. Given the perceptual 

representations for words, the model should be able to 

estimate the likely linguistic distributional structure for a 

word. To test reverse inference in the model, we estimated 

each word‘s perceptual representation using (1). A word‘s 

inferred linguistic vector was then estimated with (1), but 

rather than summing across the perceptual representations in 

the lexicon, the linguistic vectors were used (and similarity 

was based on similarity of perceptual vectors). The inferred 

linguistic vector was then correlated with the word‘s 

retrieved co-occurrence vector, where the probe vector is 

co-occurrence representation is word, and the representation 

of other words is summed, similar to Kwantes (2005). 

The correlation between the inferred linguistic 

representations for the concrete nouns from the McRae, et 

al. norms was r = 0.67, p < 0.001. For all other words in the 

lexicon, this correlation is r = 0.5, p < 0.001. The second set 

is lower than the concrete nouns for two reasons: 1) the 

perceptual space of the McRae norms does not extend to all 

words, and 2) not all words have a strong perceptual basis 

(e.g. abstract words) and so the inferred perceptual vector 

not diagnostic of that word‘s meaning. However, this simple 

analysis does show that the model is capable of this reverse 

inference: it can, given the perceptual representation of a 

word, construct a fairly accurate approximation of the 

linguistic co-occurrence structure of that word. 

This is a central finding for the model because it allows 

for lexical inferences to be made in two directions, both 

from linguistic to perceptual and from perceptual to 

linguistic. Hence, the model can take in either perceptual or 

linguistic information about a word and infer the other type 

of representation from it, allowing for both aspects of 

memory to be filled in when information is missing.   

2. Behavioral Simulations 

The set of simulations in this section uses the global 

similarity model to evaluate the model‘s predictions of a 

variety of behavioral phenomena from grounded cognition.  

 

Simulation 2.1: Affordances 
In a test of the strength of distributional models 

(specifically, LSA) Glenberg & Robertson (2000) conducted 

a study in which they assessed subjects‘ (and LSA‘s) ability 

to account for affordance ratings to different objects within 

a given sentence. Objects ranged from being realistic within 

the context of the sentence, to being afforded, or non-

afforded. For example, subjects were given the sentence 

―Hang the coat on the ______‖, and were asked to give 

ratings on three words (realistic = coat rack, afforded = 

vacuum cleaner, and non-afforded = cup). Unsurprisingly, 

realistic objects had a higher score than both afforded and 

non-afforded objects, and afforded objects had a higher 

rating than non-afforded objects. However, the stimuli were 

constructed such that LSA could not discriminate between 

afforded and non-afforded conditions. 

Our model is not a model of sentence comprehension 

(neither is LSA), so a simpler test was conducted using 

Glenberg and Robertson‘s (2000) stimuli. The central action 

word that described the affordance was used (e.g. ―hang‖ 

instead of ―Hang the coat on the ______‖). Then the cosine 

between this target word and the three different object 

words were calculated for both the inferred feature vectors 

and the raw co-occurrence vectors. The norms from McRae 

et al. (2005) were used for this test. The results of this 

simulation are displayed in Figure 3. 

 

As shown in Figure 3, the inferred feature vectors are able 

to generate the correct pattern of results – that is, the 

average cosine for the realistic words is greater than for the 

afforded and non-afforded words, and also the average 

cosine for the afforded words is greater than for non-

afforded words. The difference between realistic words and 

non-afforded words was significant [t(14) = 2.137, p < 

0.05], and the difference between afforded and non-afforded 

was moderately significant [t(14) = 1.8, p = 0.08]. The 

difference between realistic and afforded words was not 

Figure 3. Simulation of results using stimuli 

from Glenberg & Robertson (2000). 
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significant [t(14)=0.54, p>0.1], but the trend is in the right 

direction. When the raw co-occurrence representation is 

used, however, the pattern changes: the average cosine for 

the non-afforded words was statistically equal to afforded 

words [t(14) = 0.064, n.s.]. In addition, unlike the 

constructed perceptual representations, realistic and non-

afforded words did not differ [t(14) = 1.56, p > 0.1]. 

 

Simulation 2.2: Sensory/motor based priming 
Similar to the previous experiment, Myung, Blumstein, & 

Sedivy (2006) tested whether facilitation occurred when a 

target word was primed by a word that has sensory/motor 

based functional information in common with the target, but 

not associative information (e.g. ‗typewriter‘ preceded by 

‗piano‘). The prime-target pairs focused on manipulation 

knowledge of objects (e.g. what one can do with a given 

object). Using a lexical decision task, Myung, et al. found 

significant facilitation in this condition. 

To simulate their experiment, we used the same prime-

target word pairs from Myung, et al. (2006) and the same 

unrelated primes. Because some of the words in this 

experiment were compounds (‗baby carriage‘, ‗safety pin‘, 

etc…), they were transformed to single words (‗carriage‘, 

‗pin‘). Where this changed the meaning of the concept, the 

word pair was removed from the test. This procedure 

resulted in 23 word pairs being tested, with each pair having 

both a related-target and unrelated-target condition. Priming 

was computed in the model as the related-target cosine 

minus the unrelated-target cosine. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The magnitude of priming was assessed for both the inferred 

perceptual representations and the raw co-occurrence 

representations. The result of this simulation is depicted in 

Figure 4, which shows that both representation types show a 

priming effect. The magnitude of facilitation (related > 

unrelated) for the co-occurrence representations was not as 

pronounced as the inferred perceptual representations, and 

was not significant [t(22) = 1.35, n.s.]. However, the 

facilitation effect for the inferred perceptual representations 

was significant [t(22) = 2.05, p < 0.05]. This again 

demonstrates that the perceptual representations inferred by 

this model contain a considerable amount of knowledge 

about the perceptual underpinning of words.             
 

Simulation 2.3: Phrase/referent similarity 
Wu & Barsalou (2009) had subjects rate the familiarity of 

novel and familiar noun phrases consisting of a concrete 

noun preceded by a modifier (e.g. ―smashed tomato‖ vs. 

―sliced tomato‖). Wu & Barsalou  argue from the results 

that conceptual combinations seem to be based on a 

perceptual simulation of the combined concept. This model 

is not capable of this advanced simulation process, but we 

simply wanted to test whether the inferred perceptual 

representations are better able to account for the familiarity 

ratings from Wu and Barsalou‘s study. Assessing familiarity 

is the first step to being able to determine conceptual 

combination, by determining the overlap between the two 

words‘ representations. 

The ten novel and ten familiar noun phrases were taken 

from Wu & Barsalou (2009). Five of the twenty modifiers 

had to be replaced with their closest synonym (as defined by 

WordNet) as they were not in the model‘s lexicon (due to 

their very low frequency). To assess familiarity, the cosine 

between the two words was computed for both the inferred 

perceptual representation and the raw co-occurrence 

representation. In addition to examining overall magnitude 

differences between the conditions, a correlation analysis 

was conducted over the specific familiarity ratings given to 

the different noun phrases. Wu & Barsalou published two 

sets of familiarity ratings: 1) phrase familiarity: how often 

subject‘s had experienced that specific phrase, and 2) 

referent familiarity: how often subject‘s had seen that 

specific object. 

A marginally significant difference was found between 

the novel and familiar conditions for both the inferred 

perceptual representations [t(9) = 2.0, p = 0.07] and the raw 

co-occurrence representations [t(9) = 1.79, p = 0.1]. 

However, the item-level fits between the model‘s 

predictions and subject‘s familiarity ratings for phrases were 

also tested. A significant correlation was found between the 

inferred perceptual representations and subject ratings, for 

both phrase familiarity [r = 0.48, p < 0.05] and referent 

familiarity [r = 0.49, p < 0.05]. However, this was not the 

case for the co-occurrence representations, as a non-

significant correlation was found for both phrase familiarity 

[r = 0.12, n.s.] and referent familiarity [r = 0.16, n.s.].  This 

demonstrates that the inferred perceptual structure is able to 

simulate item-level variance in familiarity, while the co-

occurrence representations are not. 

 

Simulation 2.4: Inferred Modality Representation 
As a final simulation, we tested the ability of the model to 

infer the modality rating data from the Lynott & Connell 

(2009) norms. In these norms, subjects rate the prominence 

of the five modalities in representing a target word. As with 

the McRae et al. (2005) feature vectors, each word was 

represented as a probability distribution across the five 

modalities. In Lynott & Connell‘s norms, subjects tended to 

rate vision as consistently more important than other 

modalities. To reduce this bias in the model, a preprocessing 

normalization procedure was conducted. Before normalizing 

Figure 4. Simulation of perceptual priming results. 
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each word vector to a probability distribution, each column 

was normalized to have a total magnitude of one, which has 

the effect of standardizing the amount of information that 

each modality provides. Each word vector was then 

normalized to a probability distribution. 

The model‘s ability to generate inferred modality ratings 

was evaluated over a large number of target words from 

various sources. For the visual, auditory, and tactile 

modalities the words were taken from van Dantzig, et al.  

(2008), who conducted a property verification study on 

these modalities. For the olfactory modality, words were 

taken from Gonzalez, et al. (2005) who found an increase in 

activation in olfactory brain regions to words that have a 

strong smell association. Gustatory words were taken from 

Goldberg, et al. (2006) who found greater activation in the 

orbitofrontal cortex to food words. In order to model this, 

the strength of the proposed modality was measured for 

each word, and compared against a comparison set of words 

drawn randomly from another modality. The results of this 

simulation are displayed in Figure 5. All differences among 

groups are significant. This demonstrates that this model is 

able to create correct inferences about the modality basis of 

words, given a limited amount of starting information. 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
Here we have proposed a simulation process, similar in 

spirit to that suggested by the PSS framework, to generate 

inferred perceptual representations for words through the 

use of global lexical similarity. The perceptual 

representations are constructed by integrating the already 

formed (either learnt or inferred) representations of other 

words, and these are weighted by the scaled associative 

strength among words in the lexicon. Across many words 

this simulation process produces a stable representation 

containing useful perceptual information about how the 

referent of the word is used. The model was capable of 

using multiple norm sets, which in turn allowed for a 

diverse set of data to be tested. The power of this model is 

not in complex inference or learning mechanisms, but 

instead is contained in the structure of lexical memory, 

which has been shown to be an important information 

source in cognitive modeling (Johns & Jones, 2010). 

This model is obviously in the very early stages as an 

attempt to integrate PSS and distributional models of lexical 

semantics. As such, there are currently many shortcomings. 

One major issue is that the only ―perceptual‖ features that 

may be inferred are fixed to those used to describe the 541 

concrete nouns normed by McRae et al. (2005), which may 

make it difficult to generalize those features to other types 

of words in the lexicon. While this shortcoming is no 

different than other attempts to integrate perceptual and 

linguistic information (e.g. Andrews et al., 2009), it is rather 

inflexible (and clearly wrong) to believe that the ~2,500 

features generated by McRae et al.‘s subjects are sufficient 

to describe the perceptual structure of the entire lexicon. In 

addition, the model is subject to making errors of ―illusory 

feature migrations‖ (Jones & Recchia, 2010); e.g., inferring 

that honey has wings. Nonetheless, the phrasal priming 

simulations demonstrate that this type of information 

migration affords the model sufficient power to simulate 

difficult effects in grounded cognition. Furthermore, the 

model takes important steps towards the integration of 

distributional models, global memory frameworks, and 

creates links to theories of grounded cognition. 
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