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Abstract

Abstract relational reasoning is a core component of human
thinking. While abstract relations are understood using a
wide variety of methods, the formal algebraic equation is
among the most powerful and general mechanisms for
representing relational statements. It has often been assumed
that the means by which expressions represent relations are
purely semantic, and are encoded in an abstract syntax that
governs the use of notation without regard to the details of its
physical structure (Anderson, 2005; Hegarty, Mayer, &
Monk, 1995). In contrast, we propose an image of equation
construction that highlights the role of concrete physical
relations in mediating the interpretation of equations. In this
account, construction processes involve a structural alignment
across representation systems. Alignment biases reasoners
toward the selection of representations that maintain the
concrete structure of source representations. We demonstrate
that this approach accounts naturally for a variety of
previously reported phenomena in equation construction, and
correctly predicts several new phenomena.

Keywords: Relational reasoning, analogy, psychology,
education, problem solving
Introduction

Formal mathematics is among the most powerful means
we have for dealing with abstract relational assertions.
While mathematics uses a wide variety of tools to represent
relations, for the last 500 years, the mathematical expression
or equation as written in the formalism of algebraic notation
has been the most ubiquitous and recognizable way to
express abstract relationships. Understanding the use of
formal symbol systems is thus an important part of
understanding relational reasoning more generally.

Given the importance of algebraic formalisms in
mathematics generally as well as in middle-school and high-
school mathematics curricula, it is perhaps surprising that
many people have great trouble -constructing and
interpreting even basic expressions written in it (e.g.,
Koedinger, Alibali, & Nathan, 2008). In particular,
reasoners have great difficulty constructing and making
sense of relational equations—equations that assert a
quantitative relationship between two entities. =~ When
Clement, Lochhead, and Monk (1981) asked undergraduate
engineering students to write an equation representing the
natural language expression “There are six times as many
students as professors,” they found that 37% percent of their
participants made errors. The great majority of those errors
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reversed the appropriate relation, (e.g., 65=P instead of
6P=S). Subsequent research established clearly the
difficulty of these and other relational equations (e.g.,
Clement, 1982; Mestre & Lochhead, 1983; Hegarty, Mayer,
& Monk, 1995; Martin & Bassok, 2005).

In this paper, we provide an account of the source of
reversal errors motivated by perceptually grounded theories
of notation interpretation and use. Errors on relational
equations result from a structural mismatch between the
surface structure of typical relational comparison statements
in English and the structure of default (multiplication)
equations. Before turning to our account, we review
existing accounts for the difficulty of relational equations.

Two systems accounts of equation construction

Most research in relational equations posit two distinct
strategies: a normative reasoning process, which leads from
situation descriptions to correct relational equations, and
some sort of shallow surface strategy which leads to errors
(e.g., Clement, 1982; Fisher, Borchert, & Bassok, in press;
Hegarty, Mayer & Monk, 1995; Martin & Bassok, 2005).
On this kind of account, successful reasoning relies on
building a mental model of the semantic relations specified
in a situation description. The relations encoded in the
mental model can then be semantically converted into the
relations of notational algebra, and this semantic alignment
is used to construct a problem representation.

Two systems accounts also posit a second route, in which
reasoners use a heuristic or shortcut instead of modeling.
The most commonly discussed second route is left-right
transcription. Reasoners using this strategy would directly
transcribe words from a story problem into mathematical
symbols in a left-right manner, without regard for the
meaning of the mathematical symbols (Clement, 1982;
Clement, et al., 1981; Hegarty, Mayer, & Monk, 1995).

Fisher, Borchert, and Bassok (in press) proposed a two
systems account that relies on their demonstration of two
facts. First, they persuasively demonstrate that inexpert
algebraists often consider multiplication equations as a
‘default’ algebraic expression, and treat division equation
more-or-less exclusively as denoting arithmetic operations.
Second, they speculate that reliance on multiplication as a
standard form leads students into reversals, because
multiplication equations’ left-right structure affords
(incorrect) left-right transcription. Fisher et al. evaluated



Table 1: Ways to phrase quantitative relational assertions in English.

Phrasing Examples Variable Equation Aligned?
Type Type Model
Direct There are four screws for every nail. Count 4N=S No
Comparison  There are five rhinos for every six elephants. Weight  5R=6E Yes
Sally has seven more coats than hats. Count 7+H=C  No
Hypothetical If there were four nails for every nail there really is, there would be Count 4N=S Yes
Comparison  as many screws as nails.
If Sally had seven more hats, she would have as many hats as coats. ~ Count 7+H=C  Yes
If there were three magazines for every magazine there actually is, Weight 3M=] No
there would be as many magazines as journals.
Operation Multiplying the number of nails by four yields the number of screws. Count 4N=S Yes
Six times the number of rhinos is the number of elephants times five. Weight = 6E=5R No

their proposal by asking participants to construct division
models of relational statements, as in

Los
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In this case left-right transcription is impossible,
ostensibly forcing students to engage in more sophisticated
modeling. Indeed, Fisher et al. report a drastic decrease in
the number of reversal errors when divisions are required. In
one study, 29% of multiplication equations were reversals,
compared to only 8% of division equations.

Our account builds on Fisher et al.’s conclusion that
students prefer to use multiplication operations in algebra
equations, and indeed our account also predicts that a
greater willingness to use division equations would
correspond to increased success in relational equation
modeling. However, our proposal for why reasoners are
more successful with division equations in their task is quite
different from Fisher et al.’s.

Structural alignment of concrete relations

The pattern of errors in relational equation construction is
quite robust, and has been replicated many times. However,
it is not clear that the two systems account is the best way to
explain these data. First, reversals are often produced even
when transcription seems impossible. For instance, Mestre
and Lochhead (1983), analyzing across several studies
involving different populations of college students in Israel,
the US, and Japan, reported that reversal rates either stayed
the same or increased when the verbal statement “In one
school, there are six times as many students as there are
teachers,” was replaced with an aerial photograph of 5 cows
and 1 pig in a field. Furthermore, students are often more
successful at solving problems phrased in natural language
than in algebraic syntax (Koedinger & Nathan, 2004;
Koedinger, Alibali, & Nathan, 2008). These results suggest
that the difficulty students face in solving such problems
lies in their ability to work with algebraic notation, not in
their ability or willingness to interpret relationships.
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We think that the explanation for the difficulty of
relational statements lies in a greater appreciation for the
ways we interact with formal expressions. Landy &
Goldstone (2007; see also Kirshner & Awtry, 2004) argue
that our use of notation is intimately bound up with the
concrete physical structure of the algebraic notation—
people use proximity, for instance, as a strong cue to the
binding structure of formal expressions.

We propose the concrete alignment view as a novel
explanation of difficulties students have in constructing and
interpreting relational algebraic expressions.  On this
account, students construct equations through constructing
representations and using relational alignment (Gentner,
1983) to reidentify terms, objects, and relations across
representations, using as guides both semantic features and
the concrete relations that inhere in physical notations.
Errors can crop up in either the construction or the mapping
processes, but the concrete alignment view attributes the
primary source of reversals to the mapping stage.

The concrete alignment view accounts for past results by
noting the general mismatch between the physical structure
of comparison statements in English and (multiplication)
statements in algebra, illustrated in Table 1. English
comparatives such as “There are six students for every
professor” bind through textual proximity and phrasal
structure the relating quantity “six” to “students.” Algebraic
multiplication statements in which variables represent
counts make the opposite binding.

Table 1 illustrates that rephrasing the comparison as an
operation automatically binds the relation to objects in the
same manner as a multiplicative equation. In a similar way,
when Fisher et al. (in press) instructed students to write
division equations, they asked them to construct equations
that naturally matched the physical structure of the direct
comparison. On our interpretation, typical relational
problems are hard because the structure of the phrasing
mismatches the structure of problem, and aligning structures
whose concrete features mismatch is generally hard.

The concrete alignment view is compatible with a wide
variety of published results. To evaluate it further, we



tested several combinations of phrasing and operations not
previously reported. Here we report results of three
variations on this theme: participants read a problem in one
of the above phrasings, and constructed an equation.

Experiment 1

Method

Participants 16 undergraduates attending the University of
Richmond received partial course credit for participation.

Design  We constructed sixteen relational equation
problems. Target items were separated by a multidigit
arithmetic problem that served as a distracter. Each target
described in a short paragraph (2-4 sentences) two sets of
similar objects (e.g. screws and nails) on opposite sides of a
balanced scale. The critical sentence described the
numerical relationship using two relatively prime constants.
Participants filled appropriate numbers and variables into an
equation frame consisting of an operation and equals sign.

The test problems varied along three dimensions:
phrasing (direct comparison or operation), equation frame
format (multiplication or division), and variable type (count
or weight). The “rhino” sentences from Table 1 provide
examples of the form of the direct and operation comparison
statements used in Experiment 1.

On weight problems, students wrote an equation using
variables to represent the weight of each object, rather than
the number of objects. Mathematically, this has the effect of
inverting the concrete relations of the correct equation
without affecting those in the text. For instance, if there are
four nails for every screw, and the total weight nails and
screws is equal, then each screw weighs as much as four
nails. Count problems asked participants to construct more
typical equations in which variables stand for set sizes.

Predictions The basic prediction of the concrete alignment
account is quite simple: accuracy will be highest when the
text places closely together terms that should be placed
closely together in the correct equation—that is, when the
equation aligns with the text (see table 1). Note that on
division  problems, alignment is reversed from
multiplication problems. Since each experimental dimension
reverses the alignment of text and equation, this model
predicts a three-way interaction between phrasing, variable
type, and equation frame.

The two strategies account also makes clear predictions.
On problems with a multiplication equation frame,
participants may engage in left-right transcription, so
accuracy should depend on whether that transcription is
correct (transcription yields correct count equations in the
operation condition, and weight equations in the direct
comparison condition). On division frame problems,
participants will be unable to engage in left-right
transcription, and so will be forced to model. The difficulty
of the problem will depend on how difficult it is to extract
the relevant information from the text. Crucially, on this
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account comparison phrasing and problem type act roughly
independently, so that these factors should not interact in
determining performance.

This prediction provides a strong way to discriminate the
two strategies account, which predicts main effects of
phrasing and variable type when division problems are
constructed, from the concrete alignment view, which
predicts a three-way interaction.

Results

Results were analyzed using nested mixed-effects logistic
regression models, including main effects of phrasing,
frame, and variable type, as well as interactions. Items on
which participants wrote equations or notes outside the
provided equation frame were excluded from analysis.

Reversal rates are shown in Figure 1. The model
including a three-way interaction between phrasing,
equation frame, and variable type fit the data better than the
model including only main effects by a likelihood ratio test,
(x*(4) = 76, p<.001), and than the model including only two-
way interactions (3*(1) = 58, p<.001). This was also the best
fitting model overall.

The concrete alignment view uniquely predicts an
interaction between variable type and phrasing for division
problems. We separately explored this two-way interaction
by computing mixed-effect logistic regressions using just
division problems. The model that included a two-way
interaction term fit the data substantially better than a model
including only main effects (x*(1) 6.9, p<.0l).
Examination of this model revealed that weight problems
were associated with more reversals than number problems
(e"=10.4, z=2.8, p<.01), and operation language led to
marginally more errors than direct comparison (e=5.2,
z=1.9, p~.06). The interaction was also significant, such that
problems that were both weight problems and expressed
using operation phrasing were solved with fewer errors than
problems that contained just one of these.

Discussion

The pattern of results closely matched the predictions of the
concrete alignment view. Reversal rates on problems in
which relation binding in English mismatched that of
mathematics were very high (averaging 76%); when the
concrete features of the two situations aligned, the reversal
rate was just 13% on average. The pattern is weaker in
division than in multiplication. The simplest account for
this difference is suggested by Fisher et al.: multiplication is
the default pattern in algebra, so many students may initially
have conceived a multiplication expression, and converted it
mentally in order to fit it into the required frame.

These problems were clearly quite challenging for our
participants. The within-subjects design also meant that
participants were faced with one difficult problem after
another, and may not have felt motivated to model each
situation  individually.  Additionally, the operation
statements were written in a manner that could easily be
transcribed, which, while it indeed matched the patterning
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Figure 1: Reversal errors in Experiment

of algebra, was also fairly unnatural as an English sentence.
These properties may have inclined students away from
meaningful semantic modeling, or encouraged an arithmetic
approach. Experiment 2 controls for these problems by
giving participants extremely simple problems associated
with a high degree of success, phrased in the relatively
natural hypothetical comparison structure.

Experiment 2

Method

Participants 100 undergraduates attending the University
of Richmond received partial course credit in exchange for
participation. 5 participants did not complete the study, or
did not fill their responses into the blanks as instructed.
These participants were eliminated from analysis.

Design and Procedure Participants completed a written test
containing 32 story problems, half of which were targets
and half unrelated distracters. Each target item described in
a single sentence the relative quantities of two sets of
similar objects. Test problems varied along two factors:
comparison type and phrasing.

The type of comparison could be more or fewer. For
instance, if in the target situation there are eight more nails
than screws, then half of all participants saw the comparison
statement “there are eight more nails than screws”, while
half saw “there are eight fewer nails than screws.” Each
participant translated 8 comparisons of each type.

Problems were phrased as either direct comparisons or
hypothetical comparisons.  Direct comparisons relate
unequal quantities, as in “Alex has five more pocket
watches than wristwatches”.  Hypothetical comparisons
describe what would make the two sets equal, e.g., “If Alex
had five more pocket watches she would have as many
pocket watches as wristwatches.”

Participants used experimenter-specified variables to fill
in an equation frame that modeled the described situation.
The frame included three blanks on the left side of an equals
sign, and one blank on the right. All comparison statements
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could be modeled by either an addition or a subtraction
equation; the participant chose which operation to use.
Predictions On the concrete alignment view, hypothetical
comparisons should be formalized more readily than direct
comparisons, because their concrete and semantic properties
align well with the same correct response.

The two strategies account does not make a strong
prediction about accuracy in this case.  On direct
comparison statements, some reasoners will be ‘lured’ into
making left-right transcriptions, while others will engage in
modeling. In the hypothetical comparisons, left-right
transcription is blocked by the phrasing, but students who
engage in modeling will arguably have a harder time doing
so, since the relations involved are less transparent in
English. Thus, which phrasing is associated with higher
error rates will depend on whether more students are lured
into transcription in the direct comparison, or more students
make modeling errors in the hypothetical.

However, the two models do make different predictions
about the specific pattern of responses, because the
constant-variable patterning of a “more than” statement is
slightly dispreferred in algebra notation. That is, if the
sentence “Sally has seven more coats than hats” is
transcribed, the result is “7 + ¢ = h” even though the version
“c + 7 = h” is slightly preferred (MacGregor & Stacey,
1993). While students engaging in left-right transcription
may correct this and other minor oddities in producing
expressions, they may not. On the other hand, there is no
pressure in the two systems account for students to invert
expressions in this way in the hypothetical comparison.
Thus, on the two systems account reasoners are more likely
to invert in the direct than the hypothetical comparison.

Just the opposite conclusion follows from the concrete
alignment account. Forming correct equations from direct
comparison statements requires ignoring either physical or
semantic cues, making matching the physical pattern less
likely than in the hypothetical case, in which physical
relationships are a sound guide to correct responding.

Results

The main results are presented in Figure 2. Overall accuracy
was very high (M=.9, SE=.01). Logistic regression models
were evaluated with error rate as the dependent measure,
and phrasing (direct vs. hypothetical comparison) and
comparison type (more vs. fewer) as independent factors.
The model including both factors fit better than a model
including only phrasing (x’(1) = 6.1, p=0.01), and one
including only comparison type (x°(1) = 11.2, p<.001), and
was the best-fitting model overall. Problems containing the
“more” language were solved more readily than problems
using the “fewer” relation (e’=1.6, z=2.4, p=.02);
hypothetically phrased problems were solved more easily
than direct problems (e’=1.82, z=3.3, p=.001).

A logistic analysis regressing relative ordering of the
constant and symbol against phrasing did improve the fit
over a null model (x*(1) = 15.6, p<0.001; see Figure 3).
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Figure 2: Error rates in Experiment 2. Errors bars on all
graphs depict standard errors.

Inversions were more common in the hypothetical than the
direct comparisons. Not surprisingly, inversions were also
more common on “more” problems than on “fewer”
problems; a model that fit main effects of both comparison
type and phrasing provided a better fit than one containing
just phrasing (°(1) = 71, p<0.0001) and one containing just
comparison (x*(1) = 19.7, p<0.0001). Including the
interaction did not improve the fit (x*(1) = 1.2, p~.27).

It is possible that the use of physical spacing on
hypothetical comparison problems was an artifact of the
within-subjects nature of the design; participants may have
noticed early on that physical spacing was a reliable guide,
and employed it on later problems in consequence. An
examination of just the first problems seen by each
participant indicated that this was not the case: considering
only the first problem seen by each participant, inversions
were still more common on hypothetical than direct
problems (the model including both factors fit better than
the model just including comparison type, y*(1) = 11.8,
p<.001), and was the best-fitting model overall.

Discussion

As predicted by the concrete alignment view, hypothetical
comparatives were easier for participants to correctly solve.
More interestingly, inversions were more frequent in this
condition than in the direct comparison condition. Rather
than transcription accounting for errors, in this case
“transcription” is selectively used when it is most likely to
lead to correct responses. This difference cannot be
accounted for by a two systems account, which views
transcription as a shortcut to avoid complex thinking.
However, it is quite natural in the concrete alignment
account in which surface features contribute as a core
component of the general modeling process.

The two systems view might accommodate some results of
Experiments 1 and 2 by generalizing the simple heuristic
shortcuts to include alignments of concrete elements in
addition to simple transcription. To evaluate this
possibility, we next consider a more sophisticated case of
equation construction, which requires the reasoner to select,
remember, and apply an appropriate equation. This task
cannot be accomplished without some modeling, so we can
use it to evaluate whether mapping occurs in modeling.
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Figure 3: Proportion of responses that were inverted in
Experiment 2.

Experiment 3

Method

Participants Participants were 32 undergraduates at the
University of Illinois who had recently completed
introductory physics participating in exchange for monetary
compensation.

Procedure Participants completed a short test containing
several elementary mechanics problems, and other
distracters. Some problems were parts of other experiments,
which will not be discussed here. The target problem was
the fifth problem in a set of sixteen. In this problem,
participants were told a story about several asteroids (with
masses m;, my, and mj3) and a single asteroid (mass m). For
each pairing of the single asteroid and the other asteroid, the
participants were to construct the Newtonian gravitation
equation,

mim
F=G—
r
Participants were not reminded of the gravitation

equation, and had to retrieve it from memory. Thus,
transcription is not possible in this case, and some modeling
was required to select and construct an appropriate equation.

Constructing this equation requires deciding which mass
to place on the left, and which on the right. If the alignment
of concrete features is a core component of equation
construction, then in a situation with few semantic factors,
participants should tend to place terms in the order in which
they were introduced in the problem. If concrete alignment
is a shortcut separate from modeling, there is no particular
reason why one term should be placed to the left. The order
in which the terms were introduced was counterbalanced: in
one condition, the single asteroid was described first, and
was described as the agent (it moved from asteroid to
asteroid). The other condition introduced the asteroids first,
which were described as moving past the asteroid.

Results 27 participants responded either correctly, or made
only minor errors not relevant for our purposes (such as
neglecting to square the distance in the denominator). Of
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these, 24 (12 in each counterbalancing condition) placed the
term that was introduced in the narrative first in the equation
(p<.001 by Fisher’s exact test). Two participants in the
asteroids-first condition and one in the asteroid-first
condition placed the masses in the inverted order.

Discussion The effect of the order in which terms appear in
a problem statement on how reasoners order equation terms
is not limited to cases in which it provides a suitable
shortcut. This suggests that relational equation reversals are
ubiquitous because the processes involved in modeling an
equation involve relational mapping, and the attended
relations include concrete aspects of algebraic notation.

General Discussion

Three experiments matched predictions made by the
concrete alignment account of equation use: First,
participants constructing division equations were affected
by relation binding in problem statements, just as are people
writing the more common multiplication equations.
Second, participants freely constructing addition or
subtraction equations did so more successfully when the
problem statement afforded maintaining both concrete
structure and semantic features. Third, participants proved
more likely to match low-level physical structure when
doing so led to correct answers than when it did not,
suggesting that the use of physical structure occurs after or
along with semantic processing. Finally, participants
matched concrete details even when the problem did not
afford any simple heuristic solution.

Beyond simplifying existing accounts of empirical
phenomena and providing new testable predictions, by
making the alignment of concrete notations a central
component of correct equation construction, the current
proposal suggests approaches to teaching students how to
read and understand equations. In particular, it suggests that
rather than trying to instruct students that physical structure
is irrelevant, or exclusively focusing on the intra-
mathematical articulation of implications, it may be possible
to help students understand equations as sensible utterances
by providing interpretation routes (i.e., mappings onto
natural-language descriptions or imagistic models) that are
both interpretable and maintain concrete relational structure.
That is, rather than seeing mappings like this as a shortcut to
be averted, we can see them as a route to potential
understanding.

Finally, this research mirrors suggestions that our ability
for wholly abstract relational reasoning may be strikingly
limited. Algebra and its accompanying notation are a
paradigmatic case of purely symbolic thought. That
experienced users of algebra rely on concrete physical
structure suggests the interpretation that purely symbolic
thought is itself largely achieved not though complex
abstract internal resources, but through the cooption—in this
case via external formal notations—of resources typically
devoted to representing concrete relations and features.
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