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Abstract

Quantitative models of human memory often rely on as-
sumed latent memory processes, such as patterns of re-
hearsal of the words on a study list. Consequently, the ap-
plication of memory models that assume latent rehearsals
typically make use of overt rehearsal data. However, these
data are not always available in some settings where the
application of memory models has proven useful (e.g.,
clinical assessments of memory performance). In this
paper, we show Bayesian statistical methodology can be
used to infer the latent pattern of rehearsals needed to suc-
cessfully apply a temporal model of memory to a clinical
data set. We discuss the relevance of this research for
those interested in neuropsychological assessment as well
as cognitive psychologists interested in basic memory re-
search.
Keywords: Alzheimer’s disease and related disorders;
Cognitive psychometrics; Hierarchical Bayesian mod-
eling; Human memory; Missing data

Introduction
Quantitative models of human memory often rely on as-
sumed latent memory processes. These assumptions are
common to a range of memory models, many of which
are based on different theoretical motivations (e.g., two-
store vs. unitary accounts of memory), and are used to
account for a similarly diverse range of observed mem-
ory phenomena.

In general, however, these memory models are typi-
cally developed to account for data collected in the en-
vironment of a controlled laboratory experiment, and
problems can arise when the model is forced to leave
this environment and account for data collected in less
controlled settings. These problems should be consid-
ered by the developers and users of memory models, as
they help to determine the effectiveness of the model as
an explanatory tool. In this paper, we outline one such
problem that arises in the context of applying a currently
popular memory model to clinical data relating to the di-
agnosis and assessment of Alzheimer’s disease and re-
lated disorders (ADRD). The issue is that overt rehearsal
times, often collected in the laboratory, are not available
in this clinical setting. Instead, we show how Bayesian
statistical methods can be used to infer these rehearsal
times from the available behavioral data.

The plan of the paper is as follows. In the next section,
we provide an overview of our clinical memory data and

the database from which they are obtained. Following
this, we present the details of the memory model we use
to explain these data and as well as the Bayesian statisti-
cal methodology used to connect the model to our data.
It is shown that a basic version of this model, which does
not include the possibility of rehearsal, is unable to ac-
count for our data, agreeing with current results in the
memory literature. This leads to a modification of the
model that allows the rehearsal times needed to apply
the model to be inferred from the data. In addition, we
show that the model can be fitted easily to more complex
data sets than are typically used in previous applications.
The results of fitting this model to this more complex
data set, including inferences about the latent patterns of
rehearsal, are then presented. We conclude with a dis-
cussion on the limitations of the current approach and
suggest potential ways to improve our results, and also
discuss the relevance of this research for clinical applica-
tions and for cognitive psychologists interested in basic
memory research.

Task and Data
Our memory data are a subset of a large clinical ADRD
database (e.g., Pooley, Lee, & Shankle, 2011). This
database contains a wealth of information on thousands
of ADRD patients—and often on their caregivers as
well—who visit neurology clinics for dementia screen-
ing and assessment. Among other things, this informa-
tion includes demographic information and information
concerning personal medical history. In addition to this
medical information, this database also contains the re-
sults of various psychological tasks that are administered
as part of the cognitive portion of these dementia assess-
ments. Of these numerous psychological tasks, however,
we focus exclusively on a sequence of four free recall
memory tasks, and we limit our focus to the data of
541 “cognitively normal patients” (i.e., those individuals
judged not to have a form of ADRD by a trained clini-
can). In this sense, we are treating the data as standard
memory data coming from normally functioning adults.

Collectively, these four memory tasks constitute a sin-
gle multitrial free recall (MFR) task. Stimuli for this
MFR task consisted of words based on the CERAD
(Consortium to Establish a Registry for Alzheimers Dis-
ease) word list (Morris, Mohs, Rogers, et. al, 1988),
which serves as the basis for the neuropsychological por-
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Figure 1: Serial position curves for multitrial free recall data. The “IFR i” panel shows the serial position curve for
the ith immediate free recall task, and “DFR” panel shows the serial position curve for the delayed free recall task.

tion of numerous ADRD assessments. These words,
which included a mixture of common nouns (e.g., BUS,
WEATHER, etc.), were chosen via statistical methods
with the goal of minimizing item effects such as semantic
associability, differential item frequency, and so on.

Based on these stimuli, the MFR task was adminis-
tered according to the following protocal. First, patients
are presented with a study list of ten words. Following
this presentation of the study list, the patients are asked
to recall, in any order, the words on the list. Immediately
following the completion of this first immediate free re-
call task, the same procedure is then repeated twice, with
the same study list in the same order on the second and
third immediate free recall tasks. After the third immedi-
ate free recall task, there is a delay during which the pa-
tients complete a variety of unrelated cognitive tasks as
part of their dementia assessment. Following these tasks,
there is a surprise delayed free recall task, in which the
patients are asked to recall, in any order, the words on the
previous study lists.

Since each patient produces a binary string as data, in-
dicating whether or not a given word in a given serial (or
input) position on the study list was recalled, it is often
helpful to reduce the data and provide a group aggregate
of recall performance. This aggregated data, averaged
over patients for each serial position, is shown in Fig-
ure 1. These data demonstrate the standard serial posi-
tion curve in free recall, where words presented in early
and late portions of the study list are better recalled than
are words presented in the middle portion of the study
list.

A Temporal Model of Memory
One goal of this research is to find a psychological model
of memory that has the potential to be applied usefully
to ADRD memory data in a clinical context. Serial po-
sition curves have been well studied in the memory lit-
erature; consequently, many theories and models of this
curve have been developed.

Psychological models of memory typically take one
of two forms. Two-store models of memory (e.g., Raai-
jmakers & Shiffrin, 1981) treat the memory system as

being goverened by processes that vary according to the
time scale of the to-be-remembered information (i.e.,
they distinguish short- vs. long-term memory “stores”).
In contrast, unitary models of memory (e.g., Brown,
Neath, & Chater, 2007) assume that all aspects of mem-
ory, regardless of the time scale of the to-be-remembered
information, are goverened by the same processes (i.e.,
they do not distinguish short- vs. long-term memory pro-
cesses or structures).

Each class of model has complementary strengths and
weaknesses, and models from both perspectives could
potentially be applied to our MFR data. Since unitary
models of memory tend to be simpler in their imple-
mentation (which is well suited to exploratory research
such as this) and would appear to be easier to scale up to
larger data sets (which is well suited to potential future
clinical applications), we explore one representative and
currently popular temporal model in the current applica-
tion.1

The Basic Model

The representative unitary model of memory2 we apply
was introduced by Brown, Neath, and Chater (2007).
The model is quite general, and is closely related to mod-
els of many other cognitive tasks (e.g., Chater & Brown,
2008). This model assumes that each word on the study
list is representated in memory as a simple logarithmic
compression of the time since its last rehearsal by the
patient, where log (Tj) is the representation of the jth

1We stress that this choice should not be taken as an en-
dorsement of temporal models as superior to two-store models
in accounting for memory. More specifically, we do not fun-
damentally believe in the general superiority of any of the cur-
rently popular (or unpopular) memory models.

2A note on our terminology: Models in cognitive psychol-
ogy often are referred to by an acronym. In the current case,
the model is known as SIMPLE (Scale-Invariant Memory, Per-
ception, and Learning). In the current paper, we have chosen to
identify the model by what we fell is its most important struc-
tural feature for our purposes; namely, the use of a single tem-
poral dimension, rather than two “stores” and associated con-
trol processes, to account for memory performance.
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Figure 2: Graphical model representation of the temporal
model for MFR data.

word3 in memory, which was last rehearsed at time Tj

relative to the start of the recall task. Thus, although
words can be thought of as points in some multidimen-
sional space, this model treats time (e.g., and not emo-
tional content) as the only relevant dimension for the free
recall task. Based on these representations, the similarity
between the jth and kth words is given by

ηjk = exp {−c| log(Tj)− log(Tk)|} ,

where the parameter c measures the “distinctiveness” of
the memory representations. These pairwise similarities
are then used to compute the pairwise discriminability
between the jth and kth words, which is given by

δjk =
ηjk∑
x ηjx

.

The retrieval probability for the jth and kth words is
then calculated as a sigmoid function of the associated
discriminability and is given by

ρjk =
1

1 + exp{−s(δjk − t)}
,

where the parameter t measures the “retrieval threshold”
for the words and s the “noise” in this retrieval threshold.

3For simplicity of exposition, we use the phrase “the jth
word” to mean “the word presented in the jth serial position of
the study list.”

Based on these retrieval probabilities, an arbitrary
function (i.e., one that is unmotivated by psychological
concerns) is used to compute the response probability for
the jth word, which is given by

θj = min

(
1,
∑

k

ρjk

)
.

Finally, these response probabilities are are used to
generate the binary recall data

rj ∼ Bernoulli (θj) ,

where rj = 1 indicates that the jth word was recalled
and rj = 0 indicates that the jth word was not recalled.

Applying the Model to MFR Data
The generative process just outlined, extended to ac-
count for the full structure of our MFR data, is shown
as a graphical model in Figure 2. Graphical models
(for an overview, see Jordan, 2004) provide diagram-
matic representations of statistical models in which the
nodes of a graph correspond to random variables, and
the edges between these nodes correspond to the various
independence assumptions of the statistical model the
graph represents, with children independent of all other
nodes given their parents. Our notational conventions
are as follows: Square nodes represent discrete quan-
tities and circular nodes continuous quantities. Shaded
nodes represent observed quantities and unshaded nodes
unobserved quantities. Stochastic quantities are repre-
sented by nodes with a single border and deterministic
nodes are by nodes with double borders. Finally, inde-
pendent replications of portions of the graph structure
are enclosed within rectangles, which are referred to as
“plates” in the literature on graphical models.

We apply two variants of the above model. Our first
model assumes words are rehearsed exactly when they
are presented at study. It also assumes that all individ-
uals share the same values for the psychological param-
eters c, s, and t. Thus, in the graphical model in Fig-
ure 2, each of these deterministic quantities is enclosed
in plates corresponding to each patient i ∈ {1, . . . , 541}
and word j, k ∈ {1, . . . , 10}, and the final study times of
the words (relative to the start of the recall task) are not
enclosed in the plate corresponding to the patients (i.e.,
each patient rehearses the words using the same temporal
schedule). Furthermore, the psychological parameters c,
s, and t are not enclosed within any of the plates, which
means that they are both shared between the patients and
remain fixed across the four recall tasks.

Our second model differs by assuming that there are
covert rehearsals of the words after they have been pre-
sented. There are no data giving these rehearsal timings,
so they must be inferred from the available data.

Statistical Inference
As should be clear from the above discussion, knowledge
of the temporal schedule of the rehearsals (the Tjm vari-
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Figure 3: Posterior predictive distributions for the MFR task for two implementations of the temporal model, one
representative example in which rehearsal times are fixed (top panel) and the other in which they are inferred from the
available data (bottom panel). The “IFR i” columns show the serial position curves for the ith immediate free recall
task, and “DFR” column shows the serial position curves for the delayed free recall task. The black line shows the
observed serial position curve for each task, and boxes represent posterior predictions made by the model, with the
areas of the boxes proportional to the posterior predictive mass.

ables in Figure 2) is critically important for the function-
ing of the model. In typical psychological experiments
applying unitary models, experimenters often have some
knowledge of these rehearsal times by having individu-
als rehearse the words out loud, and keeping track of the
specific timing of the (observed) temporal characteristics
of the rehearsals; thus, researchers using this experimen-
tal paradigm can apply this temporal model (e.g., Brown,
Della Salla, Foster, & Vousden, 2007). Fortunately, this
missing data problem can be addressed using Bayesian
statistical methods, where our uncertainty about all un-
observed quantities (including missing data such as la-
tent rehearsal times) is expressed using probability distri-
butions (for a comprehensive overview of these methods,
see Gelman, Carlin, Stern, & Rubin, 2005).

The most basic conception of the Bayesian paradigm
is quite simple: Start with a prior distribution for the
unobserved quantities, condition on the observed data
(in our case, the binary MFR data) to obtain the pos-
terior distribution for these unobserved quantities (in
our case, the psychological parameters and the latent re-
hearsal times), and use this posterior distribution to draw
all the substantive conclusions of the analysis.

Choice of Prior Distributions The choice of prior dis-
tribution is quite important when using Bayesian meth-
ods. In the work presented here, we the same non-

informative prior distributions for the latent psycholog-
ical prameters c, t, and s as have been used in previous
Bayesian applications this temporal memory model (e.g.,
Shiffrin et al., 2008). However, numerous logical con-
straints coming directly from the MFR task allow for a
more informative prior on the latent rehearsal times, and
in this paper we explore what is, perhaps, the simplest of
these logical contraints.

Consider the three immediate recall tasks. Patients
are presented the words on the study list, one at a time
(spaced approximately 2 seconds apart), and then asked
to recall these words. Since individuals are allowed (in
expeirments where the rehearsals are recited out loud) to
rehearse the words at any time between their initial pre-
sentation and the start of the recall period, it seems rea-
sonable to assume a uniform prior over the period of time
from the presentation of any given word to the start of a
given recall period, where this period decreases from the
initial to the final serial positions. Since the fourth recall
task is delayed and a surprise (i.e., it has no proper study
period), it seems reasonable to assume that the prior dis-
tribution for the study time for each word is an identical
uniform distribution extending from the start of the third
immediate free recall task test period to the start the de-
layed free recall task. Of course, more realistic specifi-
cations of this basic idea can be made; however, it seems
reasonable as a first pass approximation to a more com-
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Figure 4: Temporal characteristics of the MFR task and the inferred rehearsal times for the MFR data. White markers
correspond to stimulus presentations and black markers to MAP estimates of the rehearsal times; black circles rep-
resent rehearsal times for immediate free recall trials, and black triangles represent rehearsal times for delayed free
recall trials. Solid vertical lines denote the approximate test periods of the MFR task when subjects are asked to recall
words.

plete prior distribution for the rehearsal times.

Modeling Results
Details on MCMC
In order to perform statistical inference, the graphical
model shown in Figure 2 was implemented in Win-
BUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000),
software that uses a variety of Markov chain Monte Carlo
(MCMC) methods to simulate the posterior distribution
of the unknown quantities of interest in the model. Our
results are based on samples from three MCMC chains,
each consisting of 5,000 samples collected following a
burn-in period of 1,000 samples. Convergence of the
chains to the posterior distribution was assessed via the
R̂ statistic (Brooks & Gelman, 1998), which compares
between- and within-chain variability.

Model Checking
Before we make posterior inferences about the quanti-
tites of interest, we should check that our memory model
is adequate. Many factors determine what makes a psy-
chological model adequate, and just which of these fac-
tors are emphasized in a given analysis will ultimately
depend on both the model itself and on the context in
which the model is applied. In our current exploratory
application, it is sensible sense to focus mainly on our
model’s descriptive adequacy (i.e., its to account for and
describe interesting patterns in the observed data). In the
Bayesian paradigm, this task is naturally accomplished
using posterior predictive distributions (e.g., Gelman et
al., 2004, pp. 165-172). Briefly, these distributions cor-
respond to the data the model expects, based on the pa-
rameter values it has inferred from the observed data.

Figure 3 shows, for two implementations of the tem-
poral model of memory discussed above, the posterior
predictive distributions for four free recall tasks. The top
panel shows the posterior predictive distributions for a
model that fixes the rehearsal times Tjm to some fixed

values4, and the bottom panel shows the posterior pre-
dictive distributions for the full model, where these re-
hearsal times are inferred from the data. Each plot was
generated by sampling parameters values (c, t, s, and the
multiple Tjm) from the MCMC chains, and using these
parameter values to generate serial position curves. The
box sizes correspond to the amount of posterior predic-
tive mass the model places on a given data point. Clearly,
the model that allows the rehearsal times to be inferred
from the data fits the data well while the model that as-
sumes fixed rehearsal times a priori does not. Thus, we
proceed to draw posterior inferences concerning the la-
tent rehearsal times only for the full model.

Inferred Rehearsal Times
Figure 4 shows the inferred latent rehearsal times for the
data. In this figure, white markers correspond to stimulus
presentations and black markers to MAP estimates of the
rehearsal times; black circles represent rehearsal times
for immediate free recall trials, and black triangles rep-
resent rehearsal times for delayed free recall trials. Solid
vertical lines denote test periods of the MFR task when
subjects are asked to recall words.

Although there appear to be general patterns in these
inferences, without additional constraints (from either
theory or data) drawing substantive conclusions about
the rehearsal times is difficult. Finding patterns in these
rehearsal times, however, is not our goal here. Rather,
our point is to demonstrate that the application of uni-
tary models such as the one applied here need not be
limited by the lack of relevant data, which, it is impor-
tant to recognize, will typically be missing in ADRD
settings. Thus, we feel that these results justify fur-
ther exploration and extension to the full structure of the
data described above. Once this is done, comparisons

4Our investigations suggest that the exact pattern of latent
rehearsals is underdetermined by the current model and the
data. However, the point here is that without the assumption
of covert rehearsal, the unitary model cannot fit the data.
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between the psychological parameter values learned for
the different stages of ADRD severity, for example, can
meaningully be made. As it stands now, however, we can
only claim that these results show that our approach is in
principle a sensible alternative to not applying a model
to a given set of data, and that more knowledge of the
psychological processes at work in the task is needed.

Discussion
In this paper, we used Bayesian methods to apply a tem-
poral model of memory to a subset of a clinical data set
concerning the memory performance of ADRD patients.
Critically, the Bayesian methods facilitated the applica-
tion of the model when the key data needed to make the
model work are missing from the data set. Furthermore,
this is, to our knowlege, the first time that this specific
temporal model of memory has been applied to the data
from a full MFR task. Obviously, however, the model
used here will need to be improved for future applica-
tions. For example, it was assumed that patients ex-
hibit no individual differences in terms of memory per-
formance. This is false when considering the case of nor-
mal aging adults due to ADRD, and even more clearly
false when comparing the memory performance of these
normal aging adults to groups of cognitively impaired
individuals with some form of ADRD. Extending the
model in such ways is straightforward using hierarchi-
cal Bayesian methods (e.g., Pooley, Lee, and Shankle,
2011).

In addition to fixing these misspecifications at the level
of the psychological model (used here for simplicity), we
feel that the constrained nature of the MFR task presents
an excellent opportunity to explore the use of prior distri-
butions that are quite informative. For example, numer-
ous physical constraints determine when it is logically
possible to rehearse an item presented in a given serial
position on the study list. Our modeling here used per-
haps the simplest formulation, and there exists additional
information concerning the task to make this specifica-
tion more realistic. Hopefully, such an improved spec-
ification would further improve the performance on the
model.

Finally, a word about the potential users of this
Bayesian methodology for memory research: It is eas-
ier for the experimental psychologists to perform exper-
iments that than to learn the details of Bayesian method-
ology, so the why should an experimental psychologist
care about this research? Our answer is that, even with
the overt rehearsal paradigms currently used by exper-
imental psychologists, the obtained data is only an ap-
proximation of the true rehearsal schedule going on in
an individual’s mind. Thus, overt rehearsal data can and
should be used to constrain further the prior distributions
on the rehearsal times. In contrast to basic research in
experimental psychology, changes in experimental de-
sign are often hard (or costly) to implement on a large
scale in clinical settings, and the existing data needs to
be analyzed, in any case. Thus, it is in this area that we
feel this work could yield the largest benefits. We feel

that the modeling presented in this paper, although quite
preliminary, is a positive step in this direction.
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