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Abstract 
Children are sensitive to statistical regularities in 
speech and likely use these regularities when learning 
their native language. A central goal of current research 
is to understand which statistical regularities support 
different aspects of language acquisition and 
processing. In the current work we explore 
phonological and semantic similarity effects on early 
lexical acquisition. Using a computational model, 
behavioral findings from word learning studies are 
simulated and explored. With this model we 
demonstrate that acquisition can be facilitated by the 
distinctiveness of individual lexical mappings.  

Introduction 
Language acquisition research has robustly shown that 

children are sensitive to statistical regularities in speech, and 
utilize these regularities when learning their native language 
(for a review see Saffran & Sahni, in press ). A central goal 
of current research in language acquisition is to understand 
which statistical regularities support different aspects of 
language acquisition and processing. Research on adult 
language processing has revealed that statistical regularities 
across words can affect lexical access and recognition 
(Dahan & Magnuson, 2006). Much of this work has 
examined effects of phonological similarity. Nevertheless, 
researchers have also examined the effects of semantic 
similarity along with phonological similarity (e.g. Mirman 
& Magnuson, 2008). 

Phonological and semantic effects in lexical acquisition 
have also been examined. However, little of this work has 
simultaneously examined phonological and semantic effects 
in the same set of stimuli or set of studies. In the current 
work we used a computational model of word learning to 
investigate the influence of phonological similarity and 
semantic similarity on early word learning.  

Phonological Similarity 
Numerous researchers have shown that phonological 

similarity influences lexical recognition, recall, and access 
in adults (Dahan & Magnuson, 2006; Luce & Pisoni, 1998; 
Vitevitch & Luce, 1998; Vitevitch, Luce, Pisoni, & Auer, 
1999). Luce’s work demonstrates how lexical items that 
differ by a single phoneme (phonological neighbors) can be 
simultaneously activated and compete with spoken input 
(Luce & Pisoni, 1998). While this adult work suggests that 
phonological similarity impedes lexical processing, 
developmental work on phonological neighbors suggests 
that phonological similarity may aid typical lexical 
acquisition. Storkel (2004) examined whether phonological 
neighborhood density (together with word frequency and 

word length) could predict the age of acquisition of early 
vocabulary items from the Macarthur-Bates Communicative 
Development Inventory (MCDI) lexical production norms 
(Dale & Fenson, 1996). She found that words with more 
phonological neighbors were acquired earlier than words 
with fewer phonological neighbors, even after accounting 
for effects of frequency and length. These results suggest 
that sound similarity (high phonological density) facilitates 
lexical acquisition.  

In contrast with Storkel’s work (2004), many nonce word 
learning studies suggest that infants struggle to learn words 
that are phonologically similar to one another or to words 
they already know. Using a habituation task, Stager and 
Werker (1997) found that 14-month-old infants were able to 
associate two novel labels with novel objects, but only when 
the labels were phonologically distinct, like lif and neem. 
Infants were unable to map phonologically similar labels bih 
and dih to separate objects. This result was quite surprising 
because using a similar task infants could discriminate the 
phonemic /b/-/d/ contrast at 8 months (Stager & Werker, 
1997). Yet, it was not till 20-months that infants showed 
clear evidence of learning labels that differed on this 
contrast (Werker, Fennell, Corcoran, & Stager, 2002). 

What can account for these disparate research findings? 
One important aspect of the child’s environment that was 
not examined in this work is the referent or concept that 
labels map to. As similarity between labels affects lexical 
acquisition, it is likely that similarity between referents also 
affects acquisition. While there has been a significant 
amount of work investigating how young children will 
extend category labels based on referent properties’, little 
work jointly examines the role of the label and the role of 
the referent in lexical acquisition. 

Semantic Similarity 
Some of the most interesting and revealing work on 
semantic development investigates label extension and 
categorization (Quinn & Johnson, 1997; Rakison & Oakes, 
2003; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 
1976). Much of this work has emphasized how the structure 
of the environment enables infants to group objects and 
apply category labels to those groups. Their world is well 
structured; meaningful correlations occur and reoccur, while 
arbitrary correlations are rarely repeated. This experience 
allows children to tune into the meaningful and useful 
correlations in their world.  

Research on the shape bias in categorization elegantly 
demonstrates how the structure of the environment can 
facilitate language learning. Many of the first words infants 
learn refer to categories of objects organized by shape. 
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Experience with these words seems to facilitate 
categorization abilities. Infants who know 150 words or 
more, can readily generalize names for newly learned 
objects to other objects with similar shapes while infants 
with less than 150 words cannot (Samuelson & Smith, 
1999). Samuelson & Smith hypothesized that as children 
learn more words they extract organizing regularities and 
form generalizations. These generalizations may initially be 
restricted to a specific category (e.g. all spherical objects are 
balls). Then with increased exposure to labeled categories 
infants form second-order generalizations (e.g. things that 
are the same shape share a label). These generalizations 
allow infants to learn the category structure of the objects in 
their world. Crucially, it is only through sufficient exposure 
that infants’ acquire higher-order generalizations and learn 
that objects that are the same shape are likely to share a 
label. If children acquire this bias due to the statistical 
regularities of the words they know, they must have 
significant experience with words organized by shape.  

Storkel and Adolf (2009) assessed the effect of semantic 
set size on preschoolers’ ability to learn new words. 
Semantic set size was defined as the number of objects that 
are meaningfully related to the target word. Subjects showed 
no difference in initial acquisition of items with large and 
small set sizes. However, one week after the initial test 
subjects showed better memory for objects with smaller set 
sizes. These results suggest that children can learn words 
more easily when they have a smaller semantic set size and 
the objects are more unique.  

Rogers and McClelland’s (2004) categorization model 
similarly predicts that it will be difficult to learn unique 
names for items that share many features with other items. 
Rogers and McClelland hypothesized that infants are 
sensitive to correlations among different types of directly 
observable features. These features, which co-occur in the 
exemplars of a single category, cannot individually define a 
category. Nor can a specific set of necessary and sufficient 
features define any category, there are always exceptions. 
However, the features that consistently co-occur, though not 
necessarily in every instance of a category, can define a 
category. For example, birds tend to fly, and have feathers, 
wings, and beaks. While these features do not always co-
occur (penguins have wings but cannot fly) they frequently 
do and are said to coherently covary with one another. As 
infants interact in and explore their world they are naturally 
exposed to these correlations and regularities. Infants are 
sensitive to the coherent covariation and can use these 
constellations of features to identify new members of a 
category. Based on this work, two objects that share many 
properties will easily map to the same label. While this is 
beneficial when forming categories, it may be an 
impediment to children learning the names of similar 
objects, like “cup” and “glass”.  

In the current work we use a computational model of 
word learning to explore effects of phonological and 
semantic similarity on word learning. Research on 
phonological similarity is unresolved and suggests similarity 

facilitates lexical acquisition in some situations but hinders 
acquisition in others. We propose that by using a 
computational model to explore effects of phonological and 
semantic similarity in a single task, we will be able to better 
understand this phenomenon.  

Methods 
The main goal of the model was to simulate behavioral 
experiments that tested infants’ abilities to learn similar 
sounding labels (Werker & Fennell, 2004). In these studies, 
infants viewed novel objects on a video screen that were 
audibly labeled with a nonce word. Infants were repeatedly 
shown these stimuli until their interest had decreased and 
they were habituated. After habituation, infants received 
“same” and “switch” test trials. The same trials were the 
same as habituation trials. In switch trials the objects paired 
with each label were switched. That is, in switch trials dih 
was paired with the bih object, and bih was paired with the 
dih object. Longer looking times to switch trials were 
interpreted as dishabituation and evidence that children 
learned the mappings.  

Architecture  
The architecture of the model is presented in Figure 1. The 
model was composed of three layers: semantic, hidden and 
phonological. The phonological layer was the input layer 
and had 192 units (16 units coding phonetic features for 
each of 12 possible phonemes), the hidden layer had 200 
units, and the semantic layer was the output layer and had 
135 units. The semantic and phonological layers had 
recursive units as well as lateral connections between units 
within the layers. The semantic layer was the output layer 
over which targets were set and error was calculated.  

Figure 1: Network Architecture 

Training 
Three networks initialized with different small random 
weights, were trained on 332 nouns from the MCDI 
production checklist (Fenson, et al., 1994). The networks’ 
task was to learn the mapping from phonological labels to 
semantic referents. Networks were presented with a label on 
the phonological layer and were to activate the correct set of 
semantic features describing the referent on the semantic 
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layer. For example, networks that had learned the word dog 
would activate the 44 semantic feature units that describe a 
dog (i.e., eats, has tail, is fun, is lovable, etc.) when 
presented with the phonological representation of dog across 
the phonological input layer.  

Networks were trained using standard backpropagation 
(Rumelhart, Hinton, & Williams, 1986), with cross-entropy 
error calculated across output units. The learning rate was 
set to .005 with no momentum. Networks were trained in 
batches of 20 words. Output activations and weight matrices 
were saved every 500 training trials to evaluate the course 
of learning. Training for each word continued until the 
activation of each semantic output unit was within 0.2 of its 
target value or training was manually halted for testing.  

Testing 
To simulate the behavioral experiments, an analog of 
habituation and the same-switch procedure was used to test 
the networks. The networks were trained to differing levels 
of vocabulary size to simulate the different ages at which 
infants succeed and fail at the task. At these different stages 
of training the habituation and same-switch test procedures 
were simulated in the models.  

In the behavioral work by Werker and colleagues (Werker 
& Fennell, 2004), infants were initially habituated to the 
stimuli. That is, they were repeatedly exposed to label-
object pairs until their looking time decreased by 50%. They 
were next shown “same” and “switch” test trials, in which 
the label-object pairing from habituation was either 
preserved or switched. An increased looking time to the 
switch trials indicated dishabituation and acquisition of the 
label-object pairings. 

As with infant participants the networks were habituated 
to the stimuli. Error across the output layer served as the 
model analog to looking time (Schafer & Mareschal, 2001). 
To establish the baseline error rate for the habituation phase, 
models were presented with correct label-object pairings for 
either bih-dih or lif-neem. After the first presentation of the 
novel words, activation on the semantic layer was recorded 
and compared to the semantic representation of the 
appropriate referent. This error value provided the baseline 
error rate for the habituation phase. Models were trained on 
the pair of novel words until error on the output layer 
reduced by 50% of baseline. Models were next tested with 
same and switch trials. On both same and switch test trials 
error across the semantic output layer was recorded. This 
error represented the mismatch between a model’s 
expectations and the semantic target of the nonce label. As 
with infant looking times, larger error indicates surprise and 
dishabituation from training (Schafer & Mareschal, 2001).  

Phonological Representations 
Phonological representations of the MCDI nouns and nonce 
words were based on representations from Joanisse and 
Seidenberg (1999). See the appendix for a list of features 
used to represent the phonemes of each word. These 
representations were slot-based and centered on the first 

vowel such that when words were compared, phonemes in 
the same slot position were compared with one another. For 
example, the words /sta:r/ and /ka:r/ were aligned in vowel-
centered slots such that the /a:r/s were aligned even though 
/sta:r/ has two initial consonants while /ka:r/ only has one.  

Slot-based representations have known limitations and 
can cause delays in training (Plaut, McClelland, Seidenberg, 
& Patterson, 1996). In these representations phonemes 
across slots are independent from one another, and cannot 
facilitate learning across slots. Therefore though knowing 
the word pencil may facilitate acquisition of penguin 
because of the word-inital overlap; knowledge of neither 
penguin nor pencil can facilitate learning playpen, which 
has a word-final pen. Despite these limitations, vowel-
centering has been shown to minimize this problem (Harm 
& Seidenberg, 1999).  

Semantic Representations  
Semantic representations of the MCDI nouns were taken 
from Howell, Jankowicz & Becker (2005). Howell et al. 
used a set of 97 perceptually grounded features to code each 
word in the MCDI (see the appendix for a list of all 
features). These features were a subset of the McRae, de Sa, 
and Seidenberg (1997) empirically derived feature set. 
Howell et al. chose to use only features that were directly 
observable by children 8 to 28 months old. They then 
gathered ratings on these 97 features from human raters for 
each concept on the MCDI. The final vector for each 
concept was created by averaging raters’ scores.  

Howell et al.’s patterns were composed of graded values 
that varied between 0 and 1, but the majority of features in 
the set were binary in nature (e.g., “is solid”, “is young” 
etc.). Therefore, all of the conceptually binary features were 
re-coded as 1’s and 0’s, with values above .5 becoming 1 
and the remaining becoming 0. There were an additional 19 
features that coded continuous dimensions (e.g., size, speed, 
colorfulness, etc.). These features were split into three units 
representing low, medium and high values of the feature. If 
a concept had a 0 on one of these continuous dimensions, 
the high, medium, and low units for that feature were all set 
to 0. This transformation resulted in semantic patterns using 
135 units. 

In addition to referents of words from the MCDI, 
representations for novel referents were created. To create 
these semantic representations an adult coder, blind to the 
hypotheses of the studies, looked at pictures and read 
descriptions of stimuli from published papers. Based on 
these pictures and/or descriptions each semantic feature was 
coded as 1 or 0, present or not present, for each novel 
object.  

Results  
Word learning experiments conducted by Werker and 

colleagues (2004) tested children between 14 and 20 months 
of age. To simulate results over this age range, we used the 
MCDI norms (Fenson, et al., 1994) to calculate the average 
number of words children at 14 months can understand. The 
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norms indicate that the majority of 14-month-olds know at 
least 64 words. The models reached this level of 
comprehension at 2500 weight updates. The MCDI 
comprehension norms do not have data on children older 
than 16 months, therefore a point later in training that 
corresponded to a larger vocabulary, 6500 weight updates 
and 306 known words, was used to simulate the 20-month 
data point.  

We began by simulating the 14-month old studies. Weight 
matrices produced after 2500 training updates with the full 
MCDI vocabulary were loaded onto the models. 
Representations of the two nonce objects were paired with 
one label from each pair. As with the behavioral studies, the 
same nonce objects were used for bih-dih and lif-neem. 
Networks were habituated and tested with the same-switch 
procedure as described in the methods sections. All three 
models showed a larger switch preference when learning lif 
and neem, compared to bih and dih (see Figure 2). This was 
consistent with 14-month behavioral data (Werker & 
Fennell, 2004).This indicates that similar to children, the 
models found the switch trials to be a greater mismatch 
from what was expected when learning lif and neem, than 
when learning bih and dih.  

Figure 2: Switch preference for the three networks and infants 
from Stager and Werker (1997). Difference in error for the 

networks is labeled on the left y-axis and difference in looking 
time in seconds for behavioral data is labeled on the right y-axis. 
A repeated measures 2 (trial type: same, switch) x 2 

(nonce pair: bih-dih, lif-neem) ANOVA was run on output 
error from test trials. The main effect of trial type 
[F(1,4)=529.571, p<.001] was significant, showing 
increased error on switch trials for both pairs. There was 
also a significant interaction between trial type and nonce 
pair [F(1,4)=132.42, p<.001]. This result revealed that the 
switch preference for lif-neem was significantly greater than 
that for bih-dih. This replicates the crucial finding that 
dishabituation is significantly greater for labels that are 
distinct. The interaction between nonce pairs and test item 
type is a crucial replication of the Stager & Werker (1997) 
data.  

This computational model of word learning maps 
phonological representations of labels to semantic feature 
representations of referents through a 200 unit hidden layer. 
Weights coming in and out of the hidden layer are adjusted 

via the backpropagation algorithm. As the model is trained 
the hidden layer magnifies differences from the input that 
map to the correct set of semantic features. The activation 
across the hidden layer can be thought of as an internal 
representation of the input that maps to the correct features 
in the output. If two phonological labels produce similar 
patterns across the hidden layer, the model will more readily 
map these to similar referents. 

To better understand the models’ behavior, hidden layer 
activations of the nonce words were examined prior to 
habituation. These activations represent the model’s ability 
to discriminate the nonce labels based on current vocabulary 
size and composition, but prior to training on the nonce 
items. Weight matrices produced after 2500 and 6500 
training trials on the nouns from the MCDI were loaded 
onto the networks. The networks were then tested on the 
bih-dih and lif-neem mappings. Activations produced on the 
hidden layer were recorded and the distance between 
patterns for labels in each pair was calculated. That is, for 
each model we compared activation patterns produced 
across the hidden layer for the label bih with the activation 
pattern produced by dih. Similarly, the hidden layer 
activation pattern produced by lif was compared to the 
pattern produced by neem. Euclidean distance between the 
two patterns was calculated to assess the model’s ability to 
represent the input as two separate items (see Table 1).  

Distance between labels Weight 
Update 

Label  

Net 1 Net2 Net 3 

2500 bih-dih 0.93 0.78 0.78 

2500 lif–neem 2.07 2.025 2.13 

6500 bih-dih 1.80 1.58 1.74 
Table 1: Euclidean distance between hidden representations of 

yoked label pairs.  

After 2500 weight updates, the distance between hidden 
layer representations of lif and neem was greater than the 
difference between bih and dih. This greater difference 
shows that the model is better able to represent lif and neem 
as distinct labels. Hidden layer representations were also 
compared at 6500 weight updates when the model 
successfully maps bih and dih to distinct referents. With a 
larger and more diverse vocabulary, the difference between 
hidden layer representations of bih and dih is much greater, 
indicating that the more experienced model is better able to 
represent them as separate labels. However, the difference is 
still not as large as between lif and neem after 2500 updates, 
indicating that learning bih and dih when more experienced 
is possibly still harder than learning lif and neem at younger 
ages. This analysis indicates that with more experience the 
model is better able to represent the important differences 
between bih and dih. 

Mapping to Distinctive Referents 
A major goal of the current work was to examine the role of 
semantic similarity on lexical acquisition. In addition to 
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phonological similarity affecting acquisition it is likely the 
similarity of referents also affects word learning. To test this 
hypothesis, we created two new semantic patterns that were 
completely unique. Both patterns had 36 active semantic 
units, none of which overlapped. The units were chosen 
pseudo-randomly, and so patterns do not represent any real-
world object. Using the same/switch method, we tested 
lexical acquisition of bih and dih and lif and neem paired 
with the distinct objects after 2500 updates. If semantic 
distinctiveness does not affect lexical acquisition, the 
interaction between test item type and label pair (bih-dih vs. 
lif-neem) should persist. Alternatively, if semantic 
distinctiveness can help to differentiate the label-object 
pairs, there should be no difference in the acquisition of bih-
dih and lif-neem.  

As seen in Figure 3, changing only the distinctiveness of 
the referents allows the model to learn bih and dih just as 
well as lif and neem. By making the referents of the two 
labels more distinct, similar-sounding labels are acquired as 
easily as distinctive sounding labels. A repeated measures 2 
(test item type) x 2 (label pair) ANOVA was conducted to 
examine whether the acquisition of bih-dih differed from the 
acquisition of lif-neem, when they were mapped to distinct 
referents. While the significant main effect of test item type 
[F(1,4)=482.437, p<.001] persists, the interaction between 
test item type and label pair is no longer significant 
[F(1,4)=.158, p=.711]. Additionally, as seen in Table 2, 
hidden layer representations are further differentiated after 
training with distinct objects. This is true for both bih-dih 
and lif-neem.  

Figure 3: Switch preference for three networks mapping to 
distinct objects and infants from Stager and Werker (1997). 

Difference in error for the networks is labeled on the left y-axis 
and difference in looking time in seconds for behavioral data is 

labeled on the right y-axis. 

Conclusions  
The natural world provides infants with strong correlations 
between linguistic structure and object properties. This 
structure supports the young child’s difficult task of 
mapping labels to concepts and referents in their world. 

In the present work we examined how structure among 
word forms and words referents can influence word 
learning. Word learning studies by Werker and colleagues 
(2004) suggested that high phonological density inhibits 
acquisition, while Storkel (2004) suggests that in some 

contexts, phonological density should facilitate acquisition. 
Using a computational model of word learning, we explored 
the role that semantic referents of novel words may play in 
these findings.  

Table 2: Euclidean distance between hidden representations of 
yoked label pairs when mapping to distinct referents. 

The computational model examined effects of semantic 
and phonological similarity on the process of word learning. 
Using model analogs to habituation, we simulated the basic 
finding that it is difficult to learn similar sounding labels 
like bih and dih. By examining the hidden layer 
representations of these items we found that the surface 
similarity of the labels affected the model’s ability to treat 
them as separate items. However, models were able to 
successfully map bih and dih to separate objects when the 
objects were completely distinct. Training with these 
distinct objects allowed the models to pull apart 
representations of words that had similar labels, as shown in 
Table 2. 

 Importantly, this simulation showed that the referents of 
labels, and their relationship to other items in the input, can 
affect word learning. This finding brings to light the need to 
consider the effects of semantic structure when studying 
word learning.  
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Appendix: Sound & Semantic Feature Sets 
Sound features: voiced, consonantal, vocalic, sonorant, lateral, 
continuant, noncontinuant, advanced tongue root, nasal, labial, 
coronal, anterior, high, distributed, dorsal, radical. 
Semantic features: size, weight, strength, speed, temperature, 
cleanliness, tidiness, brightness, noise, intelligence, goodness, 
beauty, width, hardness, roughness, height, length, scariness, 
colorfulness, is black, is blue, is brown, is gold, is green, is grey, is 
orange, is pink, is purple, is red, is silver, is white, is yellow, is 
conical, is crooked, is curved, is cylindrical, is flat, is liquid, is 
rectangular, is round, is solid, is square, is straight, is triangular, 
has feather, has scales, has fur, is prickly, is sharp, is breakable, 
made of china, made of cloth, made of leather, made of metal, 
made of plastic, made of stone, made of wood, climbs, crawls, 
flies, leaps, runs, swims, breathes, drinks, eats, makes animal 
noise, singles, talks, has four legs, has beak, has door, has shell, 
has eyes, has face, has fins, has handle, has leaves, has legs, has 
paws, has tail, has teeth, has wheels, has whiskers, has wings, is 

Label Training Net 1 Net 2 Net 3 

bih-dih Prior to habituation .832 .783 .78 

lif–neem Prior to habituation 2.01 2.02 2.11 

bih-dih Post habituation 2.43 2.57 2.53 

lif–neem Post habituation 3.8 3.93 3.36 
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annoying, is comfortable, is fun, is musical, is scary, is strong 
smelling, is young, is old, is comforting, is lovable, is edible, is 
delicious.  
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