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Abstract

One of the key debates in language acquisition involves the
degree to which children’s early linguistic knowledge employs
abstract representations. While usage-based accounts that fo-
cus on input-driven learning have gained prominence, it re-
mains an open question how such an approach can explain the
evidence for children’s apparent use of abstract syntactic gen-
eralizations. We develop a novel hierarchical Bayesian model
that demonstrates how abstract knowledge can be generalized
from usage-based input. We demonstrate the model on the
learning of verb alternations, showing that such a usage-based
model must allow for the inference of verb class structure, not
simply the inference of individual constructions, in order to
account for the acquisition of alternations.

Keywords: Verb learning; language acquisition; Bayesian
modelling; computational modelling.

Introduction
An important debate in language acquisition concerns the na-
ture of children’s early syntax. On one side of the debate lies
a claim that children develop their syntactic knowledge in an
item-based manner. This claim of usage-based learning ar-
gues that very young children associate verb argument struc-
ture with specific lexical items, only gradually abstracting
syntactic knowledge after four years of age (e.g., Tomasello,
2003). An alternative claim suggests that young children do
indeed possess abstract syntactic representations—i.e., gen-
eralizations about the structure of their language that arenot
necessarily tied to lexical items (e.g., Fisher, 2002).

Syntactic alternation structure is often considered to be a
central phenomenon in this debate. Consider the following
example of the English dative alternation:

(1) I gave a toy to my dog.

(2) I gave my dog a toy.

These sentences mean roughly the same thing, but are ex-
pressed in different ways. The first, aprepositional dative,
expresses the theme (a toy) as an object and the recipient (my
dog) in a prepositional phrase. The second, adouble-object
dative, expresses both the theme and recipient as objects and
reverses their order.

Verbs that allow similar alternations often have similar se-
mantics (Levin, 1993), which suggests that alternations re-
flect much of our cognitive representations of verbs. Fur-
thermore, these regularities appear to influence our language
use. In word learning experiments, children as young as three
years of age appear to use abstract representations of the da-
tive alternation (Conwell & Demuth, 2007). While this is ev-
idence of abstract syntax at a very young age, it does not nec-
essarily invalidate the usage-based hypothesis, since theab-
stractions may originate from item-specific representations.

One way to bring these opposing positions together is to
demonstrate, using naturalistic data, how to connect a usage-
based representation of language with abstract syntactic gen-
eralizations. We argue that alternation structure can be ac-
quired and generalized from usage patterns in the input, with-
out a priori expectations of which alternations may or may
not be acceptable in the language. We support this claim us-
ing a hierarchical Bayesian model (HBM) which is capable of
making inferences about verb argument structure at multiple
levels of abstraction simultaneously. We show that the in-
formation relevant to verb alternations can be acquired from
observations of how verbs occur with individual arguments
in the input. In this sense, we present acompetency model
showing what can be acquired, but we do not make claims
regarding the specific processing mechanisms involved.

From a corpus of child-directed speech, our model acquires
a wide variety of argument structure constructions over hun-
dreds of verbs. Moreover, by forming classes of verbs with
similar usage patterns, the model can generalize knowledge
of alternation patterns to novel verbs. This stands in contrast
to earlier models which have focused on either the acquisition
of the constructions themselves, or the formation of classes
over given constructions. The integration in our model of
these two important aspects of verb learning has implications
for current theories of language acquisition, by showing how
abstract syntactic knowledge can be acquired and generalized
from usage-level input.

Related work
Previous computational approaches to language acquisition
have used HBMs to represent the abstract structure of verb
use. Alishahi and Stevenson (2008) used an incremental
Bayesian model to cluster individual verb usages (ortokens),
simulating the acquisition of verb argument structure con-
structions. Using naturalistic input, the authors showed how a
probabilistic representation of constructions can explain chil-
dren’s recovery from overgeneralization errors. In another
Bayesian model of verb learning, Perfors et al. (2010) clus-
ter verbtypes by comparing the variability of constructions
for each of the verbs. The model can distinguish alternating
from non-alternating dative verbs and can make appropriate
generalizations when learning novel verbs.

Both of the above models show realistic patterns of gen-
eralization, but they operate at complementary levels of ab-
straction. The model of Alishahi and Stevenson does not cap-
ture the alternation patterns of verbs, while Perfors et al.as-
sume that the individual constructions participating in the al-
ternation have already been learned. Furthermore, Perforset
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al. limit their model to only consider two possible construc-
tions (the prepositional and double-object dative), and only
the verbs that participate in those constructions.

In this work, we address both levels of abstraction of the
above models. We cluster individual verb usages to learn ar-
gument structure constuctions and their patterns of use across
many verbs, and we also cluster verb types to learn alternation
behaviour, generalizing that behaviour to novel verbs. More-
over, we use representative corpora of child-directed speech
to model the acquisition of verb alternation behaviour in the
context of many constructions, verbs, and alternations.

Vlachos et al. (2009) used a Dirichlet Process mixture
model to cluster verb types by their subcategorization pref-
erences, but did not address learning the argument structures
themselves. Other work has modelled different aspects of the
dative alternation, such as how discourse features affect the
expression of dative constructions (de Marneffe et al., submit-
ted), yet did not consider how these preferences are learned.

Model description
We discuss the feature representation of a verb usage and de-
velop two contrasting models to show how alternation classes
contribute to generalization in verb learning. Model 1 is
an adaptation of an existing probabilistic topic model, the
Hierarchical Dirichlet Process (HDP; Teh et al., 2006), to
the problem of learning verb argument structure. Model 2,
a novel extension to the HDP, addresses the limitations of
Model 1 by learning verb alternation classes, allowing reg-
ularities in construction use to be transferred to novel verbs.

Verb features
Following from existing approaches (as in Joanis, Stevenson,
and James (2008)), we use syntactic “slot” features to en-
code basic argument information about a verb usage. Table
1 presents the 14 features used in our representation. The
first 12 (up through “PP”) are binary features denoting the
presence or absence of the stated syntactic slot, such as an
object (OBJ) or a prepositional phrase (PP); the slots are in-
dicated by labels used by the CHILDES dependency parser
(Sagae et al., 2007).1 When a PP is present, the nominal
feature PREP denotes the preposition used. Such syntactic
slot features are easier to extract than full subcategorization
frames. We make the assumption that children at this devel-
opmental stage can distinguish various syntactic arguments in
the input, but may not yet recognize recurring patterns such
as transitive and double-object constructions. The following
examples show this representation used with a double-object
dative and a prepositional dative, respectively:

(3) I sent my mother a letter.
〈 OBJ, OBJ2, PREP = null, NSLOTS = 2〉

(4) I sent a letter to my mother.
〈 OBJ, PP, PREP = to, NSLOTS = 2〉

1We consider only the slots internal to the verb phrase, for now
ignoring syntactic subjects. We also do not attempt to distinguish
true arguments from adjuncts, a very difficult distinction to make.

Features Description
OBJ, OBJ2 Objects
COMP, XCOMP Clausal complements
PRED, CPRED, XPRED Predicate complements
LOC Locatives
JCT, CJCT, XJCT Adjuncts
PP Prepositional phrases
PREP Preposition (nominal value)
NSLOTS Number of slots used

Table 1: Slot features.

Model 1: Argument structure constructions

Like other topic models, the HDP (Teh et al., 2006) is es-
sentially a model of category learning: the model clusters
similar items in the input to discover structure. Adopting a
usage-based approach to language (e.g., Goldberg, 2006), we
view the acquisition of verb argument structure as a category-
learning problem. In this view, structured verb knowledge
translates well to the hierarchical nature of the model.

Model 1 is a straightforward adaptation of the HDP to verb
argument structure, which we will use as a point of compari-
son for an extended model. Figure 1(a) provides an intuitive
description of the hierarchical levels of inference in Model 1.
At level 1, the lowest level of abstraction, individual verbus-
agesyi are represented by sets of features as described above.

At level 2, the model clusters similar usages together to
form argument structure constructions, where a construction
is represented by a set of multinomial distributions, one for
each feature. Since the clustering mechanism isnonparamet-
ric, we need not specify the total number of constructions to
learn. Each of these constructions, denoted by its multino-
mial parametersθ, probabilistically represents a pattern such
as a simple transitive or a prepositional dative. While a con-
struction here encodes only syntactic information, with nose-
mantic elements, the model can be generalized to a combined
syntactic/semantic input representation.

At level 3, a multinomial distribution for each verb (π) rep-
resents the range of constructions that tend to occur with the
verb. For example, in Figure 1(a),give (π2) would have a high
probability for the double-object dative and prepositional da-
tive constructions (θ2 andθ3, respectively), but a low proba-
bility for the transitive construction,θ1. Letyi j denote feature
j of usagei. Levels 1 through 3 are given by the following:

πv ∼ Dirichlet(α ·β)

zi ∼ Multinomial(πv)

θ jzi ∼ Dirichlet(1)

yi j ∼ Multinomial(θ jzi)

The indicator variablezi selects a cluster (i.e., a construction,
one of theθ) for usagei. Given a verbv, this is drawn from
a multinomial distribution which includes a small probability
of creating a new construction.
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Figure 1: (a) Model 1, a Hierarchical Dirichlet Process applied to learning verb argument structure constructions. (b)Model 2,
an extension of Model 1 to learn verb alternation classes.

The verb-specific distributionsπv depend on hyperparame-
ters which encode expectations about constructions in gen-
eral, across all verbs. They represent acquired knowledge
about the likely total number of constructions, which con-
structions are more likely to occur overall, and so on:

γ ∼ Exponential(1)

α ∼ Exponential(1)

β ∼ Stick(γ)

As with lower-level parameters, these are influenced by ob-
served structure in the input.β, drawn from a stick-breaking
process (Stick), encodes how many constructions will be used
and which constructions are more likely overall.α affects
the variability ofπv. Large values ofα pushπv closer toβ,
the global distribution over constructions, while smallerval-
ues encourage more variation among verbs.γ affects the to-
tal number of constructions; small values ofγ correspond to
fewer constructions. By drawingα andγ from an exponen-
tial distribution, we give a weak preference for verb-specific
behaviour and for solutions with fewer constructions. These
preferences are effectively designed into the model; they may
be informed by general human category-learning behaviour.
For further details of this model, see Teh et al. (2006).

Model 2: Alternation classes

Model 1 acquires argument structure constructions from in-
dividual verb usages, and learns how those constructions are
used by individual verbs, but it is unable to recognize that
certainkinds of verbs behave differently than others. Compe-
tent language speakers regularly use this kind of information.
For example, if a verb occurs in a double-object dative con-
struction, then we should infer that it is also likely to occur in
a prepositional dative. We develop a novel extension of the
above model to capture this phenomenon by learning clusters
of similar verbs.

Recall that we represent a verb by a probability distribu-
tion over the constructions in which it may occur. In the ex-
ample shown in Figure 1(a),give andshow both tend to oc-
cur with a double-object dative and a prepositional dative,but

are less likely to occur as simple transitives. By recognizing
the similarity ofπ2 andπ3, we can create a cluster contain-
ing give, show, and other similar verbs. Figure 1(b) presents
this intuition in Model 2. We extend Model 1 by introducing
a fourth level of abstraction, where we represent clusters of
similar verbs. For each verb clusterc, we useφc to represent
the range of constructions that tend to occur with any of the
verbs in that cluster. By serving as a prior on the verb-level
parametersπv, φc directly influences each verb in the cluster.

The lower levels of this model are the same as in Model
1. In addition, the verb representations,πv, depend on the
alternation classes in level 4:

φcv ∼ Dirichlet(α0 ·β0)

πv ∼ Dirichlet(α1 ·φcv)

zi ∼ Multinomial(πv)

θ jzi ∼ Dirichlet(1)

yi j ∼ Multinomial(θ jzi)

Each verbv belongs to a cluster of verbs, denotedcv. Now,πv

depends onφcv , which gives a distribution over constructions
for all the verbs in the same cluster.

As before, these parameters themselves depend on top-
level hyperparameters:

γ0 ∼ Exponential(1)

α0,1 ∼ Exponential(1)

β0 ∼ Stick(γ0)

These hyperparameters serve similar roles to those in Model
1. β0 gives a global distribution over all the constructions in
use. γ0 affects the total number of constructions overall.α1

affects the variability of a verb compared with its class, and
α0 affects the variability of verb classes.

To group verbs into alternation classes, we use a mecha-
nism similar to the way we group individual verb usages into
constructions. Recall thatcv acts as an indicator variable, se-
lecting a class for verbv from the available classes in level
4. This is drawn from a multinomial distributionσ which
includes a small probability of creating a new verb class:
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γ1 ∼ Exponential(1)

σ ∼ Stick(γ1)

cv ∼ Multinomial(σ)

As with earlier uses of the stick-breaking construction,γ1 af-
fects the expected total number of verb classes. This method
of clustering verb types is similar to Wallach (2008).

Parameter estimation
Models 1 and 2, as written, each specify a prior distribution
over the complete set of possible parameters to the models
(i.e., all possible values forθ, z, φ, and so on). We update
these distributions using the observed verb usage data, thus
obtaining posterior distributions over parameters.

We estimate the posterior distributions using Gibbs sam-
pling, a Markov Chain Monte Carlo (MCMC) method (Teh
et al., 2006). Model parameters are initially set randomly,
then iteratively adjusted according to the observed data. We
randomly set eachzi to one of 10 initial constructions, and
eachcv to one of 10 verb classes (if applicable). We set the
remaining parameters to random values drawn from the dis-
tributions specified in the model descriptions. We then itera-
tively update each model parameterindividually by drawing
it from a posterior distribution conditioned on the data and
all theother parameters in the model. As we iterate through
the parameters many times, we collect samples of their val-
ues. Over time, this set of samples converges on the posterior
distribution—i.e., the model parameters given the observed
data. In the experiments, we average over this set of samples
to estimate what each model has learned about the input.

Experimental set-up
We use child-directed speech from the Manchester corpus
(Theakston et al., 2001), part of the CHILDES database
(MacWhinney, 2000). The corpus covers 12 British English-
speaking children between the ages of approximately 2 and 3
years. Using CLAN, we extract all child-directed utterances
containing at least one verb. We parse the utterances with the
MEGRASP dependency parser (Sagae et al., 2007), then re-
serve every second usage for an evaluation dataset, using the
remainder for development. As described above, we extract
14 slot features for each verb usage. The datasets correspond-
ing to each child contain between 4,400 and 10,700 usages
and between 239 and 479 verb types. All reported results are
obtained using the evaluation data.

Due to flaws in the automatic part-of-speech tagging and
parsing, the data contains many errors, particularly in ditran-
sitive constructions. We manually correct the portion of the
input related to the dative alternation. For each verb in the
development set that occurs with at least one prepositionalor
double-object dative (as given by the automatic parsing), we
draw a sample of up to 50 usages. We repair any cases of in-
correctly parsed dative constructions, then duplicate thecor-
rected samples as necessary. Since manual annotation is so
labour-intensive, we use this same sample to correct the data
for corresponding verbs in the evaluation set. We assume that

the proportions of various usages are identical for these verbs
across the development and evaluation sets.

We implement both learning models using an adaptation of
the NPBayes package (Release 1).2 For each of the 12 chil-
dren in the input, we run 10 randomly initialized simulations.
The parameters appear to converge within 3,000 iterations,
so we run each simulation for 5,800 iterations, discarding the
first 3,300 as burn-in. We record a sample of the model pa-
rameters on every 25th iteration after the burn-in, giving 100
samples per simulation, 1,000 per child. By averaging over
these samples, we can examine the models’ behaviour.

Experiments
We compare the ability of our two models to acquire knowl-
edge about the usage patterns of verbs in the input and gener-
alize that knowledge to new verbs. Firstly, we examine con-
struction preferences in two related classes of verbs. Sec-
ondly, we test whether the models use an abstract representa-
tion of the dative alternation to help learn new verbs.

Verb argument preferences
We examine how our models acquire the usage patterns of
verbs in the input by looking at verbs that participate in two
different alternation patterns. Earlier, we demonstratedthe
dative alternation in examples (3) and (4). The benefactive
alternation is a related pattern, in which verbs alternate be-
tween a double-object form and aprepositional benefactive
form, as in the following examples:

(5) John made his friend a sandwich.
〈 OBJ, OBJ2, PREP = null, NSLOTS = 2〉

(6) John made a sandwich for his friend.
〈 OBJ, PP, PREP = for, NSLOTS = 2〉

We consider all verbs involved in the dative and benefactive
alternations, as listed by Levin (1993, Sections 2.1 and 2.2).
We test three constructions: the prepositional dative (PD); the
double-object construction (DO), whether dative or benefac-
tive; and the prepositional benefactive (PB). Using the sam-
ples of the model parameters, we estimate the posterior pre-
dictive likelihood of each of these frames for each of the verbs
in the given classes. For a given test framey0, using verbv,
and the observed dataY,

P(y0|Y) = ∑
k

P(yo|k,Y)P(k|v,Y)

= ∑
k

∏
j

P(y0 j|θ jk)P(k|πv) (1)

This likelihood is averaged over all 1,000 samples per child.
Figure 2 shows the behaviour of both models. We average

the likelihoods over all 12 children, and over all verbs in the
following cases: (a) verbs listed as dative but not benefactive,
(b) verbs listed as benefactive but not dative, and (c) verbs
in both classes. In both models, both dative and benefactive
verbs show a high likelihood for the DO frame, and a some-
what higher likelihood for the appropriate prepositional frame

2http://www.gatsby.ucl.ac.uk/˜ywteh/research/software.html
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Figure 2: Argument preferences for known dative and bene-
factive verbs in Models 1 and 2. Shorter bars indicate higher
likelihood. The two models show similar behaviour.

(PD and PB, respectively) than for the inappropriate one (PB
and PD, respectively). Verbs that occur in both classes show
closer likelihoods for all three frames.

These results suggest that both models can acquire the ar-
gument structure preferences of verbs in the input. In this
case, the ability of Model 2 to acquire verb alternation classes
is not necessary. Both models are able to cluster verb usages
into a range of constructions and acquire appropriate usage
patterns over a range of verbs. Both models acquire approx-
imately 20 different constructions. Model 2 acquires 35-40
verb classes, depending on the child.

Novel verb generalization

Children as young as three years of age have been shown to
use abstract representations of the dative alternation (Conwell
& Demuth, 2007). When young children hear a sentence like
I gorped Charlie the duck, they appear to know that the same
meaning can be expressed by sayingI gorped the duck to
Charlie. We test this generalization in our models by pre-
senting a novel verb in one form of the dative and measuring
the likelihood of the alternating form.

We test each model by independently presenting it with
a novel verb in three different situations: (a) two instances
of the prepositional dative, (b) two instances of the double-
object dative, or (c) one instance of each. Only in case (c) is
the verb explicitly seen to be alternating. We test the ability to
generalize alternation behaviour by comparing the likelihood
of the unseenalternating form with an unseen form unrelated
to the alternation. The non-alternating frame is the sentential
complement (SC) frame, which occurs in 1-1.5% of the input,
approximately the same overall frequency as either of the two
dative frames. For example, if we train the novel verb using
only the PD, yet the DO frame shows a higher likelihood than
the unrelated SC frame, then we can say that the model has
generalized the dative alternation.

Since the novel verbs arenot in the observed data, we must
further iterate the Gibbs sampler, using the new data, to obtain

Figure 3: Generalization of novel dative verbs in Models 1
and 2, under various training conditions. Shorter bars indicate
higher likelihood.

the appropriate samples of the verb-level distributionπv. For
each of the 1,000 parameter samples per child we obtained
from the original simulations, we re-initialize the model with
the parameters from the sample, add in the novel data for case
(a), (b), or (c), then do a further 350 iterations, recording10
new samples of the model parameters. This gives 10,000 new
samples per test case, per child. Using equation (1) and the
new samples, we estimate the posterior predictive likelihood
of each of the three constructions. This gives an estimate
of the relative preferences for a verb’s usage and is a direct
measure of the acquired lexicon. Translating this estimateto
production, as seen by Conwell and Demuth (2007), would
require a model of how discourse and other factors influence
dative production (e.g., de Marneffe et al., submitted). This is
beyond the scope of this paper.

Figure 3 shows how the ability to acquire verb classes aids
generalization. In Model 1, without verb classes, only the
frames already seen with the novel verb are highly likely.
This means that Model 1 is unable to generalize beyond ob-
served data. In contrast, Model 2 shows appropriate gener-
alization for the dative alternation. When the novel verb is
trained with the prepositional dative, the double-object dative
shows a much higher likelihood than the unrelated SC frame.
A similar effect occurs with DO-only training: the PD frame
is now more likely than the SC frame, although only slightly.
Compared with Model 1,both dative frames obtain a higher
likelihood across all three training cases, while the SC likeli-
hood remains low. The ability to acquire alternation classes
improves the ability to learnboth alternating constructions.

One aspect of our results differs from the behaviour ob-
served in children. Our verb-clustering model is more likely
to generalize to the double-object form when trained only on
a prepositional form, than the other way around (i.e., gener-
alizing from a DO to a PD). However, three-year-old chil-
dren seem to be biased to the prepositional form, the opposite
effect (Conwell & Demuth, 2007). We suggest that this is
a result of our small corpora. High-frequency dative verbs
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tend to be biased toward the double-object form (Campbell &
Tomasello, 2001). However, Gries and Stefanowitsch (2004)
show that out of 40 alternating verbs in the larger ICE-GB
corpus, 19 are prepositional-biased. This strongly suggests
that more low-frequency verbs are prepositional-biased than
otherwise. A small corpus will likely over-represent a double-
object bias because of undersampling of low-frequency verbs.
By applying Model 2 to larger corpora of child-directed
speech in future work, we hope to correct this issue.

Conclusions

In this paper, we show how verb alternation classes contribute
to generalization in verb learning. We develop a hierarchical
Bayesian model, Model 2, that is capable of acquiring knowl-
edge of verb argument structure at multiple levels of inference
simultaneously. We demonstrate this using the wide range of
verbs and constructions contained in a corpus of naturalistic
child-directed speech.

By clustering individual verb usages, both of our mod-
els acquire a variety of argument structure constructions and
learn their patterns of use over hundreds of verbs. Further-
more, Model 2 learns groups of verbs that occur with similar
usage patterns. Using the dative alternation as a key example,
we demonstrate how this knowledge of alternation classes can
be generalized to novel verbs, as observed in the behaviour of
children and adults. This verb class model can acquire and
apply this knowledge without any prior expectation of which
constructions and alternations may or may not be relevant.

In contrast to previous analyses of the dative alternation
(Perfors et al., 2010; de Marneffe et al., submitted), we
demonstrate its acquisition in the context of many other con-
structions, verbs, and alternations. Despite the low frequency
of the participating constructions, our model successfully ac-
quires the dative alternation. This is a strong endorsementof
hierarchical Bayesian models of language acquisition.

This approach offers a potential bridge between differing
theoretical positions in language acquisition. By simultane-
ously learning at multiple levels of abstraction, our model
connects a usage-based representation of language, as pro-
posed by Tomasello (2003), with weak abstract representa-
tions similar to those championed by Fisher (2002). Other
usage-based Bayesian models, such as that of Alishahi and
Stevenson (2008), offer a similar opportunity, although our
model develops higher-level abstractions regarding the struc-
tured knowledge of verbs.

One of the key features of usage-based constructions is that
they couple form to meaning (Goldberg, 2006). Moreover,
Fisher argues that abstract syntactic representations influence
semantics in verb learning, and vice-versa. By augmenting
our model’s input with semantic properties, we will exam-
ine the interaction of syntax and semantics in verb alterna-
tions. We will investigate how an argument alternation may
convey semantic information, as in Scott & Fisher’s (2009)
demonstration of 28-month-old children inferring causation
in transitivity-alternating verbs.
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