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Abstract 
In a study with 140, ninth-grade mathematics students on learning the 
concept of variance, students experienced either direct instruction (DI) or 
productive failure (PF), wherein they were first asked to generate a 
quantitative index for variance without any guidance before receiving 
direct instruction on the concept. Whereas DI students relied only on the 
canonical formulation of variance taught to them, PF students generated a 
diversity of representations and formulations for variance but were 
ultimately unsuccessful in developing the canonical formulation. On the 
posttest however, PF students performed on par with DI students on 
procedural fluency, and significantly outperformed them on data analysis, 
conceptual insight, and transfer items. These results challenge the claim 
that there is little efficacy in having learners solve problems targeting 
concepts that are novel to them, and that direct instruction alone is the most 
effective approach for teaching novel concepts to learners. 

Introduction 

Proponents of direct instruction bring to bear substantive 
empirical evidence against un-guided or minimally-guided 
instruction to claim that there is little efficacy in having 
learners solve problems that target novel concepts, and that 
learners should receive direct instruction on the concepts 
before any problem solving (Kirschner, Sweller, & Clark, 
2006). Kirschner et al. (2006) argued that “Controlled 
experiments almost uniformly indicate that when dealing 
with novel information, learners should be explicitly shown 
what to do and how to do it” (p. 79). Commonly-cited 
problems with un-guided or minimally-guided instruction 
include increased working memory load that interferes with 
schema formation (Tuovinen & Sweller, 1999; Sweller, 
1988), encoding of errors and misconceptions (Brown & 
Campione, 1994), lack of adequate practice and elaboration 
(Klahr & Nigam, 2004), as well as affective problems of 
frustration and de-motivation (Hardiman et al., 1986).  

Klahr & Nigam’s (2004) often-cited study compared the 
relative effectiveness of discovery learning and direct 
instruction approaches on learning the control of variable 
strategy (CVS) in scientific experimentation. On the 
acquisition of basic CVS skill as well as ability to transfer 
the skill to evaluate the design of science experiments, their 
findings suggested that students in the direct instruction 
condition who were explicitly taught how to design un-
confounded experiments outperformed their counterparts in 
the discovery learning condition who were simply left alone 
to design experiments without any instructional structure or 
feedback from the instructor (I will return to this study in 
more detail in the discussion section). Further experiments 
by Klahr and colleagues (Chen & Klahr, 2008; Strand-Cary 
& Klahr, 2008), and others as well have largely bolstered 
the ineffectiveness of discovery learning compared with 
direct instruction (for reviews, see Kirschner et al., 2006). 

Be that as it may, the above findings do not necessarily 
imply that there is little efficacy in having learners solve 
novel problems, that is, problems that target concepts they 
have not learnt yet (Schmidt & Bjork, 1992). To determine 
if there such an efficacy, a stricter comparison for direct 

instruction would be to compare it with an approach where 
students first generate representations and methods on their 
own followed by direct instruction. Expectedly, the 
generation process will invariably lead to failure, that is, 
students are rarely able to solve the problems and discover 
the canonical solutions by themselves. However, this very 
process can be productive for learning provided direct 
instruction on the targeted concepts is subsequently 
provided (Kapur, 2008; Koedinger & Aleven, 2007; 
Schwartz & Bransford, 1998; Schwartz & Martin, 2004).  

As a case in point, I present evidence from an on-going 
research program on productive failure (Kapur, 2008; Kapur 
& Kinzer, 2009; Kapur et al., 2007). 

Designing for Productive Failure 

There are at least two problems with direct instruction in the 
initial phase of learning something new or solving a novel 
problem. First, students often do not have the necessary 
prior knowledge differentiation to be able to discern and 
understand the affordances of the domain-specific 
representations and methods underpinning the targeted 
concepts given during direct instruction (e.g., Schwartz & 
Martin, 2004). Second, when concepts are presented in a 
well-assembled, structured manner during direct instruction, 
students may not understand why those concepts, together 
with their representations, and methods, are assembled or 
structured in the way that they are (Chi et al., 1988; diSessa 
et al., 1991; Schwartz & Bransford, 1998). 

To overcome these two problems, a learning design 
should focus squarely on first engaging students in 
processes that serve two critical cognitive functions, which 
in turn, prepare students for subsequent direct instruction: a) 
activating and differentiating prior knowledge in relation to 
the targeted concepts, and b) affording attention to critical 
features of the targeted concepts. 

Productive failure is one such learning design. It 
comprises two phases—a generation and exploration phase 
followed by a direct instruction phase. In the generation and 
exploration phase, the focus is on affording students the 
opportunity to leverage their formal as well as intuitive prior 
knowledge and resources to generate a diversity of 
structures—concepts, representations and solution 
methods—for solving a complex problem; a problem that 
targets concepts that they have not been formally taught or 
learnt yet

1
. Research suggests that students do have rich 

constructive resources (diSessa & Sherin, 2000) to generate 
a variety of structures for solving novel problems (diSessa et 
al., 1991; Schwartz & Bransford, 1999). At the same time, 

                                                           
1 The complexity of the problem is in relation to the learner. The 

problem is complex to the learner because the learner does not 
know the canonical representations and methods for solving it. To 
someone who knows these, the problem is no longer complex.   
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research also suggests that one cannot expect students, who 
are novices to the target content, to somehow generate or 
discover the canonical representations and domain-specific 
methods for solving the problem (Kirschner et al., 2006).  

However, the expectation for the generation and 
exploration phase is not for students to be able to solve the 
problem successfully. Instead, it is to generate and explore 
the affordances and constraints of a diversity of structures 
for solving the problem. To the extent that students can 
persist in this process, the process not only activates but also 
differentiates their prior knowledge (as evidenced in the 
diversity of student-generated concepts, representations and 
methods). Furthermore, a comparison and contrast between 
the various structures also affords opportunities to attend to 
critical features of the targeted concepts (more on this in 
results section). Consequently, the generation and 
exploration phase provides the necessary foundation for 
developing deeper understanding of the canonical concepts, 
representations, and methods during direct instruction. 

Empirical evidence for PF comes from a series of design 
experiments in grades seven through nine in Singapore 
mathematics classrooms (Kapur, 2009a, 2009b; Kapur et al., 
2008; Kapur & Lee, 2009). Working with approximately 
300 students from four public schools, the studies compared 
PF and DI designs for a two-week, curricular unit on 
average speed. Findings suggested that PF students 
produced a diversity of linked problem representations and 
methods for solving the problems but were ultimately 
unsuccessful in their efforts. Despite seemingly failing in 
their problem-solving efforts, PF students significantly 
outperformed DI students on both procedural fluency and 
complex analysis problems on the posttests. Furthermore, 
PF students also demonstrated significantly better transfer 
performance in adapting and building upon the targeted 
concepts to learn new concepts on their own.  

These findings are consistent with other research 
programs that suggest that conditions that maximize 
performance in the shorter term are not necessarily the ones 
that maximize learning in the longer term (Clifford, 1984; 
Schmidt & Bjork, 1992). Examples of such research 
programs include VanLehn’s (2003) work on impasse-
driven learning, Schwartz and Bransford’s (1998) work on 
preparation for future learning, Schwartz and Martin’s 
(2004) work on inventing to prepare for learning, diSessa’s 
(1991) work on meta-representational competence, 
Koedinger and Aleven’s (2007) work on the assistance 
dilemma, among others (Kapur & Rummel, 2009).  

Collectively, these research programs support the 
argument for designing conditions for learners to persist in 
the process of solving novel, complex problems without 
instructional support structures initially. Even though such a 
process invariably leads to failure in the shorter term, the 
extent to which this process affords learners opportunities to 
explore and generate a variety of representations and 
methods, the process can be germane for learning.  

The purpose of this paper is to report findings from an on-
going, classroom-based research program on productive 
failure in a public school in Singapore.  

Method 

Participants 

Participants were 140, ninth-grade mathematics students 
(14-15 year olds) from an all-boys pubic school in 
Singapore. Students were almost all of Chinese ethnicity. 
Students were from four mathematics classes; three classes 
taught by one teacher (teacher A), and the fourth class by 
another teacher (teacher B). Students had no instructional 
experience with the targeted concept—variance—prior to 
the study, although they had learnt the concepts of mean, 
median, and mode in grades 7 and 8.  

Research Design 

A quasi-experimental, pre-post design was used with two 
classes (n = 31, 35) taught by teacher A assigned to the 
‘Direct Instruction’ (DI) condition, and the other two classes 
(n = 35, 39), under teachers A and B, assigned to the 
‘Productive Failure’ (PF) condition.  

First, all students took a five-item paper and pencil pretest 

(α = .75) on the concept of variance. Not surprisingly, not a 

single student demonstrated canonical knowledge of the 
concept, and there was no significant difference between the 
four classes either, F(3,136) = 1.665, p = .177. Next, all 
classes participated in four, 55-minute periods of instruction 
on the concept as appropriate to their assigned condition. 
After the second and fourth periods, students from all 
classes took a five-item, five-point (1(low) - 5(High)) Likert 

scale engagement survey (α = .79). Finally, all students took 

a six-item, paper and pencil posttest (α = .74) comprising 

items on procedural fluency, data analysis, conceptual 
insight, and transfer.  

In the DI condition, the teacher first explained the concept 
of variance and its canonical formulation as the square of 

the standard deviation (
( )

n
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n

i

2

12

∑ −

= ) using a data 

analysis problem. Next, the teacher modeled the application 
of the concept by working through several data analysis 
problems, highlighting common errors and misconceptions, 
and drawing attention to critical features of the concept in 
the process. The data analysis problems required students to 
compare the variability in 2-3 given data sets, for example, 
comparing the variability in rainfall in two different months 
of a year, or comparing the consistency of performance of 
three soccer players, and so on. Thereafter, students worked 
face-to-face in triads on more data analysis problems. The 
teacher then discussed the solutions with the class. After 
each period, students were given similar data analysis 
problems for homework, which the teacher marked and 
returned to the students, usually by the following period.  

The PF condition differed from the DI condition in only 
one important aspect. Instead of receiving direct instruction 
upfront, students spent two periods working face-to-face in 
triads to solve one of the data analysis problems on their 
own. The data analysis problem presented a distribution of 
goals scored each year by three soccer players for a twenty-
year period. Students were asked to generate a quantitative 
index to determine the most consistent player. During this 
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generation phase, no instructional support or scaffolds were 
provided. Following this, two periods were spent on direct 
instruction just like in the DI condition. Note that because 
students in the PF condition spent the first two periods 
generating an index for variance, they solved fewer data 
analysis problems overall than their counterparts in the DI 
condition. To make this contrast even sharper, PF students 
did not receive any data analysis problems for homework.  
Hypothesis The hypothesis tested was that productive 

failure will be more effective than direct instruction in 
learning the concept of variance. That is, expecting to 
replicate earlier work on productive failure (Kapur, 2008, 
2009; Kapur & Lee, 2009), I hypothesized that students 
from the PF condition will be able to generate and explore 
various representations and methods for generating an index 
for variance (diSessa et al., 1991), but will not be successful 
in developing or discovering the canonical formulation on 
their own (Kirschner et al., 2006). However, this seeming 
failure would be integral for: a) engendering the necessary 
prior knowledge differentiation (evidenced in the diversity 
of student-generated structures), and b) drawing attention to 
critical features of the concept of variance (evidenced in the 
comparisons between the student-generated structures), 
which may help students better understand the concept 
when presented by the teacher during direct instruction 
subsequently (Schwartz & Bransford, 1998). This better 
understanding would result in better procedural fluency, 
data analysis, conceptual insight, and transfer. 

Process Results 

Process data included group-work artifacts produced on A4 
sheets of paper. These provided a rich source of data about 
the nature of problem representations and methods 
generated by the students in the PF and DI conditions.  

In the PF condition, groups produced four major and 
progressively sophisticated categories of methods and 
representations. The four categories were: a) central 
tendencies, b) qualitative methods, c) frequency methods, 
and d) deviation methods.  
Category 1: Central Tendencies. Groups started by using 

mean, median, and in some cases, mode for data analysis. 
This was not surprising because students had been taught 
these concepts in the earlier grades. However, relying on 
central tendencies alone, it was not possible to generate a 
quantitative index for variance because the problem was 
designed in a way to keep the central tendencies invariant. 
Category 2: Qualitative methods. Groups generated 

graphical and tabular representations that organized the data 
visually and were able to discern which player was more 
consistent. The visual representations (see Figure 1) 
afforded a qualitative comparative analysis between the 
players, but did not provide a quantitative index for 
measuring consistency even though the ideas of spread and 
clustering are quite evidently important qualitative 
conceptual underpinnings for the concept of variance. 
Category 3: Frequency methods. Groups built on the 

qualitative methods to develop frequency-based measures of 
consistency. For example in Figure 2, groups used the 
frequency of goals scored within certain intervals to argue 

that the player with the highest number of goals in the 
interval containing the mean was the most consistent. Other 
groups counted the frequency with which a player scored 
above, below, and at the mean. Frequency methods 
demonstrated that students could quantify the clustering and 
bunching up trends in the qualitative representations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 Examples of qualitative representations/methods 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Examples of frequency representations/methods 
 

Category 4: Deviation methods. Figure 3 presents some 
examples of the deviation methods. The simplest deviation 
method generated was the range (Deviation method 1, or 
simply D1). Some groups calculated the sum of year-on-
year deviations (D2) to argue that the greater the sum, the 

Trend lines 

Cumulative 
trend line 

Frequency table 

Dot diagrams and frequency polygons 

Box plot 

Frequency of years within 
selected intervals 

Frequency of 
years above, 
below, and at 

average 

2729



 

lower the consistency. Among these, there were those who 
considered absolute deviations (D3) to avoid deviations of 
opposite signs cancelling each other—an important 
conceptual leap towards understanding variance. Finally, 
there were some groups who calculated deviations about the 
mean (D4) only to find that they sum to zero. For both the 
D3 and D4 categories, some groups further refined their 
method to consider not the sum of the deviations, but the 
average (D5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Examples of deviation-based representations and 
methods 

 
In both the PF classes, all groups demonstrated 

representational competence at the Category 3 level or 
greater. Only 2 groups from PF-A and 1 group from PF-B 
did not reach Category 4. Consistent with the hypothesis, 
none of the groups were able to develop let alone use the 
canonical formulation on their own.  

More importantly, note that these structures evidence the 
hypothesis that students will in fact be able to generate a 
rich diversity of structures to solve the problem without 
having first learnt the targeted concept of variance, and that 
comparisons between these structures will afford students 
the opportunities to attend to deep conceptual features of the 
concept. The latter needs more elaboration: 
i. Comparing central tendencies with qualitative 

representations afforded an opportunity to attend to the 
feature that central tendencies alone cannot convey 
information about variance, and that different 
distributions with the same mean can have different 
variance. 

ii. A comparison between the frequency methods and the 
qualitative methods afforded the opportunity to attend 
to the quantification of qualitative data into a 
mathematical index that returns a value for consistency.  

iii. Because the deviation methods consider the relative 
position of a data point, a comparison with the 
frequency methods afforded students the opportunity to 
attend to the feature that, for consistency, it is not only 
important to count a point but also consider its position 
in relation to other points.  

iv. Range (D1) afforded students the opportunity to attend 
to the feature that considering just the extreme points 
may not be a good measure of consistency, because it 
tells us nothing about the distribution in the middle. 
Comparing D1 with any of the qualitative 
representations easily afforded attention to this feature. 

v. A comparison between D2 and D3 afforded students the 
opportunity to attend to the feature of why deviations 
must be positive. The comparison clearly shows that 
when deviations are left with their signs intact, positive 
and negative deviations cancel out resulting in a case 
where the variance could be highly underestimated. 

vi. A comparison of D3 and D4 methods afforded students 
the opportunity to attend to the feature of why the 
reference point must be a fixed point (e.g., the mean), 
or else the index is sensitive to ordering of data. If the 
reference point for the deviation is not a fixed point, 
then a re-ordering of the data will result in a different 
value of consistency for the same formulation. 

vii. A comparison between the sum and the average 
afforded the opportunity to attend to the feature of how 
dividing by the number of data points helps compare 
samples of different sizes.  

In the DI condition, analysis of students’ classroom work 
revealed that all students relied only on the canonical 
formulation to solve data analysis problems. This was not 
surprising given that the canonical formulation is relatively 
easy to compute and apply, and was corroborated with data 
from homework assignments. The average performance 
(i.e., percentage of problems solved correctly) on the 
homework assignments was high, M = 93.2%, SD = 5.3%. 
Finally, on the mean of the two self-reported engagement 
ratings, there was no significant difference between the PF 
condition, M = 3.84, SD = .51, and the DI condition, M = 

3.82, SD = .43, F(1, 138) = .035, p = .852.  
These process findings serve as a manipulation check 

demonstrating that students in the PF condition experienced 
“failure” at least in the conventional sense. In contrast, DI 
students were not only just as engaged as PF students but 
also demonstrated successful application of the canonical 
formulation to solve several data analysis problems. The 
high engagement ratings and performance results also 
suggest that the DI condition was not simply a case of poor 
instruction.  

Outcome Results 

Post-test The six-items on the posttest comprised:  
i. one item on procedural fluency (calculating SD for a 

given data set),  
ii. two items on data analysis (comparing means and SDs of 

two samples; these items were similar to the data analysis 
problems covered during instruction),  

iii. two items on conceptual insight (one item dealing with 
sensitivity to ordering of data points, and another with 
outliers), and  

iv. one item on transfer (item requiring the development of a 
normalized score for comparing incommensurable 
distributions. Note that normalization was not taught 

Range 

Sum of deviations 

about the mean 
Sum of year-

on-year absolute 
deviation 
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during instruction, and therefore, students needed to 
flexibly adapt and build upon what they had learnt.).  

Maximum score for each item was 10; two raters 
independently scored the items using a rubric with an inter-
rater reliability of .96. Performance on the four types of 
items formed the four dependent variables. Controlling for 
the effect of prior knowledge as measured by the pretest, 
F(4, 134) = 1.890, p = .112, a MANCOVA revealed a 
statistically significant multivariate effect of condition (PF 
vs. DI) on posttest scores, F(4, 134) = 16.802, p < .001, 
partial η

2
 = .33. There was no significant difference between 

the classes within the PF or DI conditions, nor was there any 
significant interaction between prior knowledge and 
experimental condition. 
i. On the procedural fluency item, there was no significant 

difference between the PF condition, M = 7.66, SD = 
3.97, and the DI condition, M = 7.98, SD = 3.89, F(1, 
137) = .819, p = .367.  

ii. On the data analysis items, students from the PF 
condition, M = 14.11, SD =4.20, significantly 
outperformed those from the DI condition, M = 11.38, 
SD = 4.86, F(1, 137) = 10.290, p = .002, partial η

2
 = .07.  

It is important to note that PF students who were not 
given any homework and exposed to fewer data analysis 
problems still managed to perform on par with DI students 
on procedural fluency, and better than DI on data analysis in 
spite of DI students receiving homework and more practice 
and feedback on data analysis problems during instruction. 
iii. On the conceptual insight items, students from the PF 

condition, M = 16.40, SD = 6.41, significantly 
outperformed those from the DI condition, M = 8.20, SD 
= 6.15, F(1, 137) = 51.359, p < .001, partial η

2
 = .27. 

iv. On the transfer item, students from the PF condition, M 
= 4.93, SD = 2.99, significantly outperformed those from 
the DI condition, M = 3.07, SD = 2.35, F(1, 137) = 
14.505, p < .001, partial η

2
 = .10. 

Discussion 

These findings are consistent with previous studies on 
productive failure with other mathematical topics and 
profile of students (Kapur, 2009a, 2009b; Kapur et al., 
2008; Kapur & Lee, 2009), and also with other studies (e.g., 
Schwartz & Bransford, 1998; Schwartz & Martin, 2004). 
Notwithstanding the limitations of what can be achieved in a 
single study carried out within a particular domain, context 
and classroom-based setting, implications arising from the 
findings are simple and significant: There is indeed an 
efficacy in having learners generate and explore 
representations and methods for solving problems on their 
own even if they do not formally know the underlying 
concepts needed to solve the problems, and even if such un-
supported problem solving leads to failure initially. The 
process analysis showed that this seeming failure was 
integral for: a) engendering the necessary prior knowledge 
differentiation (evidenced in the diversity of student-
generated structures), and b) drawing attention to critical 
features of the concept of variance (evidenced in the 
comparisons between the student-generated structures), 
which may help students better understand the concept 

when presented by the teacher during direct instruction 
subsequently (Schwartz & Bransford, 1998). 

This study contributes to the ongoing debate comparing 
the effectiveness of direct instruction with discovery 
learning approaches (e.g., Kirschner et al., 2006; Klahr & 
Nigam, 2004; Dean & Kuhn, 2007); discovery learning 
being often epitomized as the constructivist ideal. It is 
perhaps worth clarifying that a commitment to a 
constructivist epistemology does not necessarily imply a 
commitment to discovery learning. Simply leaving learners 
to generate and explore without consolidating is unlikely to 
lead to learning, or at least learners cannot be expected to 
“discover” the canonical representations by themselves as 
indeed our findings suggest. Instead, a commitment to a 
constructivist epistemology requires that we build upon 
learners’ prior knowledge. However, one cannot build upon 
prior knowledge if one does not know what this prior 
knowledge is in the first place. It follows that at the very 
least the burden on the designer (e.g., teacher, researcher) is 
to first understand the nature of learners’ prior knowledge 
structures; the very structures upon which the claimed 
“building” will be done. Designing for productive failure 
presents one way of doing so, wherein students first 
generate and explore representations and methods, and in 
the process externalize their prior knowledge structures, 
before direct instruction. 

Interestingly, one could argue that Klahr & Nigam’s 
(2004) study supports the above contention although it is 
often cited as a stellar example of the superior effectiveness 
of direct instruction over discovery learning. A careful 
reading of the study suggests that before assigning students 
to either a direct instruction or a discovery learning 
condition, Klahr and Nigam conducted a baseline 
assessment where they asked students to design four 
experiments on their own. As expected, only 8 out of the 
112 students were able to design four un-confounded 
experiments, that is, the success rates before any instruction 
on the control of variables strategy (CVS) were very low. 
Students who were subsequently assigned to the discovery 
learning condition simply continued to design these 
experiments but without any instruction on CVS or any 
feedback. However, for students in the direct instruction 
condition, the instructor modeled and contrasted the design 
of both confounded and un-confounded experiments with 
appropriate instructional facilitation and explanation to 
make them attend to critical features of why CVS, unlike 
confounded experiments, helps isolate the effects of a 
factor. It was not surprising therefore that Klahr and Nigam 
found direct instruction to be more effective than discovery 
learning as described earlier in this paper.  

From the perspective of productive failure however, the 
baseline assessment in Klahr and Nigam’s (2004) study 
seems to function very much like the generation and 
exploration

2
 phase where students generate their own 

structures (in this case, experiments) to solve a problem that 
targets a concept (in this case, CVS) that they had not learnt 
yet. If so, the very effects that Klahr and Nigam attribute to 

                                                           
2 Indeed, Klahr & Nigam (2004) themselves termed it the 

“exploration phase.” 
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direct instruction alone seem more appropriately attributed 
to a generation and exploration phase (their baseline 
assessment) followed by direct instruction. Therefore, much 
as Klahr and Nigam set out to show, in part, that there is 
little efficacy in students exploring and solving problems 
requiring concepts they have not learnt yet, their findings 
can be reinterpreted to support precisely the opposing 
contention that such exploration can in fact be efficacious 
provided some form of direct instruction follows, for 
without it, students may not learn much (as indeed the 
performance of the students in the discovery learning 
condition revealed). Thus argued, designing for a certain 
level of failure (as opposed to minimizing it) in the initial 
learning phase may well be productive for learning in the 
longer run. Future research would do well not to 
(over)simplistically compare discovery learning with direct 
instruction, but instead understand conditions under which 
these approaches can complement each other productively. 
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