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Abstract

We present Explanatory Reasoning for Inductive Confidence
(ERIC), a computational model of explanation generation and
evaluation. ERIC combines analogical hypothesis generation
and justification with normative probabilistic theory over
statement confidences. It successfully captures a broad range
of empirical phenomena, and represents a promising approach
toward the application of explanatory knowledge in new
situations.
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Introduction

We are constantly making guesses. When we come across
something new, we know about it in part from its relations
to other things and we attribute to the novel the properties of
the familiar. For instance, when Apple announced the iPad,
technology reporters alternately compared it to tablet PCs,
which are similar in size and function, and the iPhone,
which is similar in appearance and operating system. In
each case, the game was to predict the features of the new
object on the basis of the old ones.

Property inductions of this kind—extending known
properties of one category to other categories—have been
heavily studied in experimental psychology (see Heit, 2000,
for a review). Such inductions seem to take advantage of
taxonomic knowledge about category structures as well as
specific knowledge about particular categories (Shafto,
Kemp, Bonawitz, Coley, & Tenenbaum, 2008).

One intuition, pursued here, is that people make
inductions by adapting explanations for known properties to
novel categories. People are habitual generators of
explanations: Scientists explain natural phenomena;
engineers explain why structures will or will not support
various loads; mathematicians explain why a formal
property does or does not hold of a particular situation or
object; and everyone routinely explains much more
mundane things such as why the doorbell rang, why we
smell gas in the kitchen and why a child has a fever.
Explanations serve many cognitive functions, but perhaps
none is more important than their ability to support
inductive inferences: A person who can explain a novel
observation can have much greater confidence in their
inferences about the circumstances under which that
observation is likely to be repeated than a person who
cannot explain it—which is why, for example, your auto

mechanic is better than you are at knowing whether that
strange noise you car is making is likely to be dangerous.

In order to apply explanations of past experiences to
novel situations, a cognitive architecture must solve several
problems. First, it must be able to generate and retain
explanations in the first place. Second, it must have a way to
generate novel hypotheses about a current situation from its
beliefs about past circumstances. Finally, it must be able to
distinguish when a novel explanation is plausible in the
current situation, and when it is not.

Bayesian models, and particularly hierarchical Bayesian
models, are adept at the last of these goals. For example, the
model of Kemp and Tennenbaum (2009) carves known
situations into disjoint domains, and applies to novel
situations the domain assumptions that appear most
appropriate. However, human reasoners also adapt
explanation patterns across multiple, dissimilar domains
(Medin, Coley, Storms, & Hayes, 2003). Although such
cross-domain reasoning is the sine qua non of analogical
approaches to reasoning (Falkenhainer, Forbus, & Gentner,
1989; Hummel & Holyoak, 1997), models of analogy
generally provide no basis for generating probabilistic
estimates of confidence in their inferences.

In this paper, we present the model ERIC, Explanatory
Reasoning for Inductive Confidence (see also Landy &
Hummel, 2009). ERIC uses a combination of analogical and
probabilistic reasoning to (a) generate explanations for
newly learned facts, (b) evaluate the plausibility of those
explanations in light of its existing knowledge, (c) use those
explanations to update its confidence in its existing
knowledge and (d) make judgments about the plausibility of
new inferences. The resulting model accounts for a large
body of empirical findings from the literature on inductive
confidence (e.g., Heit, 2000; Shafto et al., 2008).

A central tenet of the model is that the mind uses analogy
to adapt old explanations to new situations and then uses
those new explanations both to determine its confidence in
the new observation and to update its confidence in its
existing knowledge—both existing basic facts and existing
explanations. The knowledge updated includes both the
source analogs (i.e., the old explanations used to generate
the new ones) and the analogies themselves (i.e., the
mappings from the old [source] explanations to the new
[target] explanations). As a result, if an analogy results in a
good explanation, then the model becomes more convinced
both that the source was true and that the analogy was good.
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A second central tenet is that the mind generates these
explanations permissively and habitually: Presented with
any new “fact” or observation, the mind will generate as
many potential explanations of that fact as possible and
assign a likelihood or confidence value to each; in turn,
these values are used to update its confidence in the very
facts that participated in the explanations themselves.

Some models of induction (e.g., Kemp & Tennenbaum,
2009) explicitly carve knowledge into separate domains,
and assume that categorically different processes apply to
situations attributed to those domains (e.g., reasoning in one
way about ontological knowledge and in a different way
about geographical knowledge). A third tenet of the model
is that knowledge, including knowledge about generating
processes, is applied to relevant situations regardless of
domain. That is, the processes underlying explanation and
confidence estimation are the same across and within all
areas of knowledge: Any differences between, say,
ontological knowledge and other knowledge domains (e.g.,
geographical location, diet or behavioral traits) emerge as a
natural consequence of the relationship between individual
sets of facts, and not through an explicit and absolute
categorization into domain.

Finally, in line with other integrative general knowledge
models, the goal of ERIC is not to be entirely formally
consistent (Wang, 2009). For instance, it will not
necessarily be the case that a”~a is guaranteed to be false.

Property Induction

We report a collection of simulations using ERIC to
perform a property induction task (Osherson, Smith, Wilkie,
Lopez, & Shafir, 1990; Rips, 1975). In this task, a subject
(or ERIC) is given a premise, which is assumed to be true
(e.g., “robins get disease d”), based upon which they are
asked to estimate the likelihood of a conclusion (e.g., “birds
get d”). The dependent measure of interest is the estimated
likelihood of the conclusion as a function of the relation
between the major term in the premise (here, “robins”) and
that in the conclusion (“birds”), and of the relation between
these categories and the property induced (“disease d”).

ERIC

Overview

ERIC is based on the following assumptions about the
nature of the property induction task:

1. A person enters the laboratory with knowledge
(facts, explanations, theories) believed in with
varying degrees of confidence.

2. Faced with the premise, the subject tries to explain
it by building a fairly large set of potential
explanations by analogy to known cases.

3. Each explanation is assigned an inductive
confidence that combines confidence in the
knowledge involved in the explanation and
confidence in the generating analogies.

4. These explanations are added (provisionally) to
knowledge, and the confidence of existing
statements is updated using Bayesian inference.

5. Faced with a conclusion, the subject repeats
process of explanation and confidence updating.

6. Confidence in the conclusion is high to the degree
that the explanations are strong.

As input, ERIC takes an explanandum—either a premise
or a conclusion. As output, it generates potential
explanations, each with an assigned confidence, and an
estimate of the confidence in the explanandum itself.
Applied to property induction, the mechanism operates in
two stages: First, ERIC explains the premise(s) and any
knowledge gleaned from those explanations is added to the
knowledge base. Next, it explains the conclusion using that
augmented knowledge. The result of these processes is an
estimate of the likelihood that the conclusion is true.

Knowledge Representation

All of ERIC’s knowledge is represented in standard
propositional notation, augmented to capture the logical and
causal relations that link propositions into explanations.
Atoms are of the form f(a), g(a, b, c¢), and so on.
Connectives A, V, and ~ are used in their usual sense to
mean and, or, and not.

Two less universal connectives provide a language for
representing explanations and analogical mappings. The
connective = denotes an explanatory or causal relationship.
For example, g=r should be read as “gq (if true) would tend
to explain (cause) .” In contrast to some prior models (e.g.,
Falkenhainer et al., 1989; Hummel & Holyoak, 1997),
causal connections are treated as special types, and not as
generic two-place predicates (see also Hummel & Landy,
2009). Syntactically, they are equivalent in ERIC to a
material conditional.

The second novel connective is the mapping relation,
gsr, which asserts that ¢ and » map to each other in some
analogy, and provides ERIC’s initial estimate that ¢ and r
might map to each other in some future analogy. Mapping
connections have learned confidences.

Confidence Each statement, ¢, is assigned a confidence
value between 0 and 1, which is intended to work much like
an intuitive probability that the statement is true. Indeed, we
will refer to the confidence as “the probability of ¢,” or p(g).

Statements in the initial knowledge set have a preset
initial confidence. Regular property statements and cause
relations (e.g., g=7) that do not appear in the initial
knowledge have a confidence set to arbitrary low values
(0.1 and 0.001).

Explanations An explanation is a recursive binary modal
structure, with the pattern E(explanation; explanandum),
where the explanandum is a statement, and the explanation
is a set of statements. They have the form of a modus
ponens: Some set of (possibly recursively justified) causes
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and an explanatory connective statement justify the effects.
For instance, the explanation:

E (p.q.E,(r;r = q;q),p A q=>s;5).

asserts that “p, ¢ (where ¢ is explained by r), and [p and ¢
cause s] jointly cause s.”

An explanation differs from a causal connective in several
ways. First, a causal connective is purely dispositional,
while an explanation asserts that in fact, the explanation
explains the explanandum. An explanation thus encodes a
derivation pattern, rather than a potential relationship.
Further, an explanation carries its own internal semantics; it
denotes a possible state of affairs.

Knowledge base ERIC’s knowledge consists of three major
classes of statements: simple property statements, such as
eats(Robin, Worm); simple explanations, such as generic
taxonomic explanations of the form isa(4, B) * x(B) =
x(4); and taxonomic assertions, of the form isa(Robin,
Bird). 1t is worth noting here that taxonomic assertions are
simply property statements, and not a special part of the
model mechanism.

Justification

ERIC revises its beliefs (e.g., explanations) using two kinds
of justification: analogical and explanatory. For either, the
effect of a justification, j, on an explanandum, i, is to update
the probability of i according to a probabilistic-OR rule:

p(s)<= p(j)+ 1= p()N)p(s) M

Intuitively, (1) can be read as meaning that if the
justification, j, is correct, then the assertion, s, it justifies
must be correct, but if it is not, then s might still be correct
with (base rate) probability p(s).

The initial confidence of an explanation is simply the
probability that all the statements in the explanation are true:

p()=]1e @

e€E

Analogical Justification Intuitively, an analogy, rsgq,
justifies ¢ to the extent that the source analog (r) is true, and
the mapping is reliable. Thus,

p@) = p(rp(rsq) )
The target of an analogical justification is always a causal
statement. These are updated by applying the justification
to the cause statement via equation (1), just as with
explanatory justification.

Explanation Generation

When a new explanandum, ¢, is presented to ERIC, two
steps are recursively applied to generate new explanations
of g. First, each fact in the current knowledge base that

shares any literals with ¢ is postulated as a possible
explanation for ¢. For example if ¢ = g(a) and if f{a) is
known, then one explanation postulated will be f{a)=g(a).
Confidence in this shallow explanation will initially be set
to a very low wvalue. Second, existing explanations
(including those inside explanations) are expanded and
justified by analogy to other explanations in knowledge.

Any potentially useful analogical mapping, e.g.,
(a=b)s(c=d), is computed by mapping the elements of a,b
onto those of c¢,d using Holyoak and Thagard’s (1989)
ACME mapping algorithm. ACME’s mapping strengths
range between 0 and 1, and so translate conveniently into
confidences. ACME combines structural isomorphism and
semantic relationships. In ERIC, these semantic
relationships are computed directly from the knowledge
base (see Projectable Literals, below).

The best match produced by ACME is used as the basis
for an analogy. This approach has two effects. First, the
explanatory relation is justified by the analogical statement,
using (3). Second, statements appearing in the analog but
not in the current explanation are imported.

These two processes are applied to each explanation in
the current set a fixed number of times (three in the current
simulations). Each explanation in the final set justifies the
conclusion; the result is the confidence in the conclusion.

Projectable Literals  Analogical similarity integrates
structural overlap and semantic relationships (Taylor &
Hummel, 2009). That is, structural relations being equal,
ERIC prefers analogies about identical or similar terms to
comparisons among distantly related items.

The semantic similarity—more accurately, projectability
(Simmons & Estes, 2008; Sloutsky, Kaminski, & Heckler,
2005)—of a onto b, p,, can come from either of two
sources. If two terms have been related by past explanatory
analogies, then the projectability is stored in the form of a
mapping statement. The projectability of two previously
unrelated terms is calculated from ERIC’s knowledge:

pab = e_dﬂb (4)
where
dab = asa + ﬁsb - ysab - 6mab

o, B, v and & are free parameters (15/40, 2/40, 1/40, and
17/40, respectively). Here s, is the summed confidence in
sentences in which a appears; s, and s, are defined
analogously. Intuitively, a is projectable onto b to the extent
that they appear in similar relational roles in LTM (ys ) or
to the extent that b is a kind of a (6m,_,) and to the extent

that @ does not appear in roles in which b does not and vice-
versa (as, + f3s,)- If @ mapping connection exists between a
and b then ERIC uses the mapping strength as p,,: ERIC
learns that facts about a generally apply to b.

The differential applicability of known explanations to
novel situations constructs a kind of soft domain separation.
Although any knowledge can be applied to a new situation
in principle, close knowledge will be applied with far more
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confidence. As a result, cross domain analogies have most
effect in the absence of other good explanations. This
differential applicability of old explanation replaces the
construction of explicit domains of explanations (Kemp &
Tenenbaum, 2009) used in other approaches, and in general
may implement generic symbolic rules (Gentner & Medina,
1998; Sun, 2006).

Knowledge Revision

In property induction, a certain number of premises
(collectively m) are followed by a conclusion statement, c.
In calculating confidence in a conclusion, ERIC first
generates explanations of the premises. It uses these to
update its knowledge base. If m consists of multiple
premises, then each individual premise is explained; the full
set of explanations is the set of all possible combinations of
explanations for individual premises.

Learning a new premise means adding it to the knowledge
base with confidence=1. Learning a new fact should inform
the learner to the degree that the fact was surprising; it
should increase confidence in things that would explain that
fact. Both intuitions can be captured by Bayes law, if we are
careful about where our terms come from.

p(xle)p(e) )

elmr) =
plelm) = B2
The prior probability, p(x), is the confidence in m resulting
from the explanation process. Intuitively, p(wle) is the
confidence we would have in x if some particular fact e
were known with certainty. This value can be found by
repeating the process of justifying z, setting the confidence
of e to 1 for each fact that appears in explanations for 7,
including analogy sources, and assertions of analogical
validity. It should be clear that the use of this law is not
normative here, since the values are not strictly
probabilities. However, the law forms one good way to
incorporate evidence into belief systems. ERIC postulates
that people use something like this kind of inference.
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Figure 1: The strengths of induction of a property from
one category to a related category. In general, ERIC makes
stronger inductions from more closely related categories.

In property induction, ERIC uses the knowledge base that
results from explaining the premise to explain the
conclusion. Since each explanation justifies the conclusion,
confidence in the conclusion results from the application of
(1) once for each explanation.

In principle, the resulting confidence values could be
matched directly to human probability estimates. In practice,
current limitations of the model (especially its extremely
impoverished “knowledge”) make such point-by-point
comparison uninformative, so our evaluation of the model
will focus on the relative rankings of sets of explanations.

Simulations and Results

ERIC predicts that inductions, and even patterns of
inductions, will be strongly dependent on knowledge, and
particularly on contextually relevant knowledge. For this
reason, conclusions about the predictions of ERIC must be
made relative to some particular set of knowledge.

Taxonomic Simulations

Taxonomic relationships have received much attention in
the literature on category inductions; we decided to explore
two knowledge bases built largely around taxonomic
knowledge. In the first, a taxonomic structure of “animals”
was constructed with isa statements, including two
mammals, six birds, and two reptiles. Animals were, in turn,
defined by membership to the superordinate “living things.”
One general taxonomic explanation was included, over
elements that did not appear in any other statements. The
pattern of this explanation was: isa(x,y) " f(y) = f(x).

The second knowledge base included all of these
taxonomic facts, but also included a fairly arbitrary set of
about 200 facts, including property statements and casual
explanations, both taxonomic and not taxonomic. This
knowledge base tests the generality of the conclusions
across a noisier knowledge base.'

Since inductions from a category to its subset are
explanations, like all explanations, they are not certain.
Furthermore, close ancestors generally provide more
support than more distant ancestors. Figure 1 compares
ERIC’s inductions from immediate superordinates of a
category (“parents”), and from the superordinates’
superordinates (“grandparents” see Figure 1). Thus, a
premise “birds have x” provides more support to the
conclusion “robins have x” than does “animals have x”.
This pattern matches the empirically discovered category
inclusion fallacy (Heit, 2000; Sloman, 1998). Figure 1
shows that this same pattern appears with the richer
knowledge base, as well.

Within taxonomic categories at the same level (e.g., the
species level), taxonomic proximity again can vary. Figure 2
shows the results of simulations varying the taxonomic
proximity, and also the number of premises in the induction

! The full contents of all knowledge bases described here can be
found online at http://www.richmond.edu/~dlandy/cogscil0/.

2897



@ Taxonomic
0.8+ Taxonomic With Explanations

0.8

0.6

0.4

0.2

Conclusion Confidence Conclusion Confidence

o

T T T T T T T

T T T
'1/0 /Vo Siy. (o7 4/0 Siy Oi,,
B g /b//‘?r Ve,se ey 07”6, e
N A, %, Lr,
Se TSN S,
se o,,@} Use

First premise close First Premise Far
Premise Type
Figure 2: The strengths of induction of a property from

zero, one or two categories to others at the same level.

(that is, the number of species of which the property was
asserted). In the absence of knowledge, ERIC generally
predicts that inductions tend to be stronger between
categories that are closely related (see Figure 2). More
premises tend to make inductions stronger; moreover, ERIC
shows a general diversity effect: when multiple premises
come from unrelated categories, that tends to increase
inductions more than when they have a common
superordinate. This is true in general because two close
premises will tend to be best explained by explanations in
terms of their common superordinate, while diverse
premises are likely to be explained in terms of distant
superordinates. This pattern is complicated, however, by an
interaction between the diversity of the premises and their
similarity to the conclusion. If one premise category is close
to the conclusion category, a single premise category
already generalizes fairly strongly, because most
explanations for the premise are highly mappable into the
conclusion; adding a second close premise improves the
induction very slightly or not at all. However, if the second
premise is from a very different category (making the
premises more diverse), then ERIC’s explanations are likely
to be less finely tuned to the conclusion category, and
confidence decreases slightly. This pattern again matches
empirical literature (Osherson et al., 1990; Sloman, 1993).

Typicality

To explore how ERIC uses typicality information, we
augmented the taxonomic knowledge base with two kinds of
information. Both involved four members of a common
animal family (“birds”), with four features. The typical
member had the same four features. The #ypical plus
member had the same four features plus an additional two
not shared by other members. The typical minus had only
two of the features, and no additional features. The final
atypical member had two shared features, and two unique

features. A second knowledge base had the same exemplars
and features, plus explanations for each feature.

ERIC computed confidence in the induction of a blank
property from each premise bird to the conclusion bird.
Figure 3 displays the results. Generally, as with people
(Heit, 2000), increased typicality led to higher inductive
confidence. One interesting exception to this pattern was
that in the features only case, inductions were slightly
stronger from the premise category with relatively few
features than from the premise category with many typical
categories. This is because this “unknown” category was
exceptionally projectable, due to having very few features.
When more explanations were available, the relatively high
number of good potential explanations for the typical
category dominated, leading to strong inductions.

Causal Knowledge

Because ERIC extends its knowledge based on the overall
analogical quality, the predicate attributed to a premise and
conclusion category can also strongly impact induction, if
facts involving that premise or a related one are part of prior
knowledge. A predicate similar to those that appear as part
of good, projectable explanations about similar categories
sets will generally form strong inductions; projectable
predicates known to apply to very different creatures, or
those about which little is known, tend to project less well.

We illustrated this property by creating knowledge
corresponding to the taxonomic and predatory structures
explored by Shafto et al (2008). For a set of seven animals,
predation and taxonomic facts were encoded in memory.
Two generic explanations involved a “disease” spread by
predation, and an “organ” shared by animals sharing a
taxonomic category. Inductions were generated for each
creature regarding a different “disease” and “bone.”

As illustrated in Figure 4, inductions on the bone graded
taxonomically. Premises involving species with the same
parent (distance 0) generalized more strongly than more
distantly related species. Diseases also showed a taxonomic
structure, but less strongly than bones did. Furthermore, the
disease was strongly affected by ecological relationships,
generating an asymmetry such that predators were judged
more likely to get diseases carried by their prey than were
prey whose predator was known to catch the disease.
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Figure 3: ERIC’s predictions of induction strength,
varying the typicality of the premise category.
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Figure 4: Dependency of inductive strength on both
property and category relationships.

The latter still formed a strong induction in the disease
case, because a prey carrying a disease made a good
explanation for why a predator would have it; this
explanation was thus well-supported during the premise
explanation phase of ERIC’s reasoning process. These
patterns are quite similar to human judgments (Shafto et al.,
2008), and demonstrate ERIC’s ability to adjust the
application of “rules” to different areas of knowledge.

Both properties showed taxonomic degradation. This is
because both kinds of knowledge are in the system, and so
both affect, to some degree, the same judgments. The model
predicts that people will also blend different theories and
domains of knowledge when making inductions.

Conclusions

ERIC combines deductive probabilistic inference with
inductive analogical inference to generate and evaluate the
likelihood of explanations, the propositions they comprise
and the observations they explain. The resulting model, still
in an early stage of development, successfully predicts and
explains a wide range of phenomena in the property
induction literature. Much work remains to be done (e.g.,
representing probabilities more realistically, allowing
explanations to decrease as well as increase confidence, and
making the generation of analogical explanations
psychologically plausible rather than computationally
exhaustive, among many others), but at this point ERIC
seems a promising way to overcome the limitations of
purely analogical, and purely Bayesian approaches to
explanation generation and evaluation.
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