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Abstract

A great deal of research has demonstrated that learning is
influenced by the learner’s prior background knowledge (e.g.
Murphy, 2002; Keil, 1990), but little is known about the processes
by which prior knowledge is deployed. We explore the role of
explanation in deploying prior knowledge by examining the joint
effects of eliciting explanations and providing prior knowledge in a
task where each should aid learning. Three hypotheses are
considered: that explanation and prior knowledge have
independent and additive effects on learning, that their joint effects
on learning are subadditive, and that their effects are superadditive.
A category learning experiment finds evidence for a superadditive
effect: explaining drives the discovery of regularities, while prior
knowledge constrains which regularities learners discover. This is
consistent with an account of explanation’s effects on learning
proposed in Williams & Lombrozo (in press).
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What processes underlie the critical capacity to acquire
information and generalize to future situations? The topic of
learning is one with a long history in cognitive science and
development, and with important practical applications to
education. While much research in cognitive science has
focused on mechanisms that are independent of the specific
knowledge people possess about a domain, studies have
repeatedly and reliably demonstrated that prior background
knowledge has profound effects on learning. This work
suggests that characterizing how prior knowledge influences
learning is a key issue for theories of learning.

Effects of prior knowledge have been particularly well
characterized in the context of category learning. Prior
knowledge that relates the features of a category allows
learners to discover an underlying thematic pattern and learn
the category more quickly (e.g., Murphy & Allopenna,
1994), and prior knowledge can also influence the
construction of features in a way that supports classification
(Wisniewski & Medin, 1994). Most broadly, prior
knowledge has been seen as helpful because it exerts
constraints on the process of knowledge acquisition (Keil,
1990), such as reducing the set of hypotheses learners
entertain (Tenenbaum, Griffiths & Kemp, 2006). Most
proposed mechanisms for category learning — such as
encoding of exemplars, prototype formation, and other
associative learning mechanisms — do not capture effects of
prior knowledge (see Murphy, 2002), although more recent
computational models attempt to incorporate such effects
(e.g., Rehder & Murphy, 2003; Tenenbaum et al, 2006).

One possibility is that generating explanations plays a
role in the effects of prior knowledge on learning. In this
paper we consider the relationship between eliciting

explanations and effects of prior knowledge. Engaging in
explanation during study has been shown to promote
learning and generalization in a range of knowledge-rich
domains, for both adults (e.g. Chi, et al, 1994) and young
children (for a review see Wellman & Liu, 2006). The
process of “self-explaining” may be effective in part
because explaining integrates new information with prior
knowledge (Chi et al, 1994).

Previous work on eliciting explanations has considered
the role of prior knowledge in mediating learning gains, but
with mixed results. Some studies find that eliciting
explanations has the greatest benefit for learners with low
levels of prior domain-knowledge (e.g., Renkl et al., 1998),
and that self-explanation training may be more useful for
learners with low domain knowledge (McNamara, 2004).
Other studies have not found a relationship between pre-test
performance and the magnitude of post-test gains (e.g. Chi
& VanLehn, 1991; Chi et al., 1994; Rittle-Johnson, 2006),
although there is suggestive evidence that learners with
more background produce higher-quality self-explanations
(Renkl, 1997; Best, Ozuru, & McNamara, 2004).

Williams and Lombrozo (in press) propose a subsumptive
constraints account of the role of explanation in learning
that suggests how explanation and prior knowledge might
interact to guide learning. The subsumptive constraints
account is inspired by theories of explanation in philosophy
which propose that explanations show how what is being
explained is an instance of (subsumed by) a general pattern.
If the explanations learners generate must satisfy this
constraint, then attempting to explain should drive learners
to discover regularities and underlying principles that are
present in the material being explained. In support of this
proposal, Williams and Lombrozo (in press) found that
participants who explained items’ category membership
were more likely to discover a subtle regularity underlying
category membership than participants who described
category items, thought aloud, or engaged in free study.

The subsumptive constraints account suggests two ways
in which explanation and prior knowledge could interact.
First, explanations could determine which prior knowledge
is deployed. According to the subsumptive constraints
account, learners should invoke beliefs that demonstrate
how what is being explained can be subsumed under general
patterns. Second, the account suggests that prior knowledge
could provide a source of constraint on which subsuming
generalizations are considered explanatory. Consider the
task of learning about the categories “psychology lecturer”
and “psychology student” from the limited observation of a
single lecture. The underlying bases for the categories could
be that a psychology student is seated while a psychology
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lecturer is standing, but this generalization seems like an
implausible basis — and a poor explanation — for category
membership. Distinguishing law-like generalizations from
accidental generalizations is notoriously difficult (for
discussion in philosophy see Caroll, 2008; and in
psychology, Kalish, 2002), but prior knowledge may
provide one source of constraint on which patterns are seen
as explanatory, therefore determining which patterns
participants are more likely to discover and employ in
seeking explanations.

To investigate the relationship between explanation and
prior knowledge, we restrict our focus to cases where
explanation and prior knowledge would be expected to help
learning, and consider whether their joint effects on learning
are independent and additive, subadditive (less than the sum
of their independent effects), or superadditive (greater than
the sum of their independent effects).'

The proposed experiment uses a category-learning task in
which there are patterns underlying category membership,
and an explanation manipulation (explain vs. free study) is
crossed with a prior knowledge manipulation (knowledge
relevant to an underlying pattern is provided vs. no
additional knowledge). The experiment aims to discriminate
three alternative hypotheses about the joint effects of
explanation and prior knowledge on learning.

One possibility is that explanation and prior knowledge
have independent and additive effects. This hypothesis is a
sensible default in the absence of evidence that eliciting
explanations and prior knowledge interact, and no specific
accounts have been proposed as to how prior knowledge
might be deployed through explaining. Independent effects
of explanations and prior knowledge would be likely if
explaining helps learning through mechanisms that do not
interact with those by which prior knowledge plays a role.
For example, explaining might increase attention and
motivation, while prior knowledge might independently
constrain the hypotheses under consideration.

A second possibility is that prior knowledge and
explanation have subadditive benefits. This could occur if
the effects of explanation and prior knowledge are achieved
through common mechanisms. For example, prompts to
explain and the provision of prior knowledge may both
guide learners to seek meaningful regularities in category
structure. Explaining when prior knowledge is already
available may therefore have little benefit above simply
possessing prior knowledge.

! Whether explanation and prior knowledge help or hurt learning
depends on the nature of what is being learned. Prior beliefs about
a domain may be incorrect, or explaining may drive learners to
unreliable patterns (Williams & Lombrozo, in press; Williams,
Lombrozo, & Rehder, in press). In this paper we do not aim to
investigate interactions of explanation and prior knowledge in
settings where either will individually impair learning. In many
real-world cases and educational contexts, both explaining and
prior knowledge would be expected to benefit learning — for
example, if there are regularities to discover and prior knowledge
is correct — and this is the kind of setting we explore.

A final possibility is a superadditive effect of explanation
and prior knowledge, such that explanation and prior
knowledge interact in a way that produces a learning benefit
that exceeds either of their independent effects. This could
occur if explanations deploy prior knowledge that might
otherwise be inert, or if prior knowledge influences the
generation of explanations in a way that fosters more
effective learning. The subsumptive constraints account
suggests one way this might work: attempting to generate
explanations (e.g. for category membership) could invoke
prior beliefs in order to supply candidate subsuming
patterns, and prior beliefs could simultaneously constrain
which candidate subsuming regularities are deemed
explanatory.

Experiment

There are many ways that prior knowledge could impact
learning, and accordingly a multitude of ways in which prior
knowledge could be manipulated. In this experiment, we
provide category labels intended to activate prior knowledge
relevant to which features might underlie membership.

We used eight category items, shown in Figure 1. There
were two rules that could be used to categorize: an antenna
rule (shorter left vs shorter right antenna) and a foot rule
(pointy vs flat feet). The prior knowledge variable was
operationalized by providing uninformative category labels
that were neutral with respect to the two rules (low prior
knowledge condition: items labeled as Glorp and Drent
robots) versus labels that could be related to the foot rule
(high prior knowledge condition: labeled as Outdoor and
Indoor robots). The motivation for these rules was that
participants’ knowledge might account for Outdoor robots
having pointy fleet and Indoor robots having flat feet, but
not for why Outdoor or Indoor robots would have shorter
left or right antennae.”

While all participants were informed that they would later
be tested on their ability to categorize robots, those in the
explain condition were prompted to explain the category
membership of the Glorp and Drent (or Indoor & Outdoor)
robots, while those in the firee study condition were allowed
to study the robots without specific prompts, yielding a task
variable with two levels (explain vs. free study).

The two (Task: Explanation vs. Free Study) x two (Prior
knowledge: Low vs. High) design therefore allowed for a
test of whether the joint effect of explanation and prior
knowledge on learning a basis for categorization is
independent and additive, subadditive, or superadditive.

? Participants could have drawn on prior knowledge to explain
why antenna length was related to being Outdoor/Indoor, or have
had beliefs that conflicted with, for example, Outdoor robots
having pointy feet, but the significant difference between
conditions suggests this was not true for the majority of
participants.
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Participants

Two hundred and forty (60 in each condition) UC
Berkeley students participated for course credit or monetary
reimbursement (161 in the lab, 79 online).

Materials
The task involved study items, test items, and transfer items.
Study items. There were two categories of alien robots;
the image participants saw in the high prior knowledge
condition is displayed in Figure 1. The category labels were
chosen based on whether the condition was low or high
prior knowledge: the robots were labeled as Glorps and
Drents in the low prior knowledge condition, and as /ndoor
and Outdoor robots in the high prior knowledge condition.
Each robot was composed of six elements: left color
(blue, green, red, yellow), right color (brown, cyan, grey,
pink), body shape (square, circular), left antenna length
(short, long), right antenna length (short, long), and foot
shape (eight different geometric shapes). Color and body
shape were uncorrelated with category membership: every
right and left color occurred exactly once per category, and
each category had two robots with square bodies and two
with circular bodies. All four Outdoor (Glorp) robots had a
shorter left antenna and all four Indoor (Drent) robots had a
shorter right antenna. Although each robot had a unique
geometric shape for feet, there was a subtle regularity across
categories: all four Outdoor (Glorp) robots had pointy feet
while all four Indoor (Drent) robots had flat feet. For
simplicity, from this point on we refer to the robots in each
category by their high prior knowledge label
(Outdoor/Indoor robots).

Outdoor / Glorp robots

b4

Indoor / Drent robots

ITIE

Figure 1: Study items.

This category structure supported at least three distinct
bases for categorization. First, participants might not draw
any generalizations about category membership, and instead
categorize new items on the basis of their similarity to
individual study items, where similarity is measured by
tallying the number of shared features across items. We call
this item similarity. Alternatively, participants could notice
the antenna feature (Outdoor robots had shorter left
antennas, Indoor robots shorter right antennas) and use it as
a categorization rule: this is termed the antenna rule.
Finally, participants could discover that although each robot
had a unique geometric shape for feet, there was a subtle

regularity termed the foot rule: Outdoor robots had pointy
feet and Indoor robots had flat feet.

Test probe items. Three types of test item were
constructed by taking novel combinations of the features
used for the study items. Each type yielded a categorization
judgment (of Outdoor/Indoor) that was diagnostic of one
basis for categorization (item similarity, antenna rule, foot
rule), by pitting that basis for categorization against the
other two. For example, categorizing a yellow/gray robot
with a shorter right antenna and pointy feet as an Indoor
robot would suggest a participant relied on the antenna rule.
We call these item similarity probes (three items), antenna
rule probes (three items), and foot rule probes (four items).
There was one extra item for which all three bases gave the
same response.

Transfer Items. These four items used completely novel
foot shapes to distinguish participants who genuinely drew
an abstract generalization concerning “pointy” versus “flat”
feet from those who simply recognized the importance of
particular foot shapes. For each item, the foot rule was
pitted against item similarity and the antenna rule.

Procedure

The task involved a study phase, a categorization phase,
and additional measures designed to probe what participants
had learned about the categories.

Study phase. Participants were instructed that they would
be looking at two types of robots on the planet Zarn:
Outdoor (Glorp) and Indoor (Drent) robots, with labels
chosen based on being in the high or low prior knowledge
condition. They were also informed that they would later be
tested on their ability to remember the robots they had seen,
and their ability to decide whether robots were Outdoor
(Glorp) or Indoor (Drent) robots.

After advancing the instruction screen they saw a color
image displaying the eight study items in a scrambled order,
with each robot numbered 1 through 8 and category
membership clearly indicated for each robot (the actual
image for the high prior knowledge condition is shown in
Figure 1). In both conditions participants were informed that
they were seeing eight robots on ZARN and that the picture
would be onscreen for two minutes. Participants in the
explain condition were told “Explain why robots 1, 2, 3 & 4
might be Outdoor (Glorp) robots, and explain why robots 5,
6, 7 & 8 might be Indoor (Drent) robots.” Participants
typed their explanations into a box onscreen. Those in the
free study condition were told “Robots 1, 2, 3 & 4 are
Outdoor robots, and robots 5, 6, 7 & 8 are Indoor robots.”
The image was onscreen for exactly two minutes and then
the screen automatically advanced.

Categorization phase. The eleven test items were
presented in random order, followed by the four transfer
items in random order, with participants categorizing each
robot as Outdoor (Glorp) or Indoor (Drent).

* In all quoted prompts, the alternative labels (Glorp/Drent
instead of Outdoor/Indoor) are displayed in parentheses, but only
one set of labels was actually displayed.
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Probability of pattern. To assess participants’ belief about
the presence of a defining feature or rule, they were asked:
“What do you think the chances are that there is one single
feature that underlies whether a robot is Outdoor (Glorp) or
Indoor (Drent) - a single feature that could be used to
classify ALL robots?”

Category differences. Participants were explicitly asked
“Were there any noticeable differences between Outdoor
(Glorp) and Indoor (Drent) robots? If you think there were,
please be SPECIFIC about what you thought the differences
were.”

Ranking of question informativeness.

Features used for categorization. Participants were asked
which features they used in categorizing robots. There was a
separate line to enter features of Outdoor (Glorp) robots and
features of Indoor (Drent) robots. >

Antenna Informativeness. Participants were asked if they
could tell whether a robot was Outdoor (Glorp) or Indoor
(Drent) by looking at its antenna, and if they could, to state
what the difference was.

Antenna classiﬁcation.4

Explanation self-report. All participants were asked if
they were trying to explain the category membership of
robots while the image of all 8 robots was onscreen.

Previous exposure. Participants were asked if they had
seen the robots before, or already done an experiment using
the materials.’

Foot informativeness. Participants were asked if they
could tell what category a robot belonged to by looking at
its feet, and if they could, to state what the difference was.

Results
In the interests of space, we do not report all dependent
measures, especially as many support the same conclusions.
Each of the three kinds of test probe items pitted one basis
for categorization against the other two, so participants’
patterns of categorization over the full set was used to
determine whether their basis for categorization was most
consistent with ‘item similarity’, the ‘antenna rule’, or the
‘foot rule’, with ties coded as ‘other’. The proportion of
participants using each basis is shown in Table 1, as a
function of condition. In addition to examining the basis
participants’ wused, direct measures of antenna rule
discovery and foot rule discovery were also coded from
participants’ responses to questions about whether they
could classify robots based only on antenna or feet. These
generally mirrored the findings on rule use. Figure 2 shows
the proportion of participants who discovered the foot and

* This question asked participants to rank how informative
different questions would be about membership, but is redundant
with other reported measures and so omitted to save space.

> Some participants’ categorization responses were reverse
coded, if their explicit reports about the differences between
categories or features used to categorize revealed they had reversed
category labels, such as stating that outdoor robots had flat feet
when in fact the opposite was true.

® Those who indicated previous participation were excluded.

antenna rules and Figure 3 shows the proportion that
discovered a rule (antenna or foot), as a function of
condition.

A log-linear analysis on task (explain vs. free study),
prior knowledge (low vs. high), and foot rule use (used vs.
did not use foot rule, as computed from inferred basis)
revealed a significant three-way interaction, x2 (1) =7.27, p
< 0.01, while that for foot rule discovery was marginal, x2
(1) =3.16, p = 0.08. Explanation and prior knowledge had a
joint, superadditive effect on use of the foot rule. This
interaction was driven by privileged use of the foot rule by
participants who explained and had high prior knowledge
(the explain-high PK condition): the combination of
explaining and relevant prior knowledge exceeded the
effects of each factor on its own. In fact, in the absence of
explaining (i.e., the free study conditions) prior knowledge
did not have an effect on foot rule use, x2 (1) = 0.06, p =
0.81.

Foot | Antenna Item

Rule Rule Similarity | Other
Explain- Low PK 0.32 0.60 0.05 ] 0.03
Explain- High PK 0.67 0.25 0.06 | 0.02
Free Study- Low PK 0.35 0.22 0.38 | 0.05
Free Study- High PK 0.35 0.20 0.40 | 0.05

Table 1: Proportion of participants using each basis for
categorization, by condition.

1.0
5' B Explain
B 08 OFree Study
- 0
% 04
Il B
4]
2 o0
Low PK High PK Low PK High PK
Foot rule Antenna Rule

Figure 2: Proportion of participants who discovered the foot
and antenna rules, by condition.
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Figure 3: Proportion of participants who discovered a rule
(antenna or foot), by condition.

There was also a three-way interaction between task, prior
knowledge and both antenna rule use, ¥2 (1) = 5.48, p <
0.05, and antenna rule discovery, x2 (1) = 5.40, p < 0.05,
driven by the explain-low PK condition. Overall, use of a
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rule (either antenna or foot) was higher for explainers
(interaction between task and whether a rule was used, x2
(1) =42.76, p < 0.001, while reliance on item similarity was
higher in the free study condition (interaction of task and
item similarity use, 2 (1) =41.90, p < 0.001). Interestingly,
overall rule discovery was actually higher in the explain-low
PK than explain-high PK condition, 2 (1) =4.09, p <0.05.

Discussion

In the context of category learning, we found that
explanation and prior knowledge interacted, producing an
effect on the discovery of a regularity related to prior
knowledge that surpassed the independent effects of
explanation or prior knowledge alone. This finding
challenges the possibility that explaining and prior
knowledge influence learning independently. Since a
subadditive effect was not found, it also provides evidence
against the hypothesis that explanation and prior knowledge
draw on the same mechanisms or resources in promoting
learning. The best explanation for the current findings is that
explanation and prior knowledge influence learning by
neither independent nor identical means, but have an
interactive relationship.

This relationship can be understood in terms of the
subsumptive constraints account of explanation and learning
(Williams & Lombrozo, in press). If explaining exerts the
constraint that learners generate explanations that show how
what is being explained is subsumed by a general pattern,
prior knowledge can provide constraints on which patterns
support reasonable explanations. In the current experiment,
explaining why items were Outdoor and Indoor robots drew
on prior knowledge that constrained learners to explain
membership in terms of the foot rule rather than a rule
concerning antenna length. Not all subsuming patterns are
equally explanatory; patterns must also make sense in light
of prior knowledge.

An alternative account could instead implicate attentional
mechanisms: Explaining promotes attention to items while
prior knowledge exerts constraints on which item features
are the focus of this attention, leading to an interactive effect
on discovery of the foot rule. However, prior knowledge did
not focus attention on the foot rule in the free study
conditions. Moreover, Williams et al (in press) provide
evidence that explaining can actually impair learning,
suggesting that its effects go beyond increasing attention to
exerting subsumptive constraints. If explaining influences
attention, the evidence suggests it is not a generalized
attentional boost to encode item details or monitor more
information, but through constraints to attend to underlying
patterns, which we would endorse as consistent with the
subsumptive constraints account.

While we report a superadditive effect of explanation and
prior knowledge, there are likely contexts in which different
kinds of interactions would obtain. For example, it is known
that the learning benefits of explanations (Williams et al, in
press) and of prior knowledge (Wattenmaker et al, 1986)

depend on the relationship between the constraints imposed
by explanation or prior knowledge and the structure of the
material being learned. If explanation exerts inappropriate
constraints or prior knowledge is incorrect, their joint effects
will be markedly different. Also, in cases where explanation
automatically recruits prior knowledge or prior knowledge
produces spontaneous explanation, their joint effect may
appear to be independent or subadditive. The goal in the
current work was to take a first and necessarily
circumscribed step towards the ambitious goal of
understanding the interactions between explanation and
prior knowledge in learning.

Despite these limitations, the findings have implications
for education and suggest interesting directions for applied
research. Providing evidence that explaining invokes and is
influenced by prior knowledge helps to explain why it has
such powerful effects on learning. Explaining drives the
discovery of regularities and guides learners to interpret
what they are learning in terms of what they already know:
an activity students may not engage in spontaneously even
if they possess relevant prior knowledge.

If explaining promotes consistency with prior knowledge,
its benefits may depend on having acquired correct and
useful prior knowledge. Learning strategies that focus on
acquiring background knowledge may be a necessary
precursor to activities that involve explanation, and failures
of explanation may suggest the need to develop background
knowledge. The dangers inherent in incorrect prior
knowledge are also brought into clear relief: effects of
explaining may be reduced by incorrect or inappropriate
prior knowledge, and may even be harmful. Examining the
relationship between explanation and prior knowledge
might therefore be one way to understand robust
misconceptions and difficulties with conceptual change.

The current findings speak to the possibility that
explanation is a mechanism by which prior knowledge is
brought to bear in learning. In this experimental context,
simply providing prior knowledge was insufficient to
support learning: the high and low prior knowledge free
study conditions did not differ in rule discovery. It may be
that when learners explain and must satisfy subsumptive
constraints, prior knowledge is accessed and deployed to
inform which patterns are subsuming, so that explaining is a
mechanism by which prior knowledge influences learning.
Further research could explore what kinds of prior
knowledge explaining might deploy, such as logical or
causal inferences versus information stored in memory.
Another issue concerns the amount of prior knowledge
necessary for these interactive effects. The current
experiments compared just two levels of prior knowledge,
although prior knowledge spans a much broader continuum.

If explaining deploys prior knowledge in learning, it may
be that spontaneously explaining category membership
plays a role in knowledge effects on category learning. This
possibility is bolstered by demonstrations that explaining
increases use of features that are unified by prior knowledge
into thematic patterns (Chin-Parker et al, 2006; Williams et

2916



al, in press). Moreover, Wisniewski & Medin (1994)
reported that activating prior knowledge through meaningful
category labels drove the construction of novel and abstract
features. The effects they report may in fact be best
understood in terms of an interaction between prior
knowledge and explanations for category membership,
which the subsumptive constraints account can help explain.

Explanation’s effects on category learning warrant an
examination of the relationship between explanation-based
learning and existing models of category learning. While the
subsumptive constraints account aligns naturally with rule-
based models (e.g. Nosofsky et al, 1994), the reported
interaction shows how both our account and rule-based
models need to be extended to account for effects of prior
knowledge on which rules count as good bases for category
membership. More broadly, while representations such as
exemplars play one role in learning about a category, the
effect of explanation may be to construct more abstract
representations that are consistent with general prior
knowledge about a category, such as its origin or function.

The current work suggests a number of future directions.
Do different types of prior knowledge differentially support
learning, such as prior knowledge about causal mechanisms
vs. functions? When does prior knowledge help because it
supplies candidate patterns that can subsume observations,
versus help because it informs which patterns are
subsuming? Given that subsumption and consistency with
prior knowledge both constrain learning, how do they trade
off? These and further questions await future research.
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