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Abstract

First language lexical attrition remains a difficult
phenomenon to study empirically, due to its long-term and
dynamic effects. Based on observations from existing case
studies, we propose a connectionist model to simulate the
effects of first language lexical attrition. The model exhibits a
plausible  time-course  for  first language lexical
comprehension, highlights the independence of productive
and receptive attrition trajectories, and predicts an age of
onset effect for early cases of L1 lexical attrition.
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Introduction

Many people learn and forget a second or third language
during the course of their lifetimes. Less often, a major
migration may cause someone to forget all or part of his
native language. While a great deal of research has been
dedicated to the first and second language acquisition,
relatively little is known about language loss (hereafter,
attrition) in the individual speaker.

Lexical Attrition

In the last decade, there has been an increasing amount of
work devoted to the study of language attrition, specifically
in L1 or first language attrition. Apparent age-related
effects have been observed in the attrition of L1 phonology
(Hytenstam et al, 2009; Pallier et al, 2003). However, long-
term lexical attrition has remained largely undocumented,
partly due to the lack of rigorous experimental
methodologies for the study of lexical attrition.

Nonetheless, one could reasonably expect the long-term
course of lexical attrition to differ from that of phonology.
Previous research examining the interplay between language
learning and cognitive functions has identified differing
memory stores for lexical and phonological acquisition
(Hernandez & Li, 2007; Ullman, 2001). To the extent that
continued performance in the L1 depends on different
memory representations, the effects of attrition on
phonology and the lexicon may be independent.

The current body of L1 lexical attrition research provides
some general observations about the relationship between
age of onset (A0O)*, length of residence (LoR) and the
degree of attrition. A case study of letters written by an L1-

1 «“Age of onset” here refers specifically to the beginning of
attrition. Due to the difficulty of identifying this event, AoO is
typically marked by the change of language environment (e.g.,
geographic migration), prior L2 exposure notwithstanding.

German immigrant to the United States revealed an ongoing
process of lexical attrition even fifty years after AoO (Hutz,
2004). In another case study, an L1-German speaker with a
similarly long LoR of 47 years in the United States
demonstrated substantial lexical relearning in a natural
conversational setting (Stolberg & Miinch, 2010). That
relearning is possible after such a long time raises the
question of whether lexical attrition is truly a case of
forgetting, in which L1 knowledge is destroyed in memory,
or whether it is the access to L1 knowledge that is primarily
affected by attrition.

The most evident problem in current L1 attrition research
is the difficulty of reliably measuring change across time.
As demonstrated in the case studies, loss of L1 abilities may
be a slow and gradual process spanning years or decades.
As a result, even longitudinal studies over a few years
capture only a snapshot of a highly dynamic language
system. The limited span of longitudinal data provided by
any single study makes it extremely difficult or statistically
impossible to identify the time course of development.
While large samples with cross-section age variables (such
as age of acquisition in the L2 literature) can mitigate these
problems, advanced language users who experience L1
attrition are relatively scarce, making a cross-sectional
sample nearly impossible.

One small-scale quantitative study has tested L2 lexical
attrition through the relearning paradigm. De Bot, Martens,
& Stossel (2004) found a relearning advantage in foreign
language study for forgotten words over new words,
revealing that the forgotten words, though inaccessible,
persisted in memory. While this study found a general
adherence to an exponential forgetting curve in which
relearning savings are possible below the productive
threshold, the findings are difficult to generalize due to the
limited size of the vocabulary and the limited scope of the
study.

Given the difficulties in systematic control of important
learning variables (such as age, language proficiency, and
L2 exposure), language attrition research has remained
mostly a descriptive enterprise. Computational modeling
may serve to turn language attrition research to an
experimental science, due to its flexibility in parametric
manipulation of the relevant variables and in testing relevant
theoretical hypotheses. To date, very little work has been
done in the computational modeling of language attrition.
The goal of this study is to make a first attempt in providing
a detailed computational account of the developmental time
course of language attrition in the lexical domain.
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Computational Models

To our knowledge there has been only one computational
model specifically designed to address lexical attrition.
Meara’s (2004) Boolean model of lexical attrition used a
simple connectionist paradigm to simulate the effect of
intra-lexical relationships on the time course of attrition.
Meara’s model exhibited self-organized criticality, that is,
the wide-spread and sudden deactivation of lexical nodes at
unpredictable intervals. This effect may be interpreted as
largely a product of the inter-node dependencies inherent to
Boolean models, but more importantly, Meara found that
when the mean activation was taken across ten models, the
resulting curve showed a gradual decline. This study
highlights the troubling possibility that empirical research of
lexical attrition in human subjects is hiding potential
criticality effects. Increasingly sophisticated computational
models may yet fill this gap.

Self-organizing feature maps (SOM) are a promising
option in modeling lexical attrition. SOM is a connectionist
modeling paradigm which represents data in a network of
clustered nodes. Previous research has established the
utility of SOM in producing cognitively plausible models of
language development (see Li, 2009, for a review; see also
Richardson & Thomas, 2008 and Mayor & Plunkett, 2010).

The potential for extending SOM to lexical attrition is
suggested by its flexibility in simulating the effects of
competing input sets. Age-related dynamic cross-linguistic
competition in L2 learning has been demonstrated with
other SOM-based models (Li & Farkas, 2002; Zhao & Li,
2007). Furthermore, effects of sensitive period or
catastrophic interference have also been shown with the
manipulation of learning parameters in SOM (Richardson &
Thomas, 2008).

Computational modeling offers the possibility of a unified
account of language learning, attrition, and relearning
phenomena, integrating empirical research in these fields
under more durable hypotheses. The present study aims to
produce a SOM model: (1) to replicate the sustained gradual
erosion of L1 lexical knowledge in both production and
comprehension, (2) to compare the respective rates of
attrition for comprehension and production, (3) to produce a
plausible time course for long-term L1 lexical attrition, and
(4) to reveal age of onset effects in L1 lexical attrition.

Method

In this study, a dual self-organizing feature map (SOM)
model is trained in a first language (L1) and at varying ages
of onset (AoO) in a second language (L2) while L1 training
decreases or stops.  Performances of the model in
comprehension and production are tracked throughout
training.

The Model

The self-organizing feature map (SOM) is a connectionist
modeling paradigm wherein each node contains a vector of
weights corresponding to each member of the input vector
(see Kohonen, 2001 for a detailed explanation of SOM).

Node weights falling within a defined neighborhood around
the input vector are adjusted towards the input based on
their distance from it. Over many epochs of training, this
adjustment results in topography-preserving orders, such
that similar inputs are represented by nearby clusters of
nodes in the map while dissimilar inputs by distinct and
distant clusters. The typography-preserving characteristics
of SOM are particularly well suited for examining the
effects of cross-language lexical competition in a
dynamically evolving system as in lexical attrition.
Architecture The model designed for this study employs
two such SOMs (see Figure 1). The first SOM was trained
on the phonological representations of words.  This
phonological map self-organizes according to the basic
phonemic elements in a word, clustering words of a similar
sound together. The phonological map was composed of
1600 nodes on a 40 by 40 rectangular grid. The second
SOM was trained using the semantic representation of
words. The semantic map clustered words of similar
meaning, category, and part of speech. The semantic map
was composed of 900 nodes arranged on a 30 by 30
rectangular grid. The semantic map was designed to be
smaller than the phonological map because it received half
as many unique input representations (see Stimuli and
Training). The two maps were joined by Hebbian
connections (see Hebb, 1949 for model and biological
basis). A single Hebbian connection is represented by a
weight that multiplies activation between the two nodes it
connects. Every node on one map was connected to every
node on the opposite map, for a total of 1.44 million (1600 x
900) Hebbian connections.

Functions and Parameters After the presentation of each
input stimulus, the maps and Hebbian connections were
updated according to a set of learning functions. These
functions defined which sets of nodes and weights are
adjusted and how much they are adjusted.

Phonological Input (PatPho)

[ a0
- ® Phonological
o8 oe SOM
Hebbian
Association
o0
.:. Semantic
. SOM

Semantic Input (Word Co-Occurrence)

Figure 1: The model is composed of two self-organizing
feature maps. Activation in each map is propagated to
the other by means of Hebbian Connections.
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On the phonological and semantic maps, the node whose
weights most closely match those of the input set (measured
as minimal Euclidean distance between input and each
node) is designated as the Best Matching Unit or BMU.
The nodes around the BMU are updated according to a
neighborhood function approximating a Gaussian curve
with a maximum value of one at the BMU.

The radius of the neighborhood is variable between trials
and measured in terms of the Cartesian distances between
nodes on the rectangular grid. In this study, the radius was
initially set at one half the size of the smaller map (15) to
allow maximum adjustment in early trials. With each epoch
the radius was allowed to decrease by one if the
quantization error was less than in the preceding trial. With
this approach, performance of the model was not directly
tied to a manipulation of the radius size, but rather the
radius size and model performance were allowed to covary
through early training stages.

Updates to SOM weights were proportional to a node’s
value on the Gaussian neighborhood curve, resulting in a
smaller change for more distant nodes, and no change for
nodes outside the neighborhood. All updates were also
multiplied by the SOM’s learning rate, a value between zero
and one which limits the amount of change that can occur in
asingle trial. A learning rate of 0.2 was set for both maps.
Hebbian connection adjustment was determined by co-
activation in both maps. Activation for each node within
the BMU’s neighborhood was inversely proportional to
Euclidean distance between the node’s weights and the
input vector. Each Hebbian connection was then adjusted
by multiplying the activation of the nodes on each map and
the Hebbian learning rate. The Hebbian learning rate was
set to 0.1 in this model. Following each trial, Hebbian
weights were normalized to values between zero and one.

Stimuli and Training

Two types of stimuli were provided to the model for
training. Vectors containing phonological representations
of words were presented one at a time to the phonological
map. Simultaneously, vectors containing semantic
representations of the same words were presented to the
semantic map. This paired presentation allowed each map
to organize around its respective input and then form
connections between the phonological and semantic
representations on their respective maps.

Phonological input vectors were generated using the
PatPho system for English (Li & MacWhinney, 2002) and
Mandarin Chinese (Zhao & Li, 2009). The dimension of
each phonological vector was 63 units. Semantic vectors
were obtained from the English stimulus set used to train the
DevLex-1l model. Each semantic input vector was 200
units long, derived from word co-occurrence patterns (see
Li, Zhao, & MacWhinney, 2007 for details). In order to
help the model discriminate between highly similar words
(such as red and blue or grandma and grandpa) a nominal
amount of noise was randomly added to the semantic data
before training began for each model.

Most importantly, the English semantic representations
were paired with both Chinese and English phonological
representations during training. While emergentist models
of bilingualism such as the Unified Competition Model have
accounted for semantic and lexical transfer in second
language  acquisition  (MacWhinney, 2005), prior
computational models of language acquisition have failed to
account for the largely shared conceptual space between two
languages. Due to the importance of L2 negative transfer in
L1 lexical attrition (Hutz, 2004; Schmitt, 2010) a
computational account would be incomplete without a
common semantic representation.

Words for the training set were selected from the
MacArthur-Bates Communicative Developmental
Inventories (English: Dale & Fenson, 1996; Chinese: Hao et
al, 2008). Originally, 140 rough translation equivalents
were obtained by comparing the English index with the
English glosses in the Chinese index. Because intonation
was not coded in the phonological representation, several
words were eliminated as homophones. A few other words
were removed because they could not fit the PatPho
template for phonological encoding or did not have readily
available co-occurrence data for semantic input. In total
116 English and 116 Chinese words were phonologically
and semantically encoded for input to the model.

All instances of the model were trained for 500 epochs.
The L1 (Chinese) was trained first, and at varying numbers
of epochs (AoO) L1 input ceased and L2 (English) input
began. AoO was varied in intervals of 50 epochs from 50 to
400. Ten models were trained for each of the eight AoOs.

Performance Tests

Following each training epoch, production and
comprehension of the L1 was tested throughout the entire
lifespan of the model.

For modeling purposes, comprehension was defined as
the activation of the correct BMU on the semantic map
when a phonological stimulus was presented to the
phonological map. This activation was achieved by means
of the Hebbian connections. After presentation of the
stimulus, activation on the phonological map was calculated
by the same method described in Functions and Parameters
(above). Activation levels in the phonological map were
then multiplied through their Hebbian connections. The
incoming activation on the semantic map was summed for
each node, and the most activated node on the semantic map
was found. This most activated node was then compared to
a list of semantic BMUs. If the most activated node was
also the correct BMU, comprehension had occurred. If no
BMU occupied the most activated node, the most activated
node was compared to the closest BMU (by Cartesian
distance) on the map. In the event that two or more BMUs
on either map occupied the same node, all of these BMUs
were disqualified from the comparison, preventing their
corresponding words from passing the comprehension
measure.
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Figure 2: Mean comprehension scores in each AoO
(measured in training epochs). AoO values are also me

Production was defined by the reverse process of
comprehension. A stimulus input was provided to the
semantic map, and activation was propagated by the same
Hebbian connections to the phonological map, and the most
activated unit was compared by the same criteria to the
phonological BMUs. One important distinction in the case
of production is that the most activated unit was only
compared to the L1 BMUs to avoid inter-language
confusion.

Results
L1 Comprehension

Mean comprehension curves were calculated across ten
models for each AoO condition. Performance for each
condition exceeded 92% by 50 epochs (the earliest AoQ).
A0O conditions later than 50 epochs exceeded 95%
comprehension by 100 epochs. Maximum L1
comprehension after 100 epochs was 96.6% (112 out of 116
L1 words) for all models (un-averaged) with an AoO greater
than 100. After AoO began, L1 comprehension decreased
monotonically. Figure 2 shows the L1 comprehension
curves for all eight AoO conditions. At the onset of L2
training, L1 comprehension seems to approximate an
exponential decay for each AoO condition. Differences
between L1 curves are described below (see section Age of
Onset Effects).

L1 Production

L1 production declined severely and immediately for all
AoO conditions.  All models across all conditions
performed below 5% correct productions within four epochs
of the AoO and remained low throughout L2 training. Due
to the low performance, no further analysis was applied to
these data. See the Discussion section for a further
treatment of this topic.

condition are graphed across the duration of the models
asured in training epochs, as depicted along horizontal axis.

Age of Onset Effects

By visual inspection, AoO was inversely related to rate of
attrition for the earlier AoO conditions. To quantify this
relationship, the number of epochs required for each AoO
condition to drop below 75% comprehension was
calculated. Many models in the AoO 50 and 100 conditions
did not reach maximum L1 comprehension performance by

L2 onset. Therefore the performance calculation
compensated by adding to performance measures the
difference  between each model's maximum L1

comprehension and the overall maximum (112) before
calculating the number of epochs necessary to reach the
threshold.

Figure 3 approximates the rate of attrition for each AocO
by showing the number of epochs elapsed after L2 onset
before the 75% L1 comprehension threshold was reached.
Error bars indicate the two standard errors of the mean for

20

16

12

Time to decay (epochs)

50

100

150 200 250 300 350 400

Age of Onset (epochs)
Figure 3: Mean number of epochs to reach 75% L1
comprehension or less, adjusted for incomplete learning.
Error bars are two standard errors of the mean.
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each AoO condition. ANOVA revealed a highly significant
difference (p<0.001) in mean decay rates between
conditions. Post-hoc tests (Tukey, with a family alpha of
0.05) showed that the AoO 50 condition was significantly
different than AoO 200-400 (but not 100 and 150), while
A00 100 was also significantly different from 200.

Discussion

While an examination of learning in connectionist models
may be interesting in its own right, the results of this study
are most informative with regard to the dynamic trajectories
of human first language attrition. Prior studies in L1
attrition have found age effects in phonological attrition, but
no such effect has been demonstrated for lexical attrition.
Nonetheless, a review of the current L1 lexical attrition
literature reveals that lexical attrition is a long-term and
dynamic process.

Performance measures for L1 comprehension and
production after AoO indicated great instability in the
production while comprehension declined more gradually.
A potential source of declining performance in both
measures was the changing Hebbian weights. Because the
weights were normalized with each trial, the magnitude of
change to the Hebbian connections due to a stimulus is not
strictly dependent on activation levels. This effect is
analogous to a decay (or forgetting) rate, as all connection
weights were reduced relative to the learning rate.

A major source of instability, and a probable driving
factor behind the rapid decline in production, was the
reorganization of the phonological SOM. The operational
definition of comprehension assumed activation of the
correct phonological representations (if present) and tested
the consequent activation on the semantic map, rendering
comprehension relatively resistant to changes in the
phonological map. By contrast, production required that the
static semantic representations correctly activate the highly
plastic phonological representations. Faced with moving
targets, productive performance was at a distinct
disadvantage, even when activation was artificially
restricted to L1 candidates and criteria were loosened to
allow for “close enough” matches.

Although the degree and rate of decline for production
may be exaggerated by the model, this finding does
reinforce the dissociation of receptive versus productive
abilities. Due to this dissociation, studies which primarily
measure productive errors in speakers undergoing L1
attrition may overestimate the degree of loss. Stolberg and
Miinch (2010) found that lexical/semantic production errors
decreased by approximately half over the course of 15
conversations in the subject’s L1. In light of the
dissociation between comprehension and production, the
degree to which these errors represent receptive L1 lexical
attrition remains in question.

The relearning demonstrated in Stolberg and Miinch's
study points to the possibility of persistent, though
temporarily inaccessible L1 representations. Results from
the described model suggest that these representations do

persist in memory, reactivated with relatively little practice
long after becoming unavailable for production. De Bot et
al (2004) confirmed the presence of latent lexical
representations in the L2 through a short term relearning
task. Foreign language students showed a relearning
advantage for words to which they had been previously
exposed but forgotten over learning new words. Our model
stands to bridge these studies by demonstrating that these
latent representations may also explain the observed L1
lexical attrition phenomena, further guiding L1 attrition
studies toward seeking L1 representations that may have
fallen below the threshold of retrieval for production.

The model also exhibited a highly plausible decay
function for first language lexical comprehension.
Previously only retrospective analyses, such as that by Hutz
(2004), have been available for lexical attrition across a
lifetime. Semantic transfer errors identified in Hutz’s case
study (e.g. “Das ist feine mit mir” which is a literal
translation of the English idiom “That's fine with me”,
rather than the equivalent German idiom “damit bin ich
einverstanden”) grew at a diminishing rate over 55 years.
The decay of comprehension in this model is highly
compatible with Hutz’s findings in semantic transfer,
indicating that the model’s performance curves may
represent a component of the generalized time course for L1
lexical attrition.

Moreover, variation of age of onset revealed a possible
inverse relationship with the rate at which the
comprehension decay occurred. Particularly in the 50 AoO
condition, we observed attrition occurring at a higher rate
than for later AoOs. This rate, coupled with the slightly
lower L1 pre-attrition performance (92% versus 97%),
points to the effects of incomplete learning for early onset
attrition. Empirical studies have shown that early rather
than late exposure to L2 may lead to stronger influence from
L2 to L1, causing certain elements of L1 to give way to L2
patterns more easily (e.g., in object naming patterns and
categorization; see Pavlenko & Malt, in press). On the other
hand, the stronger AoO effects at early stages may be
accounted for by the substantial brain plasticity for new
languages within the critical period (Pallier et al., 2003).

In the model, it is apparent that the importance of AoO is
diminished in cases of later onset. The ostensible leveling-
off may be attributable to the limitations placed on Hebbian
entrenchment by the normalization. The strength of early
AoO effects and high variability in later AoOs reflects
Johnson and Newport’s (1989) observation of age-related
effects in second language acquisition. Like Johnson and
Newport’s data, our findings are at best ambiguous about
the role of age in late second language onset. To what
degree the performance of our model was due to incomplete
L1 learning versus age-related acceleration of decay
requires further investigation.

Conclusion

In empirical literature the study of language attrition has
remained a qualitative and descriptive enterprise, due to the
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lack of rigorous experimental methodologies for reliably
measuring change across time. Coupled with the difficulty
of finding a sufficient number of language users who
experience L1 language attrition, the extant research makes
it difficult to identify any time course of development. In
this study, we provided a SOM-based computational model
of lexical attrition as a first attempt to systematically
investigate mechanisms of language attrition. Specifically,
our model is able to produce a gradual decline in L1 lexical
performance, suggesting a plausible course of decay in first
language comprehension that is compatible with the
observations of existing case studies. Furthermore, our
model highlights the potential for independent effects on
comprehension and production within a single language
user. Finally, our model shows age of onset effects in
relation to the rate of attrition and points to the possible role
of incomplete L1 learning. Such effects are important for
understanding the dynamic changes in the competition of
two languages during learning.
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