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Abstract

In a study with 140, ninth-grade mathematics students on learning the
concept of variance, students experienced either direct instruction (DI) or
productive failure (PF), wherein they were first asked to generate a
quantitative index for variance without any guidance before receiving
direct instruction on the concept. Whereas DI students relied only on the
canonical formulation of variance taught to them, PF students generated a
diversity of representations and formulations for variance but were
ultimately unsuccessful in developing the canonical formulation. On the
posttest however, PF students performed on par with DI students on
procedural fluency, and significantly outperformed them on data analysis,
conceptual insight, and transfer items. These results challenge the claim
that there is little efficacy in having learners solve problems targeting
concepts that are novel to them, and that direct instruction alone is the most
effective approach for teaching novel concepts to learners.

Introduction

Proponents of direct instruction bring to bear substantive
empirical evidence against un-guided or minimally-guided
instruction to claim that there is little efficacy in having
learners solve problems that target novel concepts, and that
learners should receive direct instruction on the concepts
before any problem solving (Kirschner, Sweller, & Clark,
2006). Kirschner et al. (2006) argued that “Controlled
experiments almost uniformly indicate that when dealing
with novel information, learners should be explicitly shown
what to do and how to do it” (p. 79). Commonly-cited
problems with un-guided or minimally-guided instruction
include increased working memory load that interferes with
schema formation (Tuovinen & Sweller, 1999; Sweller,
1988), encoding of errors and misconceptions (Brown &
Campione, 1994), lack of adequate practice and elaboration
(Klahr & Nigam, 2004), as well as affective problems of
frustration and de-motivation (Hardiman et al., 1986).

Klahr & Nigam’s (2004) often-cited study compared the
relative effectiveness of discovery learning and direct
instruction approaches on learning the control of variable
strategy (CVS) in scientific experimentation. On the
acquisition of basic CVS skill as well as ability to transfer
the skill to evaluate the design of science experiments, their
findings suggested that students in the direct instruction
condition who were explicitly taught how to design un-
confounded experiments outperformed their counterparts in
the discovery learning condition who were simply left alone
to design experiments without any instructional structure or
feedback from the instructor (I will return to this study in
more detail in the discussion section). Further experiments
by Klahr and colleagues (Chen & Klahr, 2008; Strand-Cary
& Klahr, 2008), and others as well have largely bolstered
the ineffectiveness of discovery learning compared with
direct instruction (for reviews, see Kirschner et al., 2006).

Be that as it may, the above findings do not necessarily
imply that there is little efficacy in having learners solve
novel problems, that is, problems that target concepts they
have not learnt yet (Schmidt & Bjork, 1992). To determine
if there such an efficacy, a stricter comparison for direct

instruction would be to compare it with an approach where
students first generate representations and methods on their
own followed by direct instruction. Expectedly, the
generation process will invariably lead to failure, that is,
students are rarely able to solve the problems and discover
the canonical solutions by themselves. However, this very
process can be productive for learning provided direct
instruction on the targeted concepts is subsequently
provided (Kapur, 2008; Koedinger & Aleven, 2007,
Schwartz & Bransford, 1998; Schwartz & Martin, 2004).

As a case in point, [ present evidence from an on-going
research program on productive failure (Kapur, 2008; Kapur
& Kinzer, 2009; Kapur et al., 2007).

Designing for Productive Failure

There are at least two problems with direct instruction in the
initial phase of learning something new or solving a novel
problem. First, students often do not have the necessary
prior knowledge differentiation to be able to discern and
understand the affordances of the domain-specific
representations and methods underpinning the targeted
concepts given during direct instruction (e.g., Schwartz &
Martin, 2004). Second, when concepts are presented in a
well-assembled, structured manner during direct instruction,
students may not understand why those concepts, together
with their representations, and methods, are assembled or
structured in the way that they are (Chi et al., 1988; diSessa
et al., 1991; Schwartz & Bransford, 1998).

To overcome these two problems, a learning design
should focus squarely on first engaging students in
processes that serve two critical cognitive functions, which
in turn, prepare students for subsequent direct instruction: a)
activating and differentiating prior knowledge in relation to
the targeted concepts, and b) affording attention to critical
features of the targeted concepts.

Productive failure is one such learning design. It
comprises two phases—a generation and exploration phase
followed by a direct instruction phase. In the generation and
exploration phase, the focus is on affording students the
opportunity to leverage their formal as well as intuitive prior
knowledge and resources to generate a diversity of
structures—concepts,  representations and  solution
methods—for solving a complex problem; a problem that
targets concepts that they have not been formally taught or
learnt yet'. Research suggests that students do have rich
constructive resources (diSessa & Sherin, 2000) to generate
a variety of structures for solving novel problems (diSessa et
al., 1991; Schwartz & Bransford, 1999). At the same time,

! The complexity of the problem is in relation to the learner. The
problem is complex to the learner because the learner does not
know the canonical representations and methods for solving it. To
someone who knows these, the problem is no longer complex.
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research also suggests that one cannot expect students, who
are novices to the target content, to somehow generate or
discover the canonical representations and domain-specific
methods for solving the problem (Kirschner et al., 2006).

However, the expectation for the generation and
exploration phase is not for students to be able to solve the
problem successfully. Instead, it is to generate and explore
the affordances and constraints of a diversity of structures
for solving the problem. To the extent that students can
persist in this process, the process not only activates but also
differentiates their prior knowledge (as evidenced in the
diversity of student-generated concepts, representations and
methods). Furthermore, a comparison and contrast between
the various structures also affords opportunities to attend to
critical features of the targeted concepts (more on this in
results section). Consequently, the generation and
exploration phase provides the necessary foundation for
developing deeper understanding of the canonical concepts,
representations, and methods during direct instruction.

Empirical evidence for PF comes from a series of design
experiments in grades seven through nine in Singapore
mathematics classrooms (Kapur, 2009a, 2009b; Kapur et al.,
2008; Kapur & Lee, 2009). Working with approximately
300 students from four public schools, the studies compared
PF and DI designs for a two-week, curricular unit on
average speed. Findings suggested that PF students
produced a diversity of linked problem representations and
methods for solving the problems but were ultimately
unsuccessful in their efforts. Despite seemingly failing in
their problem-solving efforts, PF students significantly
outperformed DI students on both procedural fluency and
complex analysis problems on the posttests. Furthermore,
PF students also demonstrated significantly better transfer
performance in adapting and building upon the targeted
concepts to learn new concepts on their own.

These findings are consistent with other research
programs that suggest that conditions that maximize
performance in the shorter term are not necessarily the ones
that maximize learning in the longer term (Clifford, 1984;
Schmidt & Bjork, 1992). Examples of such research
programs include VanLehn’s (2003) work on impasse-
driven learning, Schwartz and Bransford’s (1998) work on
preparation for future learning, Schwartz and Martin’s
(2004) work on inventing to prepare for learning, diSessa’s
(1991) work on meta-representational competence,
Koedinger and Aleven’s (2007) work on the assistance
dilemma, among others (Kapur & Rummel, 2009).

Collectively, these research programs support the
argument for designing conditions for learners to persist in
the process of solving novel, complex problems without
instructional support structures initially. Even though such a
process invariably leads to failure in the shorter term, the
extent to which this process affords learners opportunities to
explore and generate a variety of representations and
methods, the process can be germane for learning.

The purpose of this paper is to report findings from an on-
going, classroom-based research program on productive
failure in a public school in Singapore.

Method

Participants

Participants were 140, ninth-grade mathematics students
(14-15 year olds) from an all-boys pubic school in
Singapore. Students were almost all of Chinese ethnicity.
Students were from four mathematics classes; three classes
taught by one teacher (teacher A), and the fourth class by
another teacher (teacher B). Students had no instructional
experience with the targeted concept—variance—prior to
the study, although they had learnt the concepts of mean,
median, and mode in grades 7 and 8.

Research Design

A quasi-experimental, pre-post design was used with two
classes (n = 31, 35) taught by teacher A assigned to the
‘Direct Instruction’ (DI) condition, and the other two classes
(n = 35, 39), under teachers A and B, assigned to the
‘Productive Failure’ (PF) condition.

First, all students took a five-item paper and pencil pretest
(a=.75) on the concept of variance. Not surprisingly, not a
single student demonstrated canonical knowledge of the
concept, and there was no significant difference between the
four classes either, F(3,136) = 1.665, p = .177. Next, all
classes participated in four, 55-minute periods of instruction
on the concept as appropriate to their assigned condition.
After the second and fourth periods, students from all
classes took a five-item, five-point (1(low) - 5(High)) Likert
scale engagement survey (o = .79). Finally, all students took
a six-item, paper and pencil posttest (o= .74) comprising
items on procedural fluency, data analysis, conceptual
insight, and transfer.

In the DI condition, the teacher first explained the concept

of variance and its canonical formulation as the square of
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analysis problem. Next, the teacher modeled the application
of the concept by working through several data analysis
problems, highlighting common errors and misconceptions,
and drawing attention to critical features of the concept in
the process. The data analysis problems required students to
compare the variability in 2-3 given data sets, for example,
comparing the variability in rainfall in two different months
of a year, or comparing the consistency of performance of
three soccer players, and so on. Thereafter, students worked
face-to-face in triads on more data analysis problems. The
teacher then discussed the solutions with the class. After
each period, students were given similar data analysis
problems for homework, which the teacher marked and
returned to the students, usually by the following period.

The PF condition differed from the DI condition in only
one important aspect. Instead of receiving direct instruction
upfront, students spent two periods working face-to-face in
triads to solve one of the data analysis problems on their
own. The data analysis problem presented a distribution of
goals scored each year by three soccer players for a twenty-
year period. Students were asked to generate a quantitative
index to determine the most consistent player. During this
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generation phase, no instructional support or scaffolds were
provided. Following this, two periods were spent on direct
instruction just like in the DI condition. Note that because
students in the PF condition spent the first two periods
generating an index for variance, they solved fewer data
analysis problems overall than their counterparts in the DI
condition. To make this contrast even sharper, PF students
did not receive any data analysis problems for homework.

Hypothesis The hypothesis tested was that productive
failure will be more effective than direct instruction in
learning the concept of variance. That is, expecting to
replicate earlier work on productive failure (Kapur, 2008,
2009; Kapur & Lee, 2009), I hypothesized that students
from the PF condition will be able to generate and explore
various representations and methods for generating an index
for variance (diSessa et al., 1991), but will not be successful
in developing or discovering the canonical formulation on
their own (Kirschner et al., 2006). However, this seeming
failure would be integral for: a) engendering the necessary
prior knowledge differentiation (evidenced in the diversity
of student-generated structures), and b) drawing attention to
critical features of the concept of variance (evidenced in the
comparisons between the student-generated structures),
which may help students better understand the concept
when presented by the teacher during direct instruction
subsequently (Schwartz & Bransford, 1998). This better
understanding would result in better procedural fluency,
data analysis, conceptual insight, and transfer.

Process Results

Process data included group-work artifacts produced on A4
sheets of paper. These provided a rich source of data about
the nature of problem representations and methods
generated by the students in the PF and DI conditions.

In the PF condition, groups produced four major and
progressively sophisticated categories of methods and
representations. The four categories were: a) central
tendencies, b) qualitative methods, ¢) frequency methods,
and d) deviation methods.

Category 1: Central Tendencies. Groups started by using
mean, median, and in some cases, mode for data analysis.
This was not surprising because students had been taught
these concepts in the earlier grades. However, relying on
central tendencies alone, it was not possible to generate a
quantitative index for variance because the problem was
designed in a way to keep the central tendencies invariant.

Category 2: Qualitative methods. Groups generated
graphical and tabular representations that organized the data
visually and were able to discern which player was more
consistent. The visual representations (see Figure 1)
afforded a qualitative comparative analysis between the
players, but did not provide a quantitative index for
measuring consistency even though the ideas of spread and
clustering are quite evidently important qualitative
conceptual underpinnings for the concept of variance.

Category 3: Frequency methods. Groups built on the
qualitative methods to develop frequency-based measures of
consistency. For example in Figure 2, groups used the
frequency of goals scored within certain intervals to argue

that the player with the highest number of goals in the
interval containing the mean was the most consistent. Other
groups counted the frequency with which a player scored
above, below, and at the mean. Frequency methods
demonstrated that students could quantify the clustering and
bunching up trends in the qualitative representations.
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Category 4: Deviation methods. Figure 3 presents some
examples of the deviation methods. The simplest deviation
method generated was the range (Deviation method 1, or
simply D1). Some groups calculated the sum of year-on-
year deviations (D2) to argue that the greater the sum, the
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lower the consistency. Among these, there were those who
considered absolute deviations (D3) to avoid deviations of
opposite signs cancelling each other—an important
conceptual leap towards understanding variance. Finally,
there were some groups who calculated deviations about the
mean (D4) only to find that they sum to zero. For both the
D3 and D4 categories, some groups further refined their
method to consider not the sum of the deviations, but the
average (D5).
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Figure 3 Examples of deviation-based representations and
methods

In both the PF classes, all groups demonstrated
representational competence at the Category 3 level or
greater. Only 2 groups from PF-A and 1 group from PF-B
did not reach Category 4. Consistent with the hypothesis,
none of the groups were able to develop let alone use the
canonical formulation on their own.

More importantly, note that these structures evidence the
hypothesis that students will in fact be able to generate a
rich diversity of structures to solve the problem without
having first learnt the targeted concept of variance, and that
comparisons between these structures will afford students
the opportunities to attend to deep conceptual features of the
concept. The latter needs more elaboration:

i. Comparing central tendencies with qualitative
representations afforded an opportunity to attend to the
feature that central tendencies alone cannot convey
information about variance, and that different
distributions with the same mean can have different
variance.

ii. A comparison between the frequency methods and the
qualitative methods afforded the opportunity to attend
to the quantification of qualitative data into a
mathematical index that returns a value for consistency.

iii. Because the deviation methods consider the relative
position of a data point, a comparison with the
frequency methods afforded students the opportunity to
attend to the feature that, for consistency, it is not only
important to count a point but also consider its position
in relation to other points.

iv. Range (D1) afforded students the opportunity to attend
to the feature that considering just the extreme points
may not be a good measure of consistency, because it
tells us nothing about the distribution in the middle.
Comparing DI with any of the qualitative
representations easily afforded attention to this feature.

v. A comparison between D2 and D3 afforded students the
opportunity to attend to the feature of why deviations
must be positive. The comparison clearly shows that
when deviations are left with their signs intact, positive
and negative deviations cancel out resulting in a case
where the variance could be highly underestimated.

vi. A comparison of D3 and D4 methods afforded students
the opportunity to attend to the feature of why the
reference point must be a fixed point (e.g., the mean),
or else the index is sensitive to ordering of data. If the
reference point for the deviation is not a fixed point,
then a re-ordering of the data will result in a different
value of consistency for the same formulation.

vii. A comparison between the sum and the average
afforded the opportunity to attend to the feature of how
dividing by the number of data points helps compare
samples of different sizes.

In the DI condition, analysis of students’ classroom work
revealed that all students relied only on the canonical
formulation to solve data analysis problems. This was not
surprising given that the canonical formulation is relatively
easy to compute and apply, and was corroborated with data
from homework assignments. The average performance
(i.e., percentage of problems solved correctly) on the
homework assignments was high, M = 93.2%, SD = 5.3%.
Finally, on the mean of the two self-reported engagement
ratings, there was no significant difference between the PF
condition, M = 3.84, SD = .51, and the DI condition, M =
3.82,8D = .43, F(1, 138) = .035, p = .852.

These process findings serve as a manipulation check
demonstrating that students in the PF condition experienced
“failure” at least in the conventional sense. In contrast, DI
students were not only just as engaged as PF students but
also demonstrated successful application of the canonical
formulation to solve several data analysis problems. The
high engagement ratings and performance results also
suggest that the DI condition was not simply a case of poor
instruction.

Outcome Results

Post-test The six-items on the posttest comprised:

i. one item on procedural fluency (calculating SD for a
given data set),

ii. two items on data analysis (comparing means and SDs of
two samples; these items were similar to the data analysis
problems covered during instruction),

iii.two items on conceptual insight (one item dealing with
sensitivity to ordering of data points, and another with
outliers), and

iv. one item on transfer (item requiring the development of a
normalized score for comparing incommensurable
distributions. Note that normalization was not taught
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during instruction, and therefore, students needed to

flexibly adapt and build upon what they had learnt.).

Maximum score for each item was 10; two raters
independently scored the items using a rubric with an inter-
rater reliability of .96. Performance on the four types of
items formed the four dependent variables. Controlling for
the effect of prior knowledge as measured by the pretest,

F(4, 134) = 1.890, p = .112, a MANCOVA revealed a

statistically significant multivariate effect of condition (PF

vs. DI) on posttest scores, F(4, 134) = 16.802, p < .001,

partial n> = .33. There was no significant difference between

the classes within the PF or DI conditions, nor was there any
significant interaction between prior knowledge and
experimental condition.

i. On the procedural fluency item, there was no significant
difference between the PF condition, M = 7.66, SD =
3.97, and the DI condition, M = 7.98, SD = 3.89, F(1,
137)=.819, p = .367.

ii. On the data analysis items, students from the PF
condition, M = 14.11, SD =4.20, significantly
outperformed those from the DI condition, M = 11.38,
SD = 4.86, F(1, 137) = 10.290, p = .002, partial n> = .07.

It is important to note that PF students who were not
given any homework and exposed to fewer data analysis
problems still managed to perform on par with DI students
on procedural fluency, and better than DI on data analysis in
spite of DI students receiving homework and more practice
and feedback on data analysis problems during instruction.
iii.On the conceptual insight items, students from the PF

condition, M = 1640, SD = 6.41, significantly
outperformed those from the DI condition, M = 8.20, SD

=6.15, F(1, 137) = 51.359, p < .001, partial n* = .27.

iv. On the transfer item, students from the PF condition, M/
=4.93, SD =2.99, significantly outperformed those from
the DI condition, M = 3.07, SD = 2.35, F(1, 137) =
14.505, p < .001, partial n* = .10.

Discussion

These findings are consistent with previous studies on
productive failure with other mathematical topics and
profile of students (Kapur, 2009a, 2009b; Kapur et al.,
2008; Kapur & Lee, 2009), and also with other studies (e.g.,
Schwartz & Bransford, 1998; Schwartz & Martin, 2004).
Notwithstanding the limitations of what can be achieved in a
single study carried out within a particular domain, context
and classroom-based setting, implications arising from the
findings are simple and significant: There is indeed an
efficacy in having learners generate and explore
representations and methods for solving problems on their
own even if they do not formally know the underlying
concepts needed to solve the problems, and even if such un-
supported problem solving leads to failure initially. The
process analysis showed that this seeming failure was
integral for: a) engendering the necessary prior knowledge
differentiation (evidenced in the diversity of student-
generated structures), and b) drawing attention to critical
features of the concept of variance (evidenced in the
comparisons between the student-generated structures),
which may help students better understand the concept

when presented by the teacher during direct instruction
subsequently (Schwartz & Bransford, 1998).

This study contributes to the ongoing debate comparing
the effectiveness of direct instruction with discovery
learning approaches (e.g., Kirschner et al., 2006; Klahr &
Nigam, 2004; Dean & Kuhn, 2007); discovery learning
being often epitomized as the constructivist ideal. It is
perhaps worth clarifying that a commitment to a
constructivist epistemology does not necessarily imply a
commitment to discovery learning. Simply leaving learners
to generate and explore without consolidating is unlikely to
lead to learning, or at least learners cannot be expected to
“discover” the canonical representations by themselves as
indeed our findings suggest. Instead, a commitment to a
constructivist epistemology requires that we build upon
learners’ prior knowledge. However, one cannot build upon
prior knowledge if one does not know what this prior
knowledge is in the first place. It follows that at the very
least the burden on the designer (e.g., teacher, researcher) is
to first understand the nature of learners’ prior knowledge
structures; the very structures upon which the claimed
“building” will be done. Designing for productive failure
presents one way of doing so, wherein students first
generate and explore representations and methods, and in
the process externalize their prior knowledge structures,
before direct instruction.

Interestingly, one could argue that Klahr & Nigam’s
(2004) study supports the above contention although it is
often cited as a stellar example of the superior effectiveness
of direct instruction over discovery learning. A careful
reading of the study suggests that before assigning students
to either a direct instruction or a discovery learning
condition, Klahr and Nigam conducted a baseline
assessment where they asked students to design four
experiments on their own. As expected, only 8 out of the
112 students were able to design four un-confounded
experiments, that is, the success rates before any instruction
on the control of variables strategy (CVS) were very low.
Students who were subsequently assigned to the discovery
learning condition simply continued to design these
experiments but without any instruction on CVS or any
feedback. However, for students in the direct instruction
condition, the instructor modeled and contrasted the design
of both confounded and un-confounded experiments with
appropriate instructional facilitation and explanation to
make them attend to critical features of why CVS, unlike
confounded experiments, helps isolate the effects of a
factor. It was not surprising therefore that Klahr and Nigam
found direct instruction to be more effective than discovery
learning as described earlier in this paper.

From the perspective of productive failure however, the
baseline assessment in Klahr and Nigam’s (2004) study
seems to function very much like the generation and
exploration’ phase where students generate their own
structures (in this case, experiments) to solve a problem that
targets a concept (in this case, CVS) that they had not learnt
yet. If so, the very effects that Klahr and Nigam attribute to

% Indeed, Klahr & Nigam (2004) themselves termed it the
“exploration phase.”
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direct instruction alone seem more appropriately attributed
to a generation and exploration phase (their baseline
assessment) followed by direct instruction. Therefore, much
as Klahr and Nigam set out to show, in part, that there is
little efficacy in students exploring and solving problems
requiring concepts they have not learnt yet, their findings
can be reinterpreted to support precisely the opposing
contention that such exploration can in fact be efficacious
provided some form of direct instruction follows, for
without it, students may not learn much (as indeed the
performance of the students in the discovery learning
condition revealed). Thus argued, designing for a certain
level of failure (as opposed to minimizing it) in the initial
learning phase may well be productive for learning in the
longer run. Future research would do well not to
(over)simplistically compare discovery learning with direct
instruction, but instead understand conditions under which
these approaches can complement each other productively.
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