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Abstract

Knowledge representations are central to many cognitive
processes, and how these representations change is a central
issue in learning and cognitive development. Here we
developed and implemented a Bayesian inferential procedure
to detect and elucidate representational change in numerical
estimation. The proposed procedure of an adaptive numerical
experiment both infers a learner's representation and predicts
the feedback that is likely to induce representational change.
We provide an application of this procedure using simulated
subjects and demonstrate its effectiveness in inferring
representational state and inducing change.
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adaptive experiment; Bayesian inference.

Introduction

Knowledge representations play a large role in cognitive
processes such as learning, memory, and problem-solving
(Markman, 1999), and a central problem in cognitive
development concerns how representations change with age
and experience (Carey, 1985; Dixon & Bangert, 2002;
Siegler & Opfer, 2003). A striking example of
representational change occurs in developing numerical
magnitude representations. These representational changes
are apparent across a wide range of tasks where numbers are
quantified along a range, whether by categorizing numbers
by magnitude (Opfer & Thompson, 2008), estimating
numerosity (Booth & Siegler, 2006), measurements (Booth
& Siegler, 2006), or positions of numbers on number lines
(Dehaene, lzard, Spelke, Pica 2008; Siegler & Opfer, 2003).

Studies on development of numerical representations
typically find that young children initially estimate
numerical magnitudes to increase logarithmically with
actual value before later learning the decimal system
(Siegler & Opfer 2003, Booth & Siegler 2004; Opfer &
Thompson 2007). This change is interesting theoretically
because the logarithmic representation is implicit in speeded
magnitude comparisons (Moyer & Landauer, 1967) and
generation of random numbers (Banks & Hill, 1974) despite
explicit judgments of numerical magnitude. This shift is
also widespread across cultures, occurring relatively early in
cultures that emphasize children's mathematical education

(Siegler & Mu, 2008) and delayed in cultures that lack
formal schooling (Dehaene, Izard, Spelke, & Pica, 2008).
Recent evidence also suggests that this representational shift
can be induced in situ by providing examples (lzard &
Dehaene 2007; Opfer & Siegler, 2007). That is, feedback on
a few key numbers that are highly discrepant between
logarithmic and linear functions causes rapid and broad
adoption of linear representations (Opfer & Siegler, 2007).

Ideally feedback should take into account a child's current
and target representational states. To do so, one must first
infer, from a few noisy examples, the model that best
describes the child's perception of numerical magnitude.
This inference may be viewed as a model selection problem
in which candidate models are evaluated and compared for
their ability to capture the regularities underlying the data
(Pitt & Myung, 2002). With the underlying representation
having been inferred, one is now in a position to determine
feedback that is most likely to induce representational
changes in learners. This latter perspective proposes
hypotheses for the ideal training regimen; feedback given to
a child will be the most effective when it maximally
discriminates  between a logarithmic and linear
representation while tracking the learner's current
representation. These ideas can be formalized in a statistical
framework, which is described in detail in a later section.
This formal approach should have benefits to the theoretical
guestions that motivate research on the shift in numerical
estimation, i.e. what is the path and source of change in
numerical estimation abilities? We will be able to measure
more precisely what about a child's representation changes
to and what types of feedback are most likely to elicit it.
The fruits of this approach could lead to the introduction of
more effective teaching and training regimens.

In the present paper we propose a procedure that both (1)
adaptively infers a learner's most likely representation and
(2) predicts the feedback that will most likely induce
representational shifts through what we call a cognitive
tutor. We will demonstrate how this procedure is performed
using computer simulations with information drawn from
previous experimental data. We will also show the
advantages of this procedure over traditional training studies
in efficiency and the likelihood of inducing change.
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Given our present focus on simulations of the above
procedure, the purpose of this simulation study is three-fold.
First, before implementation in experimental settings, it is
necessary to run simulations to check the performance and
accuracy of the method. Second, simulations could
demonstrate the advantages of the cognitive tutor over the
traditional paradigm. Finally, we are able to generate
hypothesis for later experiments from simulation results. We
use the topic of numerical estimation as a running example,
and then discuss the potential to transfer the technology to
other domains.

Adaptive Numerical Experiment

For representational shift problems, specifically in the
domain of numerical representation, we propose an adaptive
numerical experiment which infers the representation and
performs the role of cognitive tutor. The procedure takes a
perspective of model selection and distinguishes between
the following models:

y,=ax,+b+e, (|:1,,n) (1)

y; =alogx; +b+e; (i=1...n) (2)
where X denotes the presented stimuli, y denotes the
perceived numerical magnitude, and e is a normally
distributed error with mean 0 and standard deviation o.

In the experiment, we follow the paradigm used in Opfer
and Siegler (2007), which shows the importance of
choosing feedback. The same Number-Line Task is used as
the numerical estimation task in our experiment. In each
experiment trial, the child is shown a number between 0-100
or 0-1000 and is asked to estimate its position on a line.

The experiment is split into three sessions, as illustrated in
Figure 1, and mirrors previous number line studies. In the
pre-test session (Session 1), the Number-Line Task is
performed to infer the child’s existing representation model;
each trial children are shown a number and asked to
estimate its corresponding position on a line. Next in the
feedback session (Session 2), children respond as in pre-test,
but after each response are shown the (correct) linear
position of each number. The post-test session (Session 3) is
similar to the pre-test session, which examines whether any
shift occurred in the child’s representation model, with no

feedback provided.
The proposed adaptive numerical experiment applies the
Adaptive Design Optimization (ADO) method and

reorganizes the three sessions into two processes, the
adaptive inference and the adaptive tutoring. In what
follows we define the two processes and describe how ADO
works and how it is incorporated into the processes.

Adaptive Inference Process

The adaptive inference process (AIP) takes place in the
pre-test session and infers a child's most likely
representation model (e.g. linear). It conducts a series of
experiment trials and presents the numerical stimuli
sequentially. Within each trial, the observed response is
analyzed and the next stimulus is provided based on the

analysis. It is adaptive in that it tailors the test procedure to
individual state from trial to trial. Consequently, it obtains
sufficient evidence to make inference within the fewest

possible trials.
[ Adaptive Tutoring '\

Post-Test Session II

Adaptive Inference

Pre-Test Session II

Feedback Session

Figure 1. General structure of adaptive numerical
experiment consisting of the adaptive inference and the
adaptive tutoring processes.
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Figure 2: Flowchart of ADO process including repeated
sessions of design optimization (designs), data collection
(experiment), and model updating (inferences).
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Figure 3: A typical curve of model probability change in
ADO experiments.
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The adaptive choice of numerical stimuli is formally done
via experiment design optimization methods, where the
numerical stimuli are the designs of interest. The idea of
design optimization in this task is to find a numerical
stimulus that is the most informative in distinguishing
among alternative representational formats (i.e., logarithmic
vs. linear). This method of adaptive design optimization
(ADO) is developed and performed in a Bayesian
framework (Myung & Pitt, 2009). In ADO, design
optimization (designs), data collection (experiment), and
model updating (inferences) are repeatedly performed, as
illustrated in the flowchart in Figure 2. In the process, X
denotes the numeric value presented to the child and is the
design variable to be optimized. The symbol y denotes the
child's response, and s denotes the current inference about
the child's underlying representation state, such as the
relative likelihood of candidate models and their parameters,
which are formally defined later. The numbers the child sees
in the session are updated trial by trial along the experiment.

The ADO process is performed as follows. At the
beginning, the experimenter has some prior information s,
about the child’s model, from which the initial number x; is
drawn and the response y; is observed. With sy and vy, the
posterior s, is obtained by Bayes theorem. For the next trial,
s; serves as the prior and the above process is repeated. The
process continues until the model information st after T
trials meets certain stopping criterion. Such an adaptive
approach bases the later designs upon previous experimental
results and makes better use of individual data. Hence, it is
more efficient compared to the traditional manner of using
the same designs for every individual. Figure 3 shows a
typical curve of model probability obtained from an ADO
simulation. It indicates that the predicted model probability
of the true underlying model reaches as high as .9 within
four trials. To summarize, ADO-embedded adaptive
inference process could find the optimal designs (i.e.
numerical values to estimate) that tailor to individual state,
thus could permit efficient inference from the results.

Adaptive Tutoring Process

After inferring the child’s representation model through
AIP, we may know that the child uses some undesired
logarithmic or linear model. The next concern is to find
appropriate feedback stimuli that will be most likely to
induce representational shift. For this purpose, we combine
the feedback session and the post-test session to form what
we call the adaptive tutoring process (ATP). Design
optimization methods are also applied in ATP. In the
feedback session, the choice of the feedback stimuli is
optimized in order to teach the child most effectively. For
this purpose, we make the assumption that the effectiveness
of the design is determined by the maximum discrepancy
between the child's model and the target model (e.g., an
accurate line y; =x;). After the optimal feedback stimulus
is found and provided to the child, ATP moves to the post-

test session. The post-test session infers the child's model
again and checks if he has changed the model. If the child

retains a logarithmic model or changes to an undesired
linear model (e.g. a linear model with slope smaller than .5),
the feedback and post-test sessions are repeated until the
child has acquired the target model. Generally speaking,
adaptive inference is also performed within the adaptive
tutoring process.

The adaptive tutoring process starts from the information
st obtained at the end of the adaptive inference process. In
determining the numbers to be used for teaching, our
assumption is that the most informative feedback stimuli for
the child lie in the region where the target model and the
child's current representation model have the largest
discrepancy. The target model is assumed as a fixed, correct
model. Hence, we are not adapting to the child’s
representation states, but are optimizing to the difference
between the child’s current status and the target model.
Formally, we are maximizing the informativeness of the
feedback stimulus described as the discrepancy between its
true value and its value in the child's representation. The
child is tested with the optimal feedback and is corrected
with the true position. Then the experimenter obtains the
updated information about the child's numerical
representation model using the same process as in AIP. The
updated information can be used to find the next optimal
feedback stimulus, if necessary. The process runs back and
forth until the child has shown acquisition of the target
model by giving accurate linear responses to the numerical
stimuli. In all, the adaptive tutoring process tailors to the
child's learning progress and provides a way to combine
optimal teaching and progress verification.

Bayesian Framework of Design Optimization

In this section, we provide a brief description of the ADO
framework implemented in this paper. For fuller technical
details and applications, the reader is directed to Myung and
Pitt (2009) and Cavagnaro, Myung, Pitt and Kujala (2010).
In ADO, each experimental design is assigned a utility
describing the value of a hypothetical experiment with that
design. It is analogous to choosing among a set of gambles
whose payoff is determined by the risks and rewards of each
type of gamble. The set of all possible designs that could be
used in a given experiment consist of the design space
(Amzal, Bois, Parent, & Robert, 2006; Pitt & Myung,
submitted). The goal of ADO is to search the entire design
space and find the most informative design(s).

The problem of design optimization is formally expressed
as finding an optimal design d* over the design space,
which maximizes the expected utility function U(d). U(d)
typically takes into consideration of all unknown but
possible conditions. If multiple models are plausible for
describing the underlying process in an experiment, U(d)
could be defined as:

K
U(d)=2" p(m;)[[u(d, m;,6,,,y)p(y |6, ,d) (G, )dyde,, -
i=1
In the above equation, m; (i = {1, ..., K}) is one of K
models under consideration, d is a design, y is the outcome
of an experiment with design d under model m, 6, is the
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parameter of model m, and finally, u(d, 6,,, y) is the “local”
utility function of deign d, parameter 0, and experimental
outcome y. In general, U(d) represents the expected value of
local utility functions in which the expectation is taken over
all possible models and their parameters and over all
possible experimental observations given the models and
parameters.

In adaptive design optimization, the optimization of U(d)
is repeated over a series of experimental stages. At each
stage, the model and parameter priors, p(m) and p(6,,), are
updated upon the specific outcome observed in an actual
experiment carried out with the optimal design d*. This
updating is performed via Bayes rule and Bayes factor
calculation (Gelman, Carlin, Stern & Rubin, 2004).

Simulations

Pre-test Simulations and Results

In this section, we describe the computer simulations that
demonstrate the performance and advantages of the adaptive
numeric estimation experiment. The purpose of conducting
simulations is to guarantee that the processes work as
expected, as well as to show the efficiency of the
methodology.
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Figure 4: Sample curves of linear (black solid lines) and
logarithmic (red dashed curves) models randomly generated
from the priors.
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Figure 5: Prediction density scatter plot of linear and
logarithmic model predictions at the end of the pre-test. The
darkness of each dot indicates the probabilities of a response
y given the presented number x. Black dots indicate the
highest probabilities and the yellow dots indicate the lowest
probabilities.

In order to run the simulations, we first chose the priors
on the basis of previous experiment data and experts'
beliefs, so that the priors covered a reasonable range of
numerical representation models. Several data sets (e.g.
Opfer & Siegler, 2007, Siegler & Opfer, 2003) were fitted
and the parameter ranges of the models were obtained.
Uniform priors over the parameter ranges were then used for
intercept, slope, and error variance. Figure 4 shows a sample
of possible models under the priors, in which the linear
models and logarithmic models are mixed with each other.
It also suggests the difficulty of depicting intuitive designs
for distinguishing between the two sets of models.

The simulation first implemented the pre-test session with
the above priors. The data-generating model, which was
assumed to be the child's true model in the simulations, took
the following logarithmic form:

y; =0.21-logx; +0.75+¢;, & ~ N(0,0.005%)

Within each simulation, we ran 10 trials (number of trials
fixed for convenience purposes) of the Number-Line Task
in the pre-test session. Results showed that after 6 trials, we
had already obtained sufficient evidence to conclude that the
logarithmic model was over 90% likely to be the data-
generating model. Meanwhile, we also narrowed down the
range of model parameters as shown in the prediction
density scatter plot in Figure 5. The darkness of each dot
indicates the probabilities of a response y given the
presented number Xx. Figure 5 shows that the predictions
from possible linear models are more widely spread than the
predictions from possible logarithmic models. It suggests
that the predictions from the logarithmic model posteriors
are highly concentrated and have higher probabilities, which
provides strong evidence that the true model takes a
logarithmic form.

Feedback and Post-test Simulations

After the pre-test session, we simulated the adaptive
tutoring process. The first step was to choose an optimal
feedback stimulus that maximized the discrepancy between
the target model and what we knew about the child’s
existing model. Formally, the utility of the feedback design
accounted for the prediction probabilities of both models, as
well as the parameter range of both models. For the specific
simulated learner, the optimal feedback design was found at
x = 0.354. That is, the child would be most “surprised” for
this stimulus when he sees the difference between his
response and the correct answer. Figure 6 shows the
location of the optimal feedback and its relationship with
the child’s model and the target model.

To simulate the post-test session, we needed to assume a
learning mechanism that caused the representational shift
and generated the post-test experiment results. An intuitive
assumption was a conservative learning mechanism in
which a child learner made the smallest change to
accommodate the feedback. Suppose the child could change
to any models within the range of the priors. Among these
models, there were a subset of linear models and a subset of
logarithmic models that were consistent with the learned
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feedback. A conservative learner would estimate the amount
of overall discrepancy between these candidate models and
the current model and choose the one that has the smallest
discrepancy. That is, the conservative learning mechanism
assumed the child to be an ideal learner. To demonstrate
another plausible mechanism, we also assumed a less ideal
learner, the model-conservative learner. The model-
conservative learning mechanism assumed that the child
only considered a subset of logarithmic models that were
consistent with the learned feedback and chose one that
required the smallest change from the previous model. In
both mechanisms, the winning model was used as the data-
generating model for the post-test session. Figure 7 shows
representational shifts of the two hypothesized learners.
After learning the optimal feedback, the conservative
learner changes to a linear model y; =0.758-x; +0.086+¢;,
and the model-conservative learner changes to another
logarithmic model y; =0.218-logx; +0.580+¢; . The two

models intersect at the point of optimal feedback because
they both accommodate the feedback.
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Figure 6: Optimal feedback for the simulated learner
indicated by the square at x = 0.354. The prediction density
scatter plot shows the inference of the child’s representation
at the end of the pre-test session. The dotted line shows the
target model (y; = X;).
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Figure 7: Predicted representational shift to the linear model

(solid line) and the logarithmic model (dashed curve) caused

by the two learning mechanisms. Both models intersect with

the target model at the feedback (the square).
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The post-test session simulation started from the same
priors used for the pre-test session (shown in Figure 4). It
was because the data-generating model had changed and the
posterior information from the pre-test session was no
longer valid. For convenience purpose, we simulated 5 trials
of Number-Line Task in the post-test session. For the
conservative learner, there was sufficient evidence to
conclude that linear model was over 90% likely to be the
data-generating model after 4 trials. For the model-
conservative learner, it took 5 trials. The range of parameter
estimates for the data-generating model was also narrowed
down at the end of the post-test session. Hence, results from
the post-test simulations showed that the post-test session
made quick and reliable inferences about the new data-
generating model.

In general, simulation results of the pre-test, feedback,
and post-test sessions demonstrated the validity and the
efficiency of the adaptive numerical experiment. We further
discuss its practical applications and theoretical implications
in the next section.

Discussion

Previous feedback studies have demonstrated that providing
children with data that is incommensurate with their current
numerical representation can promote a representational
shift. In the current paper we improved upon this design
using an adaptive design optimization procedure to perform
an adaptive-inference, adaptive-tutoring process. This
process infers the most likely dominant numerical
representation and provides the optimal feedback to elicit a
shift to an accurate linear representation. We simulated this
process for a logarithmic learner using parameters from
previous empirical experiments. Finally we predicted the
learner's updated numerical representation based on two
possible learning mechanisms.

We established the plausibility of the algorithm for the
problem at hand. The adaptive design optimization
procedure was able to infer the data generating function in
each simulation by optimizing across the design space. The
procedure was more efficient than traditional feedback
studies in inferring the simulated child’s representational
state in a few trials. This efficiency in turn suggests that a
shorter pre-test phase is less likely to reinforce the learner's
initial representation. Shorter testing and feedback phases
also provide obvious benefits to both experimentation and
real world application for testing children; fewer trials
reduce the overall attentional costs to children and thereby
reduce the influence of attention-related noise in their
responses.

The adaptive tutoring process also proved useful in
determining optimal feedback. Feedback points have
previously been chosen to maximize the discrepancy
between an ideal logarithmic and linear function (Opfer &
Siegler, 2007), while our cognitive tutor chooses
personalized feedback based on the individual learner's most
likely logarithmic or linear representation. This generates
very informative results about the ideal feedback points.
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The magnitudes chosen by the adaptive tutor are
approximately 30% of the range for a simulated learner
based on the parameters of children from previous studies.
They are near to the previously chosen points (15% of the
range), but are clearly not the same. These optimal
feedback points may prove to vary widely in actual children,
highlighting the need for the adaptive tutoring process to
control for individual differences in representations.

The adaptive numeric estimation experiment clearly needs
to be run on children to determine its external validity,
which we plan to carry out. Nevertheless, we were able to
use the adaptive experiment to accurately infer the
representational state of a simulated learner. A byproduct of
this process was the implementation of two potential
learning mechanisms to test the end-state representation of
the simulated learner. The conservative and model-
conservative learning mechanisms were used to produce
quantitative predictions. A conservative model that uses
optimal feedback to adjust parameters and the model form
with the least amount of change showed a shift to a more
accurate linear function with parameters near to the ideal
model. The model-conservative mechanism resulted in a
preserved logarithmic function with an overall decrease in
the model parameters.

If these results can be extended to children, they would
support a perspective that learner will behave as a modeler
and update his dominant representation with ideal feedback.
We might then further test whether the child learner is
engaging in Bayesian learning; specifically whether the
different learning mechanisms can be seen as a variation in
the learner's likelihood ratio. Conservative learning asserts
equal likelihood to the representations, while model-
conservative learning gives weight only to the dominant
representation. These may be plausible mechanisms of
cognitive change based on culture and the strength of each
representation, with emphasis on mathematical education
directly affecting the learner's likelihood ratio of a linear
representation.

Adaptive inference of the probability that a learner is
linear or logarithmic in representation and an adaptive tutor
function that maximizes the effect of feedback are necessary
to understand the learner's representation which might apply
to many types of representations in diverse areas. The
process could easily be extended to similar numerical
estimation tasks that use a variety of presented numerical
stimuli to determine perceived magnitude. It is possible to
extend this design to other areas in which representational
shifts are seen, whether to determine children's past tense
verb use and predict errors in overgeneralization (Marcus,
1995) or function learning to predict attention to relevant
cues (Kruschke 1996). The adaptive design optimization
procedure is of obvious use as a means of better modeling
the learner and refining training.
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