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Abstract

Using a novel enumeration task, we examined the encoding of
spatial information during subitizing. Observers were shown
masked presentations of randomly-placed discs on a screen
and were required to mark the perceived locations of these
discs on a subsequent blank screen. This provided a measure
of recall for object locations and an indirect measure of
display numerosity. Observers were tested on three stimulus
durations (50, 200, 350 ms) and eight numerosities (2-9).
Enumeration performance was high for displays containing up
to six discs—a higher subitizing range than reported in
previous studies. Error in the location data was measured as
the distance between corresponding stimulus and response
discs. Overall, location errors increased in magnitude with
larger numerosities and shorter display durations. When
errors were computed as disc distance from display centroid,
results suggest a compressed representation by observers.
Additionally, enumeration and localization accuracy
increased with display regularity.

Keywords: spatial attention; enumeration; subitizing; visual
indexing.

I. Introduction

When presented with a set of objects, humans can estimate
quickly the set’s numerosity with reasonable accuracy. This
estimate of number supports various cognitive processes
and assists decision-making and action-planning. Given the
importance of such abilities, it would be reasonable to
expect that a cognitive system employs several methods to
obtain numerosity information. The challenge, however, lies
in clearly identifying the possible mechanisms involved and
determining the conditions under which they are employed.
The primary mechanism responsible for numerosity
perception is the nonverbal mental magnitude system that
also has been observed in animals and preverbal infants.
Magnitudes are inferred mental entities that represent the
numerosity or magnitude of things in the world via a mental
“accumulator” or “number line” (Dehaene, 1992; Gallistel
& Gelman, 1992). An accumulator mechanism is thought to
enable the precise representations of duration and
numerosity in rats by accumulating neural signals (Meck &
Church, 1983). In humans, this accumulator system may
represent discrete numerosities through an incrementing
process that produces a preverbal count (Gallistel &
Gelman, 1992, 2000). Although analog magnitudes are
argued to underlie most numerical abilities, an alternate

mechanism may be employed for smaller numerosities. The
term subitizing is used to describe the fast and accurate
enumeration of 1-4 objects (Kaufman, Lord, Reese, &
Volkmann, 1949). Trick & Pylyshyn (1989, 1994) proposed
that a visual indexing mechanism may be utilized for
subitizing. Visual indexes are “pointers” that automatically
pick out and stick to visual items displaying characteristics
of “objecthood” (e.g., good continuation, cohesion). Each
item that is to be tracked or enumerated is assigned an index
in a bottom-up manner, enabling a simultaneous selection of
four objects (Pylyshyn, 1989). Subitizing is thought to be
the rapid enumeration of these active indexes. When a
precise count is required for larger sets, this mechanism can
be used to keep track of items that have been counted
already, which increases the time required to make a
numerosity judgment.

There are theoretical disagreements on the interpretation
of the performance differences between small and large sets.
Some studies attribute the change in the reaction times to
the capacity limitations of information transfer into short-
term memory (Cowan, 2001; Klahr, 1973) or a shifting of
enumeration strategies (Mandler & Shebo, 1982). The rapid
identification of small-set numerosity also can be attributed
to the fast mapping of a label to the discrete increments on a
mental magnitude (Gallistel & Gelman, 1991) or the fast
counting of active indexes (Trick & Pylyshyn, 1994).
Whether two systems are responsible for enumeration has
yet to be determined conclusively, and this area of research
continues to provide evidence supporting both perspectives.

Regardless of the mechanism responsible for subitizing,
accurately enumerating a set requires the selection of each
visual object. If an indexing mechanism is responsible for
subitizing, observers would be able to report on four objects
even under time constraints, but with poor memory for
locations. Alternatively, if each object must be encoded into
working memory for recall, then errors in enumeration and
location recall should be similar. Numerosity perception has
been studied extensively but little is known about the spatial
information that is encoded when enumerating. To address
this topic, the current study examines the location encoding
that occurs in subitizing.

Studies on the spatial coding of object locations have
shown that observers tend to remember locations by using
spatial cues to categorize locations according to geometric
“prototypes” (Huttenlocher, Hedges, & Duncan, 1991).
When presented with a dot inside a geometric shape,
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children remembered the location as being further away
from the midline and edges of that shape—a bias towards
the central tendency of the shape category, or prototype
(Huttenlocher, Newcombe, & Sandberg, 1994). In adults,
the representation of locations also was biased towards the
prototype of spatial categories and these biases increased as
memory became less certain over extended response delays
(Spencer & Hund, 2002). These studies suggest that a single
system for representing space is likely to serve both verbal
and motor responses that are spatial in nature (Spencer,
Simmering, & Schutte, 2006).

One potentially wuseful approach to understanding
enumeration is to apply statistical and computational
methods used in the study of visual perception. For
example, one recent study used an information theoretic
framework to model the human ability to learn statistical
regularities from object features in visual displays, and
tested whether observers used this information to enhance
their ability to identify the locations of specific colors
(Brady, Konkle, & Alvarez, 2009). The authors
hypothesized that if there were more redundancies in the
information input, then more content can be stored (as
predicted by information theory). Their results indicate that
more regular displays did in fact facilitate the encoding of
information, which increased color recall performance in a
way that could be predicted by a Bayesian learning model.

The primary goal of the current study is to characterize
the spatial encoding during the enumeration of small sets of
dots that were randomly placed on a computer screen and to
determine if location and enumeration accuracy can be
predicted by the statistical or geometric properties of these
displays. To investigate this possibility, we devised an
enumeration task that presented a display with randomly-
placed small black discs. After a mask, observers marked
the perceived location of each disc, which also served as
their numerosity response (see Figure 1). Three stimulus
durations (50, 200, or 350 ms) and eight numerosities (2-9)
were tested. These stimuli were presented very briefly in
order to prevent verbal counting and the response method
allowed for a nonverbal report of numerosity and location
(similar to a reporting methodology described in Dent &
Smyth, 2006). Enumeration accuracy is measured as the
percent of trials with an accurate numerosity report and the
average (absolute) number of miscounts. For each trial, each
disc on a response display was paired with a disc on the
stimulus display to determine location accuracy, which is
the distance between these corresponding discs.

The location data from this experiment was used to
characterize observers’ representations of objects selected
for enumeration. The properties of the disc configurations in
the test displays were compared to those in the observers’
responses. This enabled quantitative comparisons between
the actual stimulus and its representation. One testable
prediction is that a display with more regularity would allow
more content to be encoded more accurately into working
memory, leading to better enumeration performance and
object localization. Display regularity was obtained by

applying Delaunay Triangulation methods to identify
“simplexes”—triangles with vertices comprised of display
discs without other discs inside them (Kendall, 1989). This
triangulation was applied to the elements in both the test and
response displays, and the average area and side lengths of
the resulting triangles were computed for each display.
“Maximal circles”, which connect the wvertices of each
triangle simplex, have also been used to study regularity in
the spacing between dots (Fidopiastis, Hoffman, Prophet, &
Singh, 2000). Similarly, maximal circles were identified and
the average radii of these circles was computed and
compared to observer responses. Another form of statistical
summary examined was the centroid of disc configurations.
Humans can estimate the center-of-mass of an array of
randomly arranged dots on a display with high accuracy
(Juni, Singh, & Maloney, 2008; Zhou, Chu, Li, & Zhan,
2006). The computation of this centroid estimate may prove
to be crucial when representing individual locations. For
each display, we computed the centroid and the distances of
each element on the display from its centroid. We then
compared the values between the stimulus and response data
in order to estimate variability and compression.

The various regularity measures described above may be
used to develop a model that predicts enumeration and
localization performance. The current study aims to
contribute to this goal by characterizing the spatial encoding
during enumeration. This can lead to a better understanding
of the nature of numerosity representations obtained under
brief viewing conditions and help identify the mechanisms
that contribute to this process. Using the characteristics of
possible mechanisms—such as the Weberian nature of a
magnitude mechanism or the set-based limitation of an
indexing mechanism—we can test which model best
explains the current data and identify the properties that are
better predictors of accurate enumeration.

Fixation
(2500 ms)

Test Display
(50, 200, or 350 ms)

AN

MY o

85 ms)

Response Screen
(unlimited duration)

Figure 1. Schematic of this enumeration experiment.

II. Methods

Participants: 24 Rutgers University undergraduates
participated in one session for course credit or payment.

Apparatus: The experiment was programmed in MATLAB
with Psychophysics Toolbox 3.0.8 (Brainard, 1997) and
presented using a desktop computer running Windows XP
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(Intel Pentium 4 processor). The stimuli were displayed on a
19” color CRT monitor with a resolution of 1280 x 1024
pixels and a refresh rate of 70 Hz; contrast was set to 100%
and brightness was set to 50%. The screen dimensions were
approximately 35° by 27° in visual angle.

Stimuli: Test displays contained 2-9 identical black discs
(35 pixels in diameter, or ~1°) presented on a gray screen
for 50, 200, or 350 ms. The discs were randomly placed on
the screen with the following constraints: discs could not
appear within 115 pixels (~3°) or more than 715 pixels
(~20°) of each other, or within ~200 pixels of the screen
edges. This produced an effective viewing display of 21° by
16° (768 x 614 pixels). Adequate separation of objects was
emphasized to ensure “preattentive” object discriminability,
since more attentional resources are required for accurate
discrimination when separated by less than 1° (Bahcall &
Kowler, 1999). The test display was masked using a
random-dot texture created by randomly assigning a white
or black value to a grid of 4 x 4 pixel squares.

General procedure: Observers sat approximately 60 cm
from a computer screen in a darkened room. They were
given instructions by the experimenter and performed six
practice trials to ensure understanding of the task. Each trial
began with a 2,500 ms presentation of a gray screen with a
white central fixation cross. The stimulus screen was then
flashed for a designated duration. A black screen appeared
for one frame (16 ms) before a mask comprised of a
random-dot texture was presented for 85 ms. Finally, a gray
input screen with a crosshair pointer appeared and remained
until observers made their responses by placing markers
(“X”) on each of the perceived disc locations. Pressing the
space bar initiated the next trial. It was emphasized to the
observers that the number of markers placed on the screen
should represent the number of discs seen on the test
display, even if they were unsure about the exact location.
Response coordinates were recorded by the program. See
Figure 1 for a diagram of a trial.

Processing the location data: The location data was
comprised of two files, one for the stimulus display and
another for the response display. In order to analyze the
accuracy of location representations, stimulus and response
coordinates (x-y values) were paired using the following
procedure. When a trial had the same number of stimulus
and response elements (i.e., correctly enumerated displays),
a Procrustes analysis on the convex hulls of the element
locations was used to identify the best fit of the response to
the stimulus coordinates for each trial. Procrustes analysis
determines the similarity between two shapes by estimating
the best fit of one set of points to a comparison set by
factoring out variations in scaling, rotation, and translation
(Goodall, 1991). After applying the relevant scaling,
rotation, or coordinate position transformations, Delaunay
Triangulation and nearest-neighbor methods were used to
identify stimulus-response pairs. For calculating pattern

regularity on a display, the mean and variance values were
computed for the areas of triangle simplexes (identified by
the triangulation), connecting edges, and the radii of the
maximal circles that circumscribe the triangle simplexes.
Trials with unpaired discs, which primarily occurred when
displays were under- or over-counted, were not included in
the location analysis (15% of possible data points).

II1. Results
Enumeration Accuracy

The enumeration results replicate previous studies, with the
highest accuracy observed in low numerosities. This range
was maintained for six items—better than in previous
studies where accuracy declines after four items. A follow-
up experiment was conducted that included a control where
numerosity was reported using Arabic numerals (Haladjian,
Pylyshyn, & Gallistel, 2009). Observers performed better in
the location-marking block (six items) than the control
block (four items), supporting the current results.

Analysis of variance was conducted on the enumeration
performance with observer included as a random variable.
The largest numerosity condition of nine discs was excluded
to control for anchoring effects. Analyzing the proportion of
trials with perfect enumeration revealed main effects for
display duration (F=34.7(2,276), p<.01) and numerosity
(F=68.8(6,276), p<.01), with interactions (F=7.7(12,276),
p<.01). Analyzing the absolute value of miscounts for each
condition also revealed main effects for display duration
(F=36.1(2,276), p<.01) and numerosity (F=51.2(6,276),
p<.01), with interactions (F=11.8(12,276), p<.01). Figure 2
depicts the proportion of trials correctly enumerated and
Figure 3 depicts the average absolute number of miscounts.
Errors increased with larger numerosities but fewer errors
were found with longer display durations. When observers
made errors, they were generally underestimates (84% of
errors were underestimates). Performance in the 50-ms
display was significantly worse than the 200- and 350-ms
durations for the 6-9 disc displays in both these analyses.
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Figure 2. Proportion of trials with correct enumeration.
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Figure 3. Average counting errors.

Location Accuracy

Location error is reported as the Euclidean distance between
the coordinates of stimulus-response pairs for each trial.
ANOVA results indicate main effects for display duration
(F=27.2(2,276), p<.01) and numerosity (F=81.4(6,276),
p<.01), with no interactions (F=1.4(12,276), p=.15). Errors
increased with larger numerosities and generally decreased
with longer display durations (see Figure 4). The mean and
variance of the following variables were computed to
estimate display regularity: 1) area of Delaunay “simplex”
triangles; 2) length of the triangle segments (shared edges
were counted only once); 3) radii of the maximal circles that
circumscribed the simplexes; 4) distance between each disc
and the display centroid; and 5) radius of the enclosing
“circumcircle” around the display elements (to estimate disc
dispersion). Since performance was significantly worse in
the 50-ms displays, only data from the 200- and 350-ms
display durations (combined) are reported here.

The centroid (or center-of-mass) for each display was
computed by calculating the mean x- and y-coordinate of all
discs on a display. The compression measure is shown in
Figure 5 as the average centroid-to-disc distances, that is,
the average distance from discs on a display to the centroid.
The substantially smaller distances in the observers’
responses suggests that their representation is compressed
around the centroid of the display. The average dispersion
(minimum enclosing circle radius) of the discs on a stimulus
display ranged from 203 pixels (SD=73) in 2-numerosity
displays to 358 pixels (SD=19) in 9-numerosity displays; for
response data, this dispersion ranged from 185 pixels
(SD=73) to 314 pixels (SD=44), indicating compression.

Display regularity was measured in terms of the
variability in the size of the Delaunay simplexes and the size
of the maximal circles that circumscribe these triangles.
Here we report the effects of regularity as measured by the
variability in the edge lengths of Delaunay simplexes;
however, similar patterns of results were obtained with the
area of the simplexes and the size of the maximal circles.
Figure 6 depicts the average segment lengths and also
suggests a compression of these representations. To

compare levels of display regularity, the standard deviation
of the triangle segments in the test displays were grouped
into quartiles, where 25% of the trials with least variation
are in the first quartile and 25% of trials with the most
variation are in the last quartile. This allowed us to plot
location errors as functions of increasing variability
(decreasing regularity) in Figure 7 and counting errors in
Figure 8. These two charts show that displays with lower
variability produce lower errors in both counting and
localization (counting performance for displays <6 items are
not shown since observers performed almost perfectly).

To compare the regularity of the test and response
patterns, the overall compression in the response patterns
was first undone using the scaling estimate from the
Procrustes analysis. The variance in the simplex segment
length for these “uncompressed” response patterns was then
compared to, and found to be lower than, the variance in the
corresponding stimulus patterns. This suggests that
observers imposed regularity on the response patterns than
there was not present in the stimulus patterns. Figure 9 plots
stimulus and response data from two representative trials,
which illustrates the imposed compression and regularity.
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Figure 6. Average segment lengths of Delaunay triangle
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Figure 9. Representative samples of location data with the
triangulation simplexes drawn.

IV. Discussion

The visual system is thought to use redundancies from
visual stimuli in order to encode information efficiently, as
proposed by information theory applications to perception
(Attneave, 1954). The current results showing better
performance in displays with more regular patterns indicates
a more efficient encoding of object locations that may be
supported by an information theory of perception. When the
triangle simplexes of a display have less variance, observers
are more accurate in representing these more regular
displays and exhibit better enumerating and localization
performance. Additionally, there appears to be a tendency
for compressing distances around the centroid. Even after
factoring out the overall compression in the response
patterns, these distances were found to be less variable in
the response configurations than in the test configurations.
This could indicate that observers are either assuming there
is more regularity when they reconstruct the image, or
representation errors are biased towards less variability or
towards more “prototypical” representations of shape. This
observed tendency to impose regularity on variable displays
supports findings from previous studies (e.g., Taylor, 1961).

Increasing stimulus exposure durations from 50 ms to 200
ms produced more accurate enumeration for numerosities
greater than six and more accurate location encoding for all
numerosities. This suggests a coarse location-estimation
process that occurs initially and is updated over time. The
disassociation in enumeration and location performance for
the smaller numerosity range also suggests that enumeration
occurs independent of location-encoding: attention may be
required to effectively encode locations but subitizing may
be preattentive. This may indicate that visual indexes are
responsible for subitizing, since location information does
not need to be encoded initially to assign an index, but over
time information can be bound to these indexes in order to
build more accurate feature representations, including
locations (Pylyshyn, 1989). The current results suggest that
the indexing mechanism is implemented for smaller
numerosities, but further experiments to support this
conclusion are required.

The current experiment describes a novel methodology
that implements a nonverbal report of numerosity, which
appears to enable high enumeration accuracy of six items.
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Allowing observers to enumerate by location may be a more
accurate demonstration of selection abilities during fast
enumeration, and this type of selection is sensitive to the
geometric and statistical properties of the visual input. The
observed location errors occur systematically and may
benefit from inherent geometric regularities. Further
analyses of these location data from a statistical perception
or information theoretic perspective promise to reveal
important information about the spatial nature of numerosity
representations.
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