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Abstract

Children are sensitive to statistical regularities in
speech and likely use these regularities when learning
their native language. A central goal of current research
is to understand which statistical regularities support
different aspects of language acquisition and
processing. In the current work we explore
phonological and semantic similarity effects on early
lexical acquisition. Using a computational model,
behavioral findings from word learning studies are
simulated and explored. With this model we
demonstrate that acquisition can be facilitated by the
distinctiveness of individual lexical mappings.

Introduction

Language acquisition research has robustly shown that
children are sensitive to statistical regularities in speech, and
utilize these regularities when learning their native language
(for a review see Saffran & Sahni, in press ). A central goal
of current research in language acquisition is to understand
which statistical regularities support different aspects of
language acquisition and processing. Research on adult
language processing has revealed that statistical regularities
across words can affect lexical access and recognition
(Dahan & Magnuson, 2006). Much of this work has
examined effects of phonological similarity. Nevertheless,
researchers have also examined the effects of semantic
similarity along with phonological similarity (e.g. Mirman
& Magnuson, 2008).

Phonological and semantic effects in lexical acquisition
have also been examined. However, little of this work has
simultaneously examined phonological and semantic effects
in the same set of stimuli or set of studies. In the current
work we used a computational model of word learning to
investigate the influence of phonological similarity and
semantic similarity on early word learning.

Phonological Similarity

Numerous researchers have shown that phonological
similarity influences lexical recognition, recall, and access
in adults (Dahan & Magnuson, 2006; Luce & Pisoni, 1998;
Vitevitch & Luce, 1998; Vitevitch, Luce, Pisoni, & Auer,
1999). Luce’s work demonstrates how lexical items that
differ by a single phoneme (phonological neighbors) can be
simultaneously activated and compete with spoken input
(Luce & Pisoni, 1998). While this adult work suggests that
phonological similarity impedes lexical processing,
developmental work on phonological neighbors suggests
that phonological similarity may aid typical lexical
acquisition. Storkel (2004) examined whether phonological
neighborhood density (together with word frequency and

word length) could predict the age of acquisition of early
vocabulary items from the Macarthur-Bates Communicative
Development Inventory (MCDI) lexical production norms
(Dale & Fenson, 1996). She found that words with more
phonological neighbors were acquired earlier than words
with fewer phonological neighbors, even after accounting
for effects of frequency and length. These results suggest
that sound similarity (high phonological density) facilitates
lexical acquisition.

In contrast with Storkel’s work (2004), many nonce word
learning studies suggest that infants struggle to learn words
that are phonologically similar to one another or to words
they already know. Using a habituation task, Stager and
Werker (1997) found that 14-month-old infants were able to
associate two novel labels with novel objects, but only when
the labels were phonologically distinct, like /if and neem.
Infants were unable to map phonologically similar labels bih
and dih to separate objects. This result was quite surprising
because using a similar task infants could discriminate the
phonemic /b/-/d/ contrast at 8 months (Stager & Werker,
1997). Yet, it was not till 20-months that infants showed
clear evidence of learning labels that differed on this
contrast (Werker, Fennell, Corcoran, & Stager, 2002).

What can account for these disparate research findings?
One important aspect of the child’s environment that was
not examined in this work is the referent or concept that
labels map to. As similarity between labels affects lexical
acquisition, it is likely that similarity between referents also
affects acquisition. While there has been a significant
amount of work investigating how young children will
extend category labels based on referent properties’, little
work jointly examines the role of the label and the role of
the referent in lexical acquisition.

Semantic Similarity

Some of the most interesting and revealing work on
semantic development investigates label extension and
categorization (Quinn & Johnson, 1997; Rakison & Oakes,
2003; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976). Much of this work has emphasized how the structure
of the environment enables infants to group objects and
apply category labels to those groups. Their world is well
structured; meaningful correlations occur and reoccur, while
arbitrary correlations are rarely repeated. This experience
allows children to tune into the meaningful and useful
correlations in their world.

Research on the shape bias in categorization elegantly
demonstrates how the structure of the environment can
facilitate language learning. Many of the first words infants
learn refer to categories of objects organized by shape.
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Experience with these words seems to facilitate
categorization abilities. Infants who know 150 words or
more, can readily generalize names for newly learned
objects to other objects with similar shapes while infants
with less than 150 words cannot (Samuelson & Smith,
1999). Samuelson & Smith hypothesized that as children
learn more words they extract organizing regularities and
form generalizations. These generalizations may initially be
restricted to a specific category (e.g. all spherical objects are
balls). Then with increased exposure to labeled categories
infants form second-order generalizations (e.g. things that
are the same shape share a label). These generalizations
allow infants to learn the category structure of the objects in
their world. Crucially, it is only through sufficient exposure
that infants’ acquire higher-order generalizations and learn
that objects that are the same shape are likely to share a
label. If children acquire this bias due to the statistical
regularities of the words they know, they must have
significant experience with words organized by shape.

Storkel and Adolf (2009) assessed the effect of semantic
set size on preschoolers’ ability to learn new words.
Semantic set size was defined as the number of objects that
are meaningfully related to the target word. Subjects showed
no difference in initial acquisition of items with large and
small set sizes. However, one week after the initial test
subjects showed better memory for objects with smaller set
sizes. These results suggest that children can learn words
more easily when they have a smaller semantic set size and
the objects are more unique.

Rogers and McClelland’s (2004) categorization model
similarly predicts that it will be difficult to learn unique
names for items that share many features with other items.
Rogers and McClelland hypothesized that infants are
sensitive to correlations among different types of directly
observable features. These features, which co-occur in the
exemplars of a single category, cannot individually define a
category. Nor can a specific set of necessary and sufficient
features define any category, there are always exceptions.
However, the features that consistently co-occur, though not
necessarily in every instance of a category, can define a
category. For example, birds tend to fly, and have feathers,
wings, and beaks. While these features do not always co-
occur (penguins have wings but cannot fly) they frequently
do and are said to coherently covary with one another. As
infants interact in and explore their world they are naturally
exposed to these correlations and regularities. Infants are
sensitive to the coherent covariation and can use these
constellations of features to identify new members of a
category. Based on this work, two objects that share many
properties will easily map to the same label. While this is
beneficial when forming categories, it may be an
impediment to children learning the names of similar
objects, like “cup” and “glass”.

In the current work we use a computational model of
word learning to explore effects of phonological and
semantic similarity on word learning. Research on
phonological similarity is unresolved and suggests similarity

facilitates lexical acquisition in some situations but hinders
acquisition in others. We propose that by using a
computational model to explore effects of phonological and
semantic similarity in a single task, we will be able to better
understand this phenomenon.

Methods

The main goal of the model was to simulate behavioral
experiments that tested infants’ abilities to learn similar
sounding labels (Werker & Fennell, 2004). In these studies,
infants viewed novel objects on a video screen that were
audibly labeled with a nonce word. Infants were repeatedly
shown these stimuli until their interest had decreased and
they were habituated. After habituation, infants received
“same” and “switch” test trials. The same trials were the
same as habituation trials. In switch trials the objects paired
with each label were switched. That is, in switch trials dik
was paired with the bih object, and bih was paired with the
dih object. Longer looking times to switch trials were
interpreted as dishabituation and evidence that children
learned the mappings.

Architecture

The architecture of the model is presented in Figure 1. The
model was composed of three layers: semantic, hidden and
phonological. The phonological layer was the input layer
and had 192 units (16 units coding phonetic features for
each of 12 possible phonemes), the hidden layer had 200
units, and the semantic layer was the output layer and had
135 units. The semantic and phonological layers had
recursive units as well as lateral connections between units
within the layers. The semantic layer was the output layer
over which targets were set and error was calculated.

Semantics 135 units

'

Hidden 200 units

)OO 000008

@H%Im

Phonology 192 units
Figure 1: Network Architecture

Training

Three networks initialized with different small random
weights, were trained on 332 nouns from the MCDI
production checklist (Fenson, et al., 1994). The networks’
task was to learn the mapping from phonological labels to
semantic referents. Networks were presented with a label on
the phonological layer and were to activate the correct set of
semantic features describing the referent on the semantic
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layer. For example, networks that had learned the word dog
would activate the 44 semantic feature units that describe a
dog (i.e., eats, has tail, is fun, is lovable, etc.) when
presented with the phonological representation of dog across
the phonological input layer.

Networks were trained using standard backpropagation
(Rumelhart, Hinton, & Williams, 1986), with cross-entropy
error calculated across output units. The learning rate was
set to .005 with no momentum. Networks were trained in
batches of 20 words. Output activations and weight matrices
were saved every 500 training trials to evaluate the course
of learning. Training for each word continued until the
activation of each semantic output unit was within 0.2 of its
target value or training was manually halted for testing.

Testing

To simulate the behavioral experiments, an analog of
habituation and the same-switch procedure was used to test
the networks. The networks were trained to differing levels
of vocabulary size to simulate the different ages at which
infants succeed and fail at the task. At these different stages
of training the habituation and same-switch test procedures
were simulated in the models.

In the behavioral work by Werker and colleagues (Werker
& Fennell, 2004), infants were initially habituated to the
stimuli. That is, they were repeatedly exposed to label-
object pairs until their looking time decreased by 50%. They
were next shown “same” and “switch” test trials, in which
the label-object pairing from habituation was either
preserved or switched. An increased looking time to the
switch trials indicated dishabituation and acquisition of the
label-object pairings.

As with infant participants the networks were habituated
to the stimuli. Error across the output layer served as the
model analog to looking time (Schafer & Mareschal, 2001).
To establish the baseline error rate for the habituation phase,
models were presented with correct label-object pairings for
either bih-dih or lif-neem. After the first presentation of the
novel words, activation on the semantic layer was recorded
and compared to the semantic representation of the
appropriate referent. This error value provided the baseline
error rate for the habituation phase. Models were trained on
the pair of novel words until error on the output layer
reduced by 50% of baseline. Models were next tested with
same and switch trials. On both same and switch test trials
error across the semantic output layer was recorded. This
error represented the mismatch between a model’s
expectations and the semantic target of the nonce label. As
with infant looking times, larger error indicates surprise and
dishabituation from training (Schafer & Mareschal, 2001).

Phonological Representations

Phonological representations of the MCDI nouns and nonce
words were based on representations from Joanisse and
Seidenberg (1999). See the appendix for a list of features
used to represent the phonemes of each word. These
representations were slot-based and centered on the first

vowel such that when words were compared, phonemes in
the same slot position were compared with one another. For
example, the words /sta:r/ and /ka:r/ were aligned in vowel-
centered slots such that the /a:r/s were aligned even though
/sta:r/ has two initial consonants while /ka:r/ only has one.

Slot-based representations have known limitations and
can cause delays in training (Plaut, McClelland, Seidenberg,
& Patterson, 1996). In these representations phonemes
across slots are independent from one another, and cannot
facilitate learning across slots. Therefore though knowing
the word pencil may facilitate acquisition of penguin
because of the word-inital overlap, knowledge of neither
penguin nor pencil can facilitate learning playpen, which
has a word-final pen. Despite these limitations, vowel-
centering has been shown to minimize this problem (Harm
& Seidenberg, 1999).

Semantic Representations

Semantic representations of the MCDI nouns were taken
from Howell, Jankowicz & Becker (2005). Howell et al.
used a set of 97 perceptually grounded features to code each
word in the MCDI (see the appendix for a list of all
features). These features were a subset of the McRae, de Sa,
and Seidenberg (1997) empirically derived feature set.
Howell et al. chose to use only features that were directly
observable by children 8 to 28 months old. They then
gathered ratings on these 97 features from human raters for
each concept on the MCDI. The final vector for each
concept was created by averaging raters’ scores.

Howell et al.’s patterns were composed of graded values
that varied between 0 and 1, but the majority of features in
the set were binary in nature (e.g., “is solid”, “is young”
etc.). Therefore, all of the conceptually binary features were
re-coded as 1’s and 0’s, with values above .5 becoming 1
and the remaining becoming 0. There were an additional 19
features that coded continuous dimensions (e.g., size, speed,
colorfulness, etc.). These features were split into three units
representing low, medium and high values of the feature. If
a concept had a 0 on one of these continuous dimensions,
the high, medium, and low units for that feature were all set
to 0. This transformation resulted in semantic patterns using
135 units.

In addition to referents of words from the MCDI,
representations for novel referents were created. To create
these semantic representations an adult coder, blind to the
hypotheses of the studies, looked at pictures and read
descriptions of stimuli from published papers. Based on
these pictures and/or descriptions each semantic feature was
coded as 1 or 0, present or not present, for each novel
object.

Results

Word learning experiments conducted by Werker and
colleagues (2004) tested children between 14 and 20 months
of age. To simulate results over this age range, we used the
MCDI norms (Fenson, et al., 1994) to calculate the average
number of words children at 14 months can understand. The
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norms indicate that the majority of 14-month-olds know at
least 64 words. The models reached this level of
comprehension at 2500 weight updates. The MCDI
comprehension norms do not have data on children older
than 16 months, therefore a point later in training that
corresponded to a larger vocabulary, 6500 weight updates
and 306 known words, was used to simulate the 20-month
data point.

We began by simulating the 14-month old studies. Weight
matrices produced after 2500 training updates with the full
MCDI vocabulary were loaded onto the models.
Representations of the two nonce objects were paired with
one label from each pair. As with the behavioral studies, the
same nonce objects were used for bik-dih and lif-neem.
Networks were habituated and tested with the same-switch
procedure as described in the methods sections. All three

models showed a larger switch preference when learning /if

and neem, compared to bih and dih (see Figure 2). This was
consistent with 14-month behavioral data (Werker &
Fennell, 2004).This indicates that similar to children, the
models found the switch trials to be a greater mismatch
from what was expected when learning /if and neem, than
when learning bik and dih.
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Figure 2: Switch preference for the three networks and infants
from Stager and Werker (1997). Difference in error for the
networks is labeled on the left y-axis and difference in looking
time in seconds for behavioral data is labeled on the right y-axis.

A repeated measures 2 (trial type: same, switch) x 2
(nonce pair: bih-dih, lif-neem) ANOVA was run on output
error from test trials. The main effect of trial type
[F(1,4)=529.571, p<.001] was significant, showing
increased error on switch trials for both pairs. There was
also a significant interaction between trial type and nonce
pair [F(1,4)=132.42, p<.001]. This result revealed that the
switch preference for /if-neem was significantly greater than
that for bih-dih. This replicates the crucial finding that
dishabituation is significantly greater for labels that are
distinct. The interaction between nonce pairs and test item
type is a crucial replication of the Stager & Werker (1997)
data.

This computational model of word learning maps
phonological representations of labels to semantic feature
representations of referents through a 200 unit hidden layer.
Weights coming in and out of the hidden layer are adjusted

via the backpropagation algorithm. As the model is trained
the hidden layer magnifies differences from the input that
map to the correct set of semantic features. The activation
across the hidden layer can be thought of as an internal
representation of the input that maps to the correct features
in the output. If two phonological labels produce similar
patterns across the hidden layer, the model will more readily
map these to similar referents.

To better understand the models’ behavior, hidden layer
activations of the nonce words were examined prior to
habituation. These activations represent the model’s ability
to discriminate the nonce labels based on current vocabulary
size and composition, but prior to training on the nonce
items. Weight matrices produced after 2500 and 6500
training trials on the nouns from the MCDI were loaded
onto the networks. The networks were then tested on the
bih-dih and lif-neem mappings. Activations produced on the
hidden layer were recorded and the distance between
patterns for labels in each pair was calculated. That is, for
each model we compared activation patterns produced
across the hidden layer for the label bikh with the activation
pattern produced by dik. Similarly, the hidden layer
activation pattern produced by /if was compared to the
pattern produced by neem. Euclidean distance between the
two patterns was calculated to assess the model’s ability to
represent the input as two separate items (see Table 1).

Weight |Label Distance between labels
Update Net1 |Net2 Net 3
2500 | bih-dih | 0.93 0.78 0.78
2500 | lif-neem | 2.07 2.025 | 2.13
6500 | bih-dih | 1.80 1.58 1.74

Table 1: Euclidean distance between hidden representations of
yoked label pairs.

After 2500 weight updates, the distance between hidden
layer representations of /if and neem was greater than the
difference between bih and dih. This greater difference
shows that the model is better able to represent /if and neem
as distinct labels. Hidden layer representations were also
compared at 6500 weight updates when the model
successfully maps bik and dih to distinct referents. With a
larger and more diverse vocabulary, the difference between
hidden layer representations of bik and dih is much greater,
indicating that the more experienced model is better able to
represent them as separate labels. However, the difference is
still not as large as between /if and neem after 2500 updates,
indicating that learning bi# and dih when more experienced
is possibly still harder than learning /if and neem at younger
ages. This analysis indicates that with more experience the
model is better able to represent the important differences
between bih and dih.

Mapping to Distinctive Referents

A major goal of the current work was to examine the role of
semantic similarity on lexical acquisition. In addition to
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phonological similarity affecting acquisition it is likely the
similarity of referents also affects word learning. To test this
hypothesis, we created two new semantic patterns that were
completely unique. Both patterns had 36 active semantic
units, none of which overlapped. The units were chosen
pseudo-randomly, and so patterns do not represent any real-
world object. Using the same/switch method, we tested
lexical acquisition of bikh and dik and /if and neem paired
with the distinct objects after 2500 updates. If semantic
distinctiveness does not affect lexical acquisition, the
interaction between test item type and label pair (bih-dih vs.
lif-neem) should persist. Alternatively, if semantic
distinctiveness can help to differentiate the label-object
pairs, there should be no difference in the acquisition of bih-
dih and lif-neem.

As seen in Figure 3, changing only the distinctiveness of
the referents allows the model to learn bih and dikh just as
well as [if and neem. By making the referents of the two
labels more distinct, similar-sounding labels are acquired as
easily as distinctive sounding labels. A repeated measures 2
(test item type) x 2 (label pair) ANOVA was conducted to
examine whether the acquisition of bik-dih differed from the
acquisition of /if-neem, when they were mapped to distinct
referents. While the significant main effect of test item type
[F(1,4)=482.437, p<.001] persists, the interaction between
test item type and label pair is no longer significant
[F(1,4)=.158, p=.711]. Additionally, as seen in Table 2,
hidden layer representations are further differentiated after
training with distinct objects. This is true for both bik-dih
and lif-neem.
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Figure 3: Switch preference for three networks mapping to
distinct objects and infants from Stager and Werker (1997).
Difference in error for the networks is labeled on the left y-axis
and difference in looking time in seconds for behavioral data is
labeled on the right y-axis.

Conclusions

The natural world provides infants with strong correlations
between linguistic structure and object properties. This
structure supports the young child’s difficult task of
mapping labels to concepts and referents in their world.

In the present work we examined how structure among
word forms and words referents can influence word
learning. Word learning studies by Werker and colleagues
(2004) suggested that high phonological density inhibits
acquisition, while Storkel (2004) suggests that in some

contexts, phonological density should facilitate acquisition.
Using a computational model of word learning, we explored
the role that semantic referents of novel words may play in
these findings.

Label Training Netl | Net2 | Net3
bih-dih | Prior to habituation | .832 183 78

lif-neem |Prior to habituation | 2.01 2.02 2.11
bih-dih | Post habituation 2.43 2.57 2.53
lif-neem |Post habituation 3.8 3.93 3.36

Table 2: Euclidean distance between hidden representations of

yoked label pairs when mapping to distinct referents.

The computational model examined effects of semantic
and phonological similarity on the process of word learning.
Using model analogs to habituation, we simulated the basic
finding that it is difficult to learn similar sounding labels
like bih and dih. By examining the hidden layer
representations of these items we found that the surface
similarity of the labels affected the model’s ability to treat
them as separate items. However, models were able to
successfully map bih and dih to separate objects when the
objects were completely distinct. Training with these
distinct objects allowed the models to pull apart
representations of words that had similar labels, as shown in
Table 2.

Importantly, this simulation showed that the referents of
labels, and their relationship to other items in the input, can
affect word learning. This finding brings to light the need to
consider the effects of semantic structure when studying
word learning.
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Appendix: Sound & Semantic Feature Sets

Sound features: voiced, consonantal, vocalic, sonorant, lateral,
continuant, noncontinuant, advanced tongue root, nasal, labial,
coronal, anterior, high, distributed, dorsal, radical.

Semantic features: size, weight, strength, speed, temperature,
cleanliness, tidiness, brightness, noise, intelligence, goodness,
beauty, width, hardness, roughness, height, length, scariness,
colorfulness, is black, is blue, is brown, is gold, is green, is grey, is
orange, is pink, is purple, is red, is silver, is white, is yellow, is
conical, is crooked, is curved, is cylindrical, is flat, is liquid, is
rectangular, is round, is solid, is square, is straight, is triangular,
has feather, has scales, has fur, is prickly, is sharp, is breakable,
made of china, made of cloth, made of leather, made of metal,
made of plastic, made of stone, made of wood, climbs, crawls,
flies, leaps, runs, swims, breathes, drinks, eats, makes animal
noise, singles, talks, has four legs, has beak, has door, has shell,
has eyes, has face, has fins, has handle, has leaves, has legs, has
paws, has tail, has teeth, has wheels, has whiskers, has wings, is

2785



annoying, is comfortable, is fun, is musical, is scary, is strong
smelling, is young, is old, is comforting, is lovable, is edible, is
delicious.
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