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Abstract

The literature currently contains a dichotomy in explaining
how humans learn lexical semantic representations for words.
Theories generally propose either that lexical semantics are
learned through perceptual experience, or through exposure to
regularities in language. We propose here a model to integrate
these two information sources. The model uses the global
structure of memory to exploit the redundancy between
language and perception in order to generate perceptual
representations for words with which the model has no
perceptual experience. We test the model on a variety of
different datasets from grounded cognition experiments.
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Introduction

Modern computational models of lexical semantics (e.g.,
latent semantic analysis (LSA); Landauer & Dumais, 1997)
infer representations for words by observing distributional
regularities across a large corpus of text. Although their
specific learning mechanisms may differ considerably, all
members of this class of model rely on statistical
information in text to infer semantic structure. Distributional
models have seen considerable success at accounting for an
impressive array of behavioral data in tasks involving
semantic cognition. Since their beginning, however,
distributional models have been heavily criticized for their
exclusive reliance on linguistic information (e.g., Perfetti,
1998), essentially making them models of learning meaning
“by listening to the radio” (McClelland).

More recently, empirical research has demonstrated that
distributional models fail to account for a variety of
semantic phenomena in the realm of embodied cognition
(e.g., Glenberg & Robertson, 2000). This failure is not a
great surprise given that distributional models do not receive
perceptual input, and they actually perform surprisingly well
on many tasks believed to require perceptual learning due to
the amount of perceptual information redundantly coded in
both language and the environment (for a review, see
Riordan & Jones, 2010). Distributional models do not argue
that perceptual information is unimportant to Ssemantic
learning. Perceptual information is still statistical
information; what is required is a mechanism by which
these two sources of information may be integrated.
Attempts to integrate linguistic and perceptual information
in a unified distributional model are now emerging (e.g.,
Andrews, Vigliocco, & Vinson, 2009; Jones & Recchia,
2010). However, there is little connection in these models
to existing theories of modal perceptual symbol learning.
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Perceptual symbol systems theory (PSS; Barsalou, 1999),
one of the cornerstones of the grounded cognition
movement (Barsalou, 2008), has been proposed as a
competitor to distributional models as an explanatory theory
for the emergence of lexical semantic structure in memory.
The basis of PSS is the dismissal of amodal symbols as the
central component underlying human mental representation.
Rather, the PSS approach proposes that the symbols used in
reasoning, memory, language, and learning are grounded in
sensory modalities.

In the realm of lexical semantics, PSS proposes that the
mental representation of a word is based on the perceptual
states that underlie experiences with the word’s physical
referent (Barsalou, 1999). Across many experiences with
words, the underlying neural states tend to stabilize and
create an accurate perceptual representation of a word that is
grounded across sensory areas in the cortex. There is
considerable evidence, across both behavioral and
neuroimaging experiments, that the perceptual associates of
words do play a central role in language processing (for a
review see Barsalou, 2008).

Although distributional models and PSS are often
discussed as competing theories, the two are certainly not
mutually exclusive. PSS is unable to make claims about the
meanings of words that have no physical manifestation—it
is fairly limited to concrete nouns and action verbs
(although these are the most commonly used experimental
stimuli). Further, PSS is silent regarding the simple
observation that humans are quite capable of forming
sophisticated lexical representations when they have been
given nothing to ground those representations in. This is the
situation in which distributional models excel—inferring the
meaning of words in the absence of perceptual information.
However, distributional models certainly fail when given
tests that stress the use of perceptual information—the
situation in which PSS excels. Hence, the two theories
should not be viewed as competitors, but rather as
complimentary (see Riordan & Jones, 2010). What is
needed is research into how humans might integrate the two
types of information to make full use of both the structure of
language and the perceptual environment.

Here we explore whether a central component of PSS,
perceptual simulation, may be integrated with a
distributional model to infer perceptual information for
words that have never been “perceived” by the model based
on global lexical similarity to words that have been
perceived. Further, we test the model’s ability to infer the
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likely linguistic distributional structure for a word in
absence of linguistic experience from its perceptual
similarity to words with which the model has had linguistic
experience. In this sense, the model’s goals are similar to
previous integrative attempts (Andrews et al., 2009; Jones &
Recchia, 2010), but is theoretically linked to important
mechanisms in PSS.

PSS proposes that simulations (based on past experiences)
play a central role in conceptual and semantic processing,
and there is a considerable amount of evidence that this is a
mechanism of central importance in human cognition
(Barsalou, et al., 2003). PSS presumes that each lexical
representation is a multi-modal simulation of the perceptual
experience of that word (e.g. the simulator for horse may
contain what a horse looks like, feels like, sounds like, how
you ride one, etc...), which is reinstated whenever one
experiences a word. For example, when reading the word
metal, your semantic representation is a simulation of
previous perceptual experiences with the word’s referent,
including its texture, experiences of hard and cold, etc. The
word’s meaning is not disembodied from its perceptual
characteristics.

We by no means have a solution as to how to formalize
this simulation process, but instead evaluate a type of
simulation that may underlie our ability to make correct
inferences about the perceptual representation of
ungrounded words. Instead of relying upon the structure of
neural states during experience, it instead relies upon the
grounded representations of other words. That is, a word’s
perceptual simulator can be constructed not by the current
perceptual state, but by the perceptual states of similar
words in memory. The importance of a given word’s state is
determined by the associative strength between the two
words, derived from the statistical structure of how those
words are used in the language environment. Hence, global
lexical similarity (similarity of a word to all other words in
memory) may be used by a generation mechanism to “fill-
in’ the perceptual representation for a specific word. We
integrate this idea of experiential simulation into a global
memory model of semantics, based loosely on Hintzman’s
(1986) MINERVA 2 model.

Generating Perceptual Representations

It is important that we are clear at the outset in our
definitions of linguistic, perceptual, and lexical information
in this model, as they are clearly oversimplifications. A
word’s linguistic information in the model is simply a
vector representing its co-occurrence structure across
documents in a text corpus. If the word is present in a given
document, that vector element is coded as one; if it is
absent, it is coded as zero. A word’s perceptual information
in the model is a probability vector over perceptual features
generated by human subjects. For example, the feature
<has_fur> will have a high probability for dog, but a low
probability for pig, and a zero probability for airplane. It is
important to note that these types of feature norms include
much information that is non-perceptual (e.g., taxonomic,
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situational), and are unable to represent more complex
perceptual information such as embodied interaction;
nonetheless, they are a useful starting point. A word’s full
lexical representation in the model is simply the
concatenation of its linguistic and perceptual vectors (even
if one of the two is completely empty). We demonstrate that
this model is able to use a simple perceptual simulation
mechanism to account for a diverse set of both behavioral
and neuroimaging results in studies of language processing.

Linguistic co-occurrence vectors for words were
computed from counts across 250,000 documents extracted
from Wikipedia (Recchia & Jones, 2009). Perceptual
vectors will depend on the particular simulation, but will
include feature generation norms (McRae, Cree, Seidenberg,
& McNorgan, 2005; Vinson & Vigliocco, 2008), and
modality exclusivity norms (Lynott & Connell, 2009). Each
word’s representation in the full memory matrix is a
concatenation of its linguistic and perceptual vectors. The
goal of the model is to infer the perceptual vector for a word
from global linguistic similarity to other words, using this
limited data to generalize to the entire lexicon.

Borrowing from Hintzman’s MINERVA model (see also
Kwantes, 2005), our model attempts to create an abstraction
of a word’s full lexical vector using a simple retrieval
mechanism. When a partial probe is compared to memory
(say, a word with a linguistic vector, but a zero perceptual
vector), a composite ‘echo’ vector is returned consisting of
the sum of all lexical vectors in memory weighted by their
similarity to the probe. Across the lexicon, this returns a
stable full lexical estimate for a word, including an inferred
perceptual vector. Specifically, perceptual representations
are constructed in a two-step abstraction process, based on
Hintzman’s process of ‘deblurring’ the echo.

In step 1 each representation in memory with a zero
perceptual vector has an estimated perceptual vector
constructed based on its weighted similarity to lexical
entries that have non-zero perceptual vectors:

A
Perc; = YMLT; * S(Ti, T]) : €h)

Where M represents the size of the lexicon, T represents the
lexical trace for a word, S is similarity function (here, vector
cosine), and A is a similarity weighting parameter. Lambda
is typically set to 3 (Hintzman, 1986), but we will fit this
parameter for each of the different norms (due to differences
in their dimensionality and structural characteristics), and
also for the two different steps of inference (due to
differences in the number of traces being used to create an
echo). Step 1 utilizes only a limited number of traces and so
each trace should add more information, while in Step 2 the
entire lexicon is used, and so each word trace should be
more limited in its importance.

In step 2, the process from step 1 is iterated, but inference
for each word is made from global similarity to all lexical
entries (as they all now contain an inferred perceptual
vector). Hence, representations in step 1 are inferred from a
limited amount of data (only words that have been
“perceived” by the model). In step 2, representations for



each word are inferred from the full lexicon—aggregate
linguistic and perceptual information inferred from step 1.
This two-step process is illustrated in Figure 1. Prior to
the inference process, only linguistic information is
contained in memory with a limited amount of perceptual
information. Across the two-step abstraction process, the
model is able to use the associative structure of memory,
along with this initially limited amount of data, and infer a
perceptual representation for each word. The essential claim
of this model is that the global similarity structure that is
contained in the lexicon is sufficient to make sophisticated
predictions about the perceptual properties of words.
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Figure 1. The two-step process of global construction.

1. Testing Model Foundations

Our preliminary examination of this model will be done by
manipulating core aspects of the framework, including
training the model with different perceptual norms,
changing the lexicon size, and testing on different corpora.

Simulation 1.1: Word Norms

Two different types of perceptual norms were used for
evaluation: feature generation norms (McRae, et al., 2005;
Vinson & Vigglioco, 2008) and modality exclusivity norms
(Lynnott & Connell, 2009). Feature generation norms are
created from hundreds of subjects producing the perceptual
features for a set of target words. Aggregated across
subjects, the result is a vector across possible features for
each word, with elements representing the generation
probability of a given feature for a given word. Modality
exclusivity norms are created by having subjects rate how
much a target word is based in each of the five sensory
modalities. The result is a five-element vector per word,
with each element representing the strength of that modality
for a given word.

To evaluate how well the model is able to infer a word’s
perceptual representation, we used a cross-validation
procedure. For each sample, a word was randomly selected
from the perceptual norm of interest, and its perceptual
vector in the lexicon was zeroed out. The model then infers
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a perceptual representation for the blanked out word based
on its associative similarity to other words in the lexicon
across our two inference steps. Finally, the correlation is
computed between the inferred perceptual vector and the
true perceptual vector in the norms for the target word. This
procedure was conducted across all words in each of the
norms. For perceptual norm and step, the A parameter was
hand fit to the data.

Table 1. Model Predictions for each Word Norm

Word Norm Step 1 Step 2
McRae, et al. 0.42 0.72
Vinson & Vigglioco 0.42 0.77
Lynott & Connell 0.83 0.85

* All correlations significant at p < 0.001

The correlations for each of the word norms across the
two steps are displayed in Table 1. This table shows that for
each of the norms that model is able to infer an accurate
perceptual representation is at a high level, with all three
norms achieving a correlation above 0.7.

Simulation 1.2: Effect of Lexicon Size

A second simulation was conducted to manipulate the
number of words in the lexicon used to create the inferred
perceptual representations. This was done by varying the
number of words in the lexicon from 2,000 - 24,000 in
steps of 2,000. The lexicon was arranged by frequency from
the TASA corpus such that only the most frequent set of
words are included. This simulation exclusively used the
norms from McRae, et al. (2005).

The magnitude of correlation as a function of lexicon size
is shown in Figure 2. This figure shows that a consistent
increase in fit is attained as the size of the lexicon grows,
until about a size of 14,000. From that point on, the model
produces a reduced fit. The reason for this is that after
14,000 words the amount of noise that is accumulated
within the echo vector exceeds the benefits of the added
resolution created by the additional associative structure
provided by the increased lexicon size. In the following
simulations only the first 14,000 words will be utilized by
the generation mechanism.
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Figure 2. Effect of lexicon size



Simulation 1.3: Effect of Corpus Size

Recchia & Jones (2009) have demonstrated that increasing
the size of a corpus (i.e. increasing the number and diversity
of the contexts that a word appears in) also increases the fit
to semantic similarity ratings, independent of abstraction
algorithm. To evaluate this trend for inferring perceptual
representations in our global similarity model, we compared
the goodness-of-fit for the model predictions of the McRae,
et al. (2005) norms over a small corpus (the TASA corpus,
composed of 37,600 documents) and a large corpus (a
Wikipedia corpus, composed of 250,000 documents). The
fit for the TASA corpus was r = 0.34 after the first step, and
r = 0.64 after the second step. However, with the larger
Wikipedia corpus, a correlation of r = 0.42 after the first
step, and an r = 0.77 after the second step. This shows that
there is an impressive increase in fit between the model’s
predictions and data with the use of a larger corpus, even
though the TASA corpus is of higher quality. This is an
important result: It demonstrates that the greater the amount
of experience the model has with language, the better its
inferences are about a word’s perceptual representation.

Simulation 1.4: Reverse Inference

An interesting aspect of this model is that it is capable of
making reverse inferences. Given the perceptual
representations for words, the model should be able to
estimate the likely linguistic distributional structure for a
word. To test reverse inference in the model, we estimated
each word’s perceptual representation using (1). A word’s
inferred linguistic vector was then estimated with (1), but
rather than summing across the perceptual representations in
the lexicon, the linguistic vectors were used (and similarity
was based on similarity of perceptual vectors). The inferred
linguistic vector was then correlated with the word’s
retrieved co-occurrence vector, where the probe vector is
co-occurrence representation is word, and the representation
of other words is summed, similar to Kwantes (2005).

The correlation between the inferred linguistic
representations for the concrete nouns from the McRae, et
al. norms was r = 0.67, p < 0.001. For all other words in the
lexicon, this correlation is r = 0.5, p < 0.001. The second set
is lower than the concrete nouns for two reasons: 1) the
perceptual space of the McRae norms does not extend to all
words, and 2) not all words have a strong perceptual basis
(e.g. abstract words) and so the inferred perceptual vector
not diagnostic of that word’s meaning. However, this simple
analysis does show that the model is capable of this reverse
inference: it can, given the perceptual representation of a
word, construct a fairly accurate approximation of the
linguistic co-occurrence structure of that word.

This is a central finding for the model because it allows
for lexical inferences to be made in two directions, both
from linguistic to perceptual and from perceptual to
linguistic. Hence, the model can take in either perceptual or
linguistic information about a word and infer the other type
of representation from it, allowing for both aspects of
memory to be filled in when information is missing.
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2. Behavioral Simulations

The set of simulations in this section uses the global
similarity model to evaluate the model’s predictions of a
variety of behavioral phenomena from grounded cognition.

Simulation 2.1: Affordances

In a test of the strength of distributional models
(specifically, LSA) Glenberg & Robertson (2000) conducted
a study in which they assessed subjects’ (and LSA’s) ability
to account for affordance ratings to different objects within
a given sentence. Objects ranged from being realistic within
the context of the sentence, to being afforded, or non-
afforded. For example, subjects were given the sentence
“Hang the coat on the ”, and were asked to give
ratings on three words (realistic = coat rack, afforded =
vacuum cleaner, and non-afforded = cup). Unsurprisingly,
realistic objects had a higher score than both afforded and
non-afforded objects, and afforded objects had a higher
rating than non-afforded objects. However, the stimuli were
constructed such that LSA could not discriminate between
afforded and non-afforded conditions.

Our model is not a model of sentence comprehension
(neither is LSA), so a simpler test was conducted using
Glenberg and Robertson’s (2000) stimuli. The central action
word that described the affordance was used (e.g. “hang”
instead of “Hang the coat on the ). Then the cosine
between this target word and the three different object
words were calculated for both the inferred feature vectors
and the raw co-occurrence vectors. The norms from McRae
et al. (2005) were used for this test. The results of this
simulation are displayed in Figure 3.
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Figure 3. Simulation of results using stimuli
from Glenberg & Robertson (2000).

As shown in Figure 3, the inferred feature vectors are able
to generate the correct pattern of results — that is, the
average cosine for the realistic words is greater than for the
afforded and non-afforded words, and also the average
cosine for the afforded words is greater than for non-
afforded words. The difference between realistic words and
non-afforded words was significant [t(14) = 2.137, p <
0.05], and the difference between afforded and non-afforded
was moderately significant [t(14) = 1.8, p = 0.08]. The
difference between realistic and afforded words was not



significant [t(14)=0.54, p>0.1], but the trend is in the right
direction. When the raw co-occurrence representation is
used, however, the pattern changes: the average cosine for
the non-afforded words was statistically equal to afforded
words [t(14) = 0.064, n.s.]. In addition, unlike the
constructed perceptual representations, realistic and non-
afforded words did not differ [t(14) = 1.56, p > 0.1].

Simulation 2.2: Sensory/motor based priming
Similar to the previous experiment, Myung, Blumstein, &
Sedivy (2006) tested whether facilitation occurred when a
target word was primed by a word that has sensory/motor
based functional information in common with the target, but
not associative information (e.g. ‘typewriter’ preceded by
‘piano’). The prime-target pairs focused on manipulation
knowledge of objects (e.g. what one can do with a given
object). Using a lexical decision task, Myung, et al. found
significant facilitation in this condition.

To simulate their experiment, we used the same prime-
target word pairs from Myung, et al. (2006) and the same
unrelated primes. Because some of the words in this
experiment were compounds (‘baby carriage’, ‘safety pin’,
etc...), they were transformed to single words (‘carriage’,
‘pin’). Where this changed the meaning of the concept, the
word pair was removed from the test. This procedure
resulted in 23 word pairs being tested, with each pair having
both a related-target and unrelated-target condition. Priming
was computed in the model as the related-target cosine
minus the unrelated-target cosine.
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Figure 4. Simulation of perceptual priming results.
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The magnitude of priming was assessed for both the inferred
perceptual representations and the raw co-occurrence
representations. The result of this simulation is depicted in
Figure 4, which shows that both representation types show a
priming effect. The magnitude of facilitation (related >
unrelated) for the co-occurrence representations was not as
pronounced as the inferred perceptual representations, and
was not significant [t(22) = 1.35, n.s.]. However, the
facilitation effect for the inferred perceptual representations
was significant [t(22) = 2.05, p < 0.05]. This again
demonstrates that the perceptual representations inferred by
this model contain a considerable amount of knowledge
about the  perceptual underpinning of  words.
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Simulation 2.3: Phrase/referent similarity

Wu & Barsalou (2009) had subjects rate the familiarity of
novel and familiar noun phrases consisting of a concrete
noun preceded by a modifier (e.g. “smashed tomato” vs.
“sliced tomato”). Wu & Barsalou argue from the results
that conceptual combinations seem to be based on a
perceptual simulation of the combined concept. This model
is not capable of this advanced simulation process, but we
simply wanted to test whether the inferred perceptual
representations are better able to account for the familiarity
ratings from Wu and Barsalou’s study. Assessing familiarity
is the first step to being able to determine conceptual
combination, by determining the overlap between the two
words’ representations.

The ten novel and ten familiar noun phrases were taken
from Wu & Barsalou (2009). Five of the twenty modifiers
had to be replaced with their closest synonym (as defined by
WordNet) as they were not in the model’s lexicon (due to
their very low frequency). To assess familiarity, the cosine
between the two words was computed for both the inferred
perceptual representation and the raw co-occurrence
representation. In addition to examining overall magnitude
differences between the conditions, a correlation analysis
was conducted over the specific familiarity ratings given to
the different noun phrases. Wu & Barsalou published two
sets of familiarity ratings: 1) phrase familiarity: how often
subject’s had experienced that specific phrase, and 2)
referent familiarity: how often subject’s had seen that
specific object.

A marginally significant difference was found between
the novel and familiar conditions for both the inferred
perceptual representations [t(9) = 2.0, p = 0.07] and the raw
co-occurrence representations [t(9) = 1.79, p 0.1].
However, the item-level fits between the model’s
predictions and subject’s familiarity ratings for phrases were
also tested. A significant correlation was found between the
inferred perceptual representations and subject ratings, for
both phrase familiarity [r = 0.48, p < 0.05] and referent
familiarity [r = 0.49, p < 0.05]. However, this was not the
case for the co-occurrence representations, as a non-
significant correlation was found for both phrase familiarity
[r = 0.12, n.s.] and referent familiarity [r = 0.16, n.s.]. This
demonstrates that the inferred perceptual structure is able to
simulate item-level variance in familiarity, while the co-
occurrence representations are not.

Simulation 2.4: Inferred Modality Representation

As a final simulation, we tested the ability of the model to
infer the modality rating data from the Lynott & Connell
(2009) norms. In these norms, subjects rate the prominence
of the five modalities in representing a target word. As with
the McRae et al. (2005) feature vectors, each word was
represented as a probability distribution across the five
modalities. In Lynott & Connell’s norms, subjects tended to
rate vision as consistently more important than other
modalities. To reduce this bias in the model, a preprocessing
normalization procedure was conducted. Before normalizing



each word vector to a probability distribution, each column
was normalized to have a total magnitude of one, which has
the effect of standardizing the amount of information that
each modality provides. Each word vector was then
normalized to a probability distribution.

The model’s ability to generate inferred modality ratings
was evaluated over a large number of target words from
various sources. For the visual, auditory, and tactile
modalities the words were taken from van Dantzig, et al.
(2008), who conducted a property verification study on
these modalities. For the olfactory modality, words were
taken from Gonzalez, et al. (2005) who found an increase in
activation in olfactory brain regions to words that have a
strong smell association. Gustatory words were taken from
Goldberg, et al. (2006) who found greater activation in the
orbitofrontal cortex to food words. In order to model this,
the strength of the proposed modality was measured for
each word, and compared against a comparison set of words
drawn randomly from another modality. The results of this
simulation are displayed in Figure 5. All differences among
groups are significant. This demonstrates that this model is
able to create correct inferences about the modality basis of
words, given a limited amount of starting information.
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Discussion

Here we have proposed a simulation process, similar in
spirit to that suggested by the PSS framework, to generate
inferred perceptual representations for words through the
use of global lexical similarity. The perceptual
representations are constructed by integrating the already
formed (either learnt or inferred) representations of other
words, and these are weighted by the scaled associative
strength among words in the lexicon. Across many words
this simulation process produces a stable representation
containing useful perceptual information about how the
referent of the word is used. The model was capable of
using multiple norm sets, which in turn allowed for a
diverse set of data to be tested. The power of this model is
not in complex inference or learning mechanisms, but
instead is contained in the structure of lexical memory,
which has been shown to be an important information
source in cognitive modeling (Johns & Jones, 2010).

This model is obviously in the very early stages as an
attempt to integrate PSS and distributional models of lexical
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semantics. As such, there are currently many shortcomings.
One major issue is that the only “perceptual” features that
may be inferred are fixed to those used to describe the 541
concrete nouns normed by McRae et al. (2005), which may
make it difficult to generalize those features to other types
of words in the lexicon. While this shortcoming is no
different than other attempts to integrate perceptual and
linguistic information (e.g. Andrews et al., 2009), it is rather
inflexible (and clearly wrong) to believe that the ~2,500
features generated by McRae et al.’s subjects are sufficient
to describe the perceptual structure of the entire lexicon. In
addition, the model is subject to making errors of “illusory
feature migrations” (Jones & Recchia, 2010); e.g., inferring
that honey has wings. Nonetheless, the phrasal priming
simulations demonstrate that this type of information
migration affords the model sufficient power to simulate
difficult effects in grounded cognition. Furthermore, the
model takes important steps towards the integration of
distributional models, global memory frameworks, and
creates links to theories of grounded cognition.
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