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Abstract

Context personalization, the practice of matching features of
an instructional component to a learner’s interests and
experiences, has been framed in the literature as a means by
which to improve learning by enhancing motivation.
However, a related perspective could consider personalization
a form of instructional assistance, with the potential to
support the learning of new concepts. In this paper, the
assistance dilemma, known to be “a fundamental unsolved
problem in cognitive science” (Koedinger, Pavlik, McLaren,
& Aleven, 2008, p. 2159), is investigated for context
personalization. Two research studies explore whether
personalization can be considered a form of assistance, and
how this intervention mediates performance measures.
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Background

The personalization hypothesis (learnlab.org/research/wiki)
posits that matching up features of an instructional program
to a learner’s interests, experiences, or typical language
usage will lead to more learning, compared to when
instruction is not personalized. The benefits of
personalization are often framed in terms of motivation or
interest (e.g., Heilman, Collins, Eskenazi, Juffs, & Wilson,
2010); however personalization could also be considered a
form of instructional assistance. This may be a useful
perspective, given that research results for personalization
are mixed, with some studies showing positive effects
(Heilman et al.,, 2010) and others showing no effect
(McLaren, Lim, Gagnon, Yaron, & Koedinger, 2006).
Framing personalization as assistance makes explicit that
benefits should only be expected in some cases, namely
when the assistance is both needed and substantive. In this
paper, the idea of personalization is explored from the
perspective of an important issue in the science of
instruction, the assistance dilemma.

The Assistance Dilemma

The assistance dilemma, or how to balance information-
giving with  information-withholding in  learning
environments, has been framed as “a fundamental unsolved
problem in cognitive science” (Koedinger, Pavlik, McLaren,
& Aleven, 2008, p. 2159). Assistance is considered not only
to be direct hints or scaffolds, but any modification to the
learning environment that enhances performance or reduces

90

mental effort. Cognitive load theory differentiates between
extraneous cognitive load, stemming from activities not
related to schema acquisition, intrinsic cognitive load, or
inherent difficulty from interactivity of knowledge elements,
and germane cognitive load, or effort related to schema
acquisition (Sweller, Merrienboer, & Paas, 1998). Forms of
assistance that reduce extraneous cognitive load should
enhance learning by freeing up cognitive resources, if the
schemas being learned are sufficiently challenging.
However, also central to the assistance dilemma is the
notion of desirable difficulties — research has shown that
modifications that reduce performance during instruction
(like decreasing feedback) can actually increase learning
(Schmidt & Bjork, 1992), suggesting that mental effort can
be germane to learning. The assistance dilemma considers
when to give assistance and how much assistance to give in
order to facilitate learning and learning efficiency, while
also acknowledging that assistance can serve as a “crutch”
or a “scaffold” (Koedinger et al., 2008).

Context Personalization

Here the primary topic of concern is one specific type of
personalization - context personalization. In context
personalization interventions, features of an instructional
program are matched to individual learner’s personal
interests and experiences. For example, in mathematics,
rather than being given a generic story problem on
harvesting wheat from a field of grain, a learner might
receive a variation of this problem based on their individual
interests, perhaps a mathematical scenario about playing a
video game or shopping at the mall. The idea that such
personalization of mathematics problems may enhance
learning is prevalent in the culture of schooling (Fives &
Manning, 2005); however little research has empirically
examined its impact.

The assistance dilemma has sometimes been framed with
respect to the “education wars,” or the struggle to strike a
balance between giving more assistance (i.e. direct or
traditional instruction) and less assistance (i.e. problem-
solving and discovery learning) in learning environments.
Context personalization is an especially fascinating instance
of the assistance dilemma, because although it could be seen
as a form of information-giving, it is widely supported by
reform movements (e.g. National Council of Teachers of
Mathematics, 2000).


http://www.learnlab.org/research/wiki

Previous Studies Perhaps the most well-known study of
context personalization in mathematics is Cordova and
Lepper (1996). Elementary school students were given
computer activities on order of operations, presented in
different instructional formats. Results showed that students
in the condition where the activity was individually
personalized to interests (as previously assessed by
questionnaires) had significantly higher learning gains than
those in a generic condition. Anand and Ross (1987)
conducted a similar study where elementary school children
learned about division of fractions in a computer-assisted
environment. They found an overall positive performance
effect for students who received context personalization,
and a significant interaction indicating that personalization
was most beneficial for low- and middle-achieving students.
In a third study where 7" grade students were given story
problems involving division of whole numbers, Lopez and
Sullivan (1992) found that both individual and group-level
context personalization enhanced post-test performance, but
only for more difficult problems involving two operations.
However, other studies of elementary mathematics have
found no effect for context personalization (e.g. Bates &
Weist, 2004).

In the domain of mathematics, the few studies that have
been conducted on personalization have been with
elementary grade students solving simple arithmetic
problems, and outcomes for personalization are mixed.
Whether context personalization can support performance in
higher-level mathematics and for more mature learners is
unknown. The body of research on context personalization
is so small, that from the literature it is not even apparent
whether personalization could generally be considered a
form of assistance. Thus the primary goal of the studies
reported here was first to establish if context personalization
is a form of assistance among a more advanced group of
learners, and then to begin to explore how personalization
may mediate different performance measures.

Study 1

The first study examined the impact of personalization on
student performance during face-to-face problem-solving
sessions. An abbreviated version of the analyses for Study 1
is given to lead into the larger experimental study, Study 2.

Method

Twenty-four high school Algebra I students were given 3
four-part story problems on linear functions to solve using
pencil-and-paper. Two of the problems had been
personalized to out-of-school interests and experiences the
student had discussed during a pre-interview, while one
problem was a normal story problem from the Cognitive
Tutor Algebra (carnegielearning.com) curriculum. The first
two parts of each problem were result unknowns (Koedinger
& Nathan, 2004), where the student was given a specific x-
value to plug into a linear process like “y=2x+11,” and had
to solve for y. In the third part of each problem, the student
had to write an algebra rule, and the final part was a start
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unknown, where the student must solve for x in a linear
process given a specific value of y. All problems had one of
13 linear functions (i.e. y=2x+11) as their underlying
structure. See Table 1 for example problems.

Table 1: Example of normal and personalized problems

Problem Example
Type
Normal Some early Native Americans used clam

shells called Wampum as a form of currency.

Tagawininto had 80 wampum shells, and

spends 6 of them every day.

a. How many shells did Tagawininto have
after 10 days?

b. How many shells did he have after a week?

c¢. Write an algebra rule that represents this
situation using symbols.

d. After how many days did he have 8 shells?

Personalized ~ You are playing your favorite war game on

the Xbox 360. When you started playing
today, there were 80 enemies left in the locust
horde. You kill 6 enemies every minute.

a. How many enemies are left after 10

minutes?

b. How many enemies are left after 7
minutes?

c. Write an algebra rule that represents this
situation using symbols.

d. If there are only 8 enemies left, how long
have you been playing today?

Student responses were coded for accuracy by two coders
(kappa = 0.96), and performance data was analyzed using a
mixed-effects logistic model. The dependent variable was
whether the student got a problem part correct or incorrect.
Random effects included which student was solving the
problem, and which linear function was being solved. Fixed
effects included whether the problem was normal or
personalized, which problem part was being solved, whether
the students was classified as low-performing, medium-
performing, or high-performing®, and whether the linear
function was classified as easy, medium, or hard?.

Results

Analyses showed that personalization was a significant
predictor of performance. Main effects for all independent
variables were significant (p < .05), along with a number of
interaction terms, including the interaction between problem
type and student level, problem type and problem level, and

! This classification was based on performance during the
session, however the mathematics standardized test scores of the
students from the low-performing group were significantly lower
than students in the other two groups (t=2.73, p<.05).

% This classification was based on performance during the
session, but classifications were also reviewed based on
mathematical difficulty of the functional form.


http://www.carnegielearning.com/

problem level and student level. The results are summarized
in Figure 1, which also gives the p-value for each
corresponding regression coefficient.

Easy Problem Medium Hard Problem
Problem

Low- No significant | No significant | Increased
Performance | effect effect performance**
Student (2% to 28%)
Medium- No significant | No significant
Performance effect effect
Student
High- Decreased No significant | Increased
Performance | performance* effect performance*
Student (96% to 73%) (59% to 90%)

Figure 1: Impact of personalization on performance,
relative to performance on normal problems, by student and
problem levels (‘*’ p <. 05, “**’ p <. 01)

Figure 1 shows how personalization increased
performance for low-performance students solving hard
problems and high-performance students solving hard
problems. The figure also shows an expertise reversal
(Kalyuga, Chandler, & Sweller, 2003) effect for
personalization when easy problems were being solved by
high-performance students. The figure gives the success
rates as estimated by the logistic model for both
personalized and normal problems.

These results suggest that context personalization is
indeed a form of assistance, and that it can allow students
some level of immediate success and opportunity for
learning when they are struggling to solve difficult
problems. One striking result is that there were 6 students (5
of whom were low-performance) in the sample that got no
parts of their normal problem correct, but were able to have
varying levels of success (25-100%) on their personalized
problems. The reverse was never true. This suggests that
personalization may have the most potential as a form of
assistance when students are near the edge of their
capabilities, and like other forms of assistance, should be
faded out as expertise develops.

Study 2

Ultimately a larger sample size was needed to better
understand how personalization impacts performance and
problem-solving behaviors. Thus preliminary results from
Study 2, a large randomized-control experiment, are
reported next. In this study, there is also discussion of
learning efficiency (Koedinger, Corbett, & Perfetti, 2010),
or the idea that because instructional time is so valuable,
completing instructional activities in less time (without
reducing learning) can be considered an important outcome
of an intervention. Koedinger et al. (2010) observe that “too
many theoretical analyses and experimental studies do not
address the time costs of instructional methods” (p. 34).
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Method

Participants and Materials One hundred and forty-five
high school Algebra | students participated in Study 2. The
students’ school used the Cognitive Tutor Algebra
curriculum. Cognitive Tutor is an interactive, software-
based intelligent tutoring system that presents multi-part
algebra problems to students and offers customized
problem-selection as well as hints and feedback. The
program individualizes problem selection by using
knowledge-tracing approaches to determine mastery of the
concepts being learned. The program also uses model-
tracing to relate the learner’s problem-solving actions to a
cognitive model in order to diagnose errors and offer
feedback. For a more in-depth discussion of Cognitive
Tutor, see Koedinger and Aleven (2007).

Procedure and Setup Students were randomly assigned to
experimental and control groups. When students in both
groups entered Unit 6 of the software (Linear Models and
Independent Variables), the computer administered an
interests survey where they rated their interest in 9 topics
(sports, music, movies, TV, games, food, stores, art, and
computers). Students in the control group then received the
standard algebra story problems in Unit 6, while students in
the experimental group received problems selected by the
computer to be personalized to their interests.

Each of the 27 problems in the unit had 4 variations
corresponding to different interest categories. These
variations were written based on a prior survey of student
interests (N = 50). The variations were similar to the
manipulation shown in Table 1, although in this study the
changes to the story were sometimes considerably more
simple. For each problem, students were asked to fill in
different cells of a table as they solved result unknowns,
start unknowns, and wrote algebra rules. Figure 2 shows a
screenshot of the questions posed and the answer key for the
scenario, “You are jogging on the school track to train for
the sports team you are on. You are jogging at a rate of 2.9
meters per second, and have already gone 100 meters.”

How many meters total will you have jogged in 30 more seconds?
How many meters total will you have jogged in four more minutes?
In how many maore seconds will you have jogged 5000 meters total?
In how many more seconds will you have jogged 1,927 meters total?

B WM =

Quantity Name |the time |distance jogged
Unit seconds | meter
Expression X 2.9% + 100
Question 1 30 187

Question 2 240 796

Question 3 1689.6552| 5000

Question 4 630.0 1927

Figure 2: Screenshot of questions and solution values for
a story problem in Unit 6 of Cognitive Tutor

Methods of Analysis The unit of analysis was one student
solving one part of one problem, which corresponds to



filling in one cell in Figure 2. The data included the 73,953
problem parts being solved by the 145 students as they were
presented with normal or personalized versions of the 27
base story problems in Unit 6. Performance was modeled
with a mixed-effects logistic regression. Given the manner
in which Cognitive Tutor’s artificial intelligence selects
problems and assesses learning based on knowledge-tracing
algorithms, students generally received both different
problems and different numbers of problems. Thus in the
statistical analysis, base problem and student are both
random effects. Fixed effects included what condition the
student was in (experimental or control), as well as what
knowledge component (Koedinger & Aleven, 2007) or skill
was being addressed in the cell they were filling in.
Knowledge components were placed in three groups
based on overall difficulty within Unit 6. The first group
was easy knowledge components; these included filling in
names for quantities and units (first two rows in Figure 2)
and entering a given value. The second group was medium-
difficulty knowledge components, such as solving result and
start unknowns and working with different types of numbers
(small, large, decimal). The third group was the most
difficult knowledge components assessed in the tutor,
writing algebraic expressions of various forms. Along with
an analysis of performance, measures of learning efficiency,
hint-seeking, and gaming the system were also analyzed.

Results

Performance Main effects for both condition and difficulty
of knowledge component were significant predictors of
performance, as was the interaction between condition and
knowledge component difficulty (Table 2). The raw
coefficients are in logit form, and in the third column they
are transformed to odds. “Condition-E” is the experimental
group (received personalized problems), and “KC” stands
for knowledge component. The reference groups are the
control condition and easy knowledge components.

Table 2: Regression coefficients for mixed effects logistic
model predicting problem performance (fixed effects only)

Raw  Std Exp z-value

Coeff Err (Coeff)
(Intercept) 195 0111 7.03 17.47 ***
Condition-E 035 0.091 142 3.48 ***
KC-Easy Ref.
KC-Medium -0.85 0.029 0.43 -29.59 ***
KC-Hard -207 0.055 0.13 -37.66 ***
Condition-Ex -0.19 0.041 0.83 -4.68 ***
KC-Medium
Condition-Ex 0.03 0.077 1.03 0.38
KC-Hard

ceRE n< 001

Being in the experimental condition increased predicted
performance on easy knowledge components (odds = 1.42,
p < .001) and hard knowledge components (odds = 1.42 x
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1.03 = 1.46, p < .001). The effect was only marginally
significant for medium knowledge components (odds = 1.42
x 0.83 = 1.17, p = .089). The increased performance on easy
knowledge components, like entering in labels for quantities
and units, suggests that personalization facilitates learners’
ability to get through less mathematically-relevant portions
of the problem in a timely manner. The increased
performance on writing symbolic expressions (hard KCs)
shows that context personalization could be considered a
form of assistance for this challenging algebraic task.

Placing the raw coefficients in Table 2 into the logistic
model, it can be seen that for hard knowledge components,
the control group had a predicted performance of 46%
correct, while the experimental group had a predicted
performance of 56% correct. Thus the model estimates that
personalization improves performance on hard knowledge
components by 10%, which is a considerable increase for
the domain of algebraic expression-writing.

Results suggest that personalization provides assistance to
students as they learn the difficult skill of algebraic
expression-writing.  Personalization may also increase
learning efficiency by facilitating performance on easy
knowledge components. There was no evidence of an
expertise reversal effect in this study — as these problems
were based on general survey data rather than individual
interviews, they may have been less distracting or seductive.

Problem Step Duration Learning efficiency was examined
by looking at the time a learner spent completing each
problem part (i.e. filling in one cell in Figure 2), as it varied
by condition. In terms of average step duration, the pattern
of difficulty for knowledge components was slightly
different than it was for performance. The knowledge
components with the lengthiest step durations included
writing expressions with both slope and intercept terms, and
solving a start unknown when the expression had a positive
slope. For the purposes of the duration analysis, these are
considered “hard” knowledge components. The knowledge
components with medium average step durations included
solving all other start unknowns, working with different
types of numbers (small, large, decimal), and writing
expressions with only slope terms. The easy knowledge
components were the same as they previously were.

A linear mixed-effects regression was conducted with
base problem and student as random effects and condition
and knowledge component difficulty as fixed effects. The
dependent measure was the number of seconds the learner
spent on the problem step. Results are shown in Table 3.

The main effect for condition was not significant;
however, the interaction between condition and knowledge
component difficulty was significant. As can be seen from
the table, personalization significantly decreased step
duration when the problem part being solved was associated
with a hard (time consuming) knowledge component. The
estimated size of the effect is a reduction of 8.6 seconds
(3.06 + 554 8.6, p < .01). This suggests that
personalization assists learners solving hard problems, and
has the potential to increase learning efficiency. Overall,



students in the experimental group had 1.88 correct answers
per minute in the unit, while control group students had 1.56
correct answers per minute. Looking only at the hard
knowledge components, the efficiency scores for the
experimental and control group were 0.59 correct per
minute and 0.42 correct per minute, respectively.

Table 3: Regression coefficients for linear mixed-effects
model predicting problem step duration (in seconds)

Coeff StdErr t-value
(Intercept) 17.07 253 6.76 ***
Condition-E -3.06 2.54 -1.21 ***
KC-Easy Ref.
KC-Medium 19.62 0.75 26.16 ***
KC-Hard 4347 132 32.87 ***
Condition-Ex  -1.52 1.04 -1.46
KC-Medium
Condition-Ex  -5.54 1.80 -3.07 **
KC-Hard

S p< 001 “F* p<.01

Reading Time The time students spent reading each story
scenario was measured by calculating the elapsed time
between when the problem first came up on the student’s
screen, and their first interaction with the tutor. A linear
mixed-effects regression analysis was conducted with
student and item as random effects, and condition as a fixed
effect. The dependent variable was reading time in seconds.
Results showed that condition was a significant predictor of
reading time (z = -2.06, p < .05) with personalization of
story scenarios estimated to reduce average reading time by
7.6 seconds. The predicted reading time for students in the
control group was 33.1 seconds, compared to 25.5 seconds
for the experimental group. This again suggests that
personalization improves learning efficiency by reducing
time spent on less mathematically-relevant problem parts.

Hint-Seeking The hint-seeking behavior of students was
analyzed by looking for differences in the average number
of hints given to the student by the tutor per problem part. A
linear mixed-effects model with student and item as random
effects found that condition was a significant predictor of
hints requested (z = -2.33, p < .05). Personalization reduced
the number of hints per problem part by 0.12 hints, from an
estimated 0.38 hints per problem part for the control
condition to 0.26 hints per problem part for the experimental
condition. Personalization seemed to act as a form of
assistance that allowed students to use substantially fewer of
the built-in hints in the Cognitive Tutor software.

While it is critical that students try to persist in solving
problems and learn from making mistakes, it is also
important that students have the metacognitive awareness to
know when to seek hints, rather than continue to flounder.
Using only the transactions where students received hints,
an exploratory analysis was conducted to see which problem
parts students received the most hints on.
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Table 4 shows that the experimental group received fewer
of their total hints on easy knowledge components, and
more of their total hints on hard knowledge components.
The increased hint-seeking for hard knowledge components
does not explain the performance differences presented
earlier; the dependent measure in those analyses was
whether the student got the correct answer on the first
attempt, without asking for a hint.

Table 4: Percentage of total hints requested by experimental
and control groups for different knowledge components

% of total hints received

KC Type Control Experimental
Easy 10.4% 7.0%
Medium 54.7% 54.6%

Hard 34.9% 38.4%

The analysis of hint-seeking shows that students in the
experimental group received fewer hints, and when they did
receive hints, they were on more difficult knowledge
components. This suggests that personalization facilitates
efficiency on easier knowledge components, but students
still seek help on more challenging skills.

Gaming the System Research on intelligent tutoring
systems has shown that students sometimes engage in
behaviors referred to as gaming the system, (Baker, Corbett,
Koedinger, & Wagner, 2004) where they take advantage of
the tutor’s help and feedback. For example, students may
enter in answers quickly and repeatedly, trying to guess the
answer that the tutor will accept, or students might click
rapidly through the tutor’s hints in order to get to the
“bottom out” hint, where the tutor essentially gives the
student the answer to the problem part. Gaming the system
has been shown to be negatively correlated with learning
(Baker et al., 2004), and has been framed with respect to the
assistance dilemma as a reaction to information-withholding
in instructional environments (Koedinger & Aleven, 2007).
Accordingly, research has shown that weaker students are
more likely to game the system (Baker et al., 2004).

The Cognitive Tutor Gaming Detector (Baker & de
Carvalho, 2008) was run on students’ transactions with the
tutor while in Unit 6. The gaming detector collects a variety
of quantitative data from students’ transactions with the
tutor, including time and hint-seeking measures, and
determines how often the student is likely to have been
gaming the system. Results showed that students in the
experimental group gamed the system significantly less
often (t = -2.33, p < .05). This suggests that personalization
is acting as a form of assistance, reducing gaming and
increasing use of learning-focused strategies.
Personalization might be especially effective for weaker
students, given that they most often game the system.



Conclusion

The results presented here suggest that context
personalization can be considered a form of assistance,
increasing both performance and learning efficiency.
Framing personalization with respect to interest or intrinsic
motivation is an important perspective, and is central to our
own work; however this explanation alone cannot account
for empirical results. Specifically, rather than context
personalization boosting performance in a single, generic
manner across all problems, it seems to be most effective
when students are struggling with a difficult task. For adept
problem-solvers, it may introduce extraneous cognitive
load, causing accuracy to decrease through an expertise
reversal effect. The conceptualization of personalization as
assistance also helps to explain why the results in the
literature are so mixed. Gains should only be expected when
students are solving challenging problems where the type of
assistance offered by personalization is helpful.

This then leads to the question of why context
personalization actually provides assistance. In the domain
of mathematics story problems, Nathan, Kintsch, and
Young’s (1992) conception of a situation model seems to be
a highly probable explanation. Context personalization may
allow students to have a better implicit grasp of the actions
and relationships in a story scenario, allowing them to write
algebraic expressions and solve result and start unknowns
more accurately, as they reason with familiar quantities.

Ultimately, the assistance dilemma is about learning, and
in the present paper, we only look at measures of
performance and learning efficiency. As it seems plausible
that context personalization can productively be considered
a form of assistance, in future work we seek to explore
further whether this assistance is a “crutch” or a “scaffold.”
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