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Abstract 

Knowledge representations are central to many cognitive 
processes, and how these representations change is a central 
issue in learning and cognitive development.  Here we 
developed and implemented a Bayesian inferential procedure 
to detect and elucidate representational change in numerical 
estimation.  The proposed procedure of an adaptive numerical 
experiment both infers a learner's representation and predicts 
the feedback that is likely to induce representational change. 
We provide an application of this procedure using simulated 
subjects and demonstrate its effectiveness in inferring 
representational state and inducing change. 

Keywords: representational shift; numerical estimation; 
adaptive experiment; Bayesian inference. 

Introduction 

Knowledge representations play a large role in cognitive 

processes such as learning, memory, and problem-solving 

(Markman, 1999), and a central problem in cognitive 

development concerns how representations change with age 

and experience (Carey, 1985; Dixon & Bangert, 2002; 

Siegler & Opfer, 2003).  A striking example of 

representational change occurs in developing numerical 

magnitude representations. These representational changes 

are apparent across a wide range of tasks where numbers are 

quantified along a range, whether by categorizing numbers 

by magnitude (Opfer & Thompson, 2008), estimating 

numerosity (Booth & Siegler, 2006), measurements (Booth 

& Siegler, 2006), or positions of numbers on number lines 

(Dehaene, Izard, Spelke, Pica 2008; Siegler & Opfer, 2003). 

Studies on development of numerical representations 

typically find that young children initially estimate 

numerical magnitudes to increase logarithmically with 

actual value before later learning the decimal system 

(Siegler & Opfer 2003, Booth & Siegler 2004; Opfer & 

Thompson 2007).  This change is interesting theoretically 

because the logarithmic representation is implicit in speeded 

magnitude comparisons (Moyer & Landauer, 1967) and 

generation of random numbers (Banks & Hill, 1974) despite 

explicit judgments of numerical magnitude. This shift is 

also widespread across cultures, occurring relatively early in 

cultures that emphasize children's mathematical education 

(Siegler & Mu, 2008) and delayed in cultures that lack 

formal schooling (Dehaene, Izard, Spelke, & Pica, 2008).  

Recent evidence also suggests that this representational shift 

can be induced in situ by providing examples (Izard & 

Dehaene 2007; Opfer & Siegler, 2007). That is, feedback on 

a few key numbers that are highly discrepant between 

logarithmic and linear functions causes rapid and broad 

adoption of linear representations (Opfer & Siegler, 2007). 

Ideally feedback should take into account a child's current 

and target representational states. To do so, one must first 

infer, from a few noisy examples, the model that best 

describes the child's perception of numerical magnitude.  

This inference may be viewed as a model selection problem 

in which candidate models are evaluated and compared for 

their ability to capture the regularities underlying the data 

(Pitt & Myung, 2002).  With the underlying representation 

having been inferred, one is now in a position to determine 

feedback that is most likely to induce representational 

changes in learners. This latter perspective proposes 

hypotheses for the ideal training regimen; feedback given to 

a child will be the most effective when it maximally 

discriminates between a logarithmic and linear 

representation while tracking the learner's current 

representation.  These ideas can be formalized in a statistical 

framework, which is described in detail in a later section. 

This formal approach should have benefits to the theoretical 

questions that motivate research on the shift in numerical 

estimation, i.e. what is the path and source of change in 

numerical estimation abilities?  We will be able to measure 

more precisely what about a child's representation changes 

to and what types of feedback are most likely to elicit it. 

The fruits of this approach could lead to the introduction of 

more effective teaching and training regimens. 

In the present paper we propose a procedure that both (1) 

adaptively infers a learner's most likely representation and 

(2) predicts the feedback that will most likely induce 

representational shifts through what we call a cognitive 

tutor.  We will demonstrate how this procedure is performed 

using computer simulations with information drawn from 

previous experimental data. We will also show the 

advantages of this procedure over traditional training studies 

in efficiency and the likelihood of inducing change.  
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Given our present focus on simulations of the above 

procedure, the purpose of this simulation study is three-fold. 

First, before implementation in experimental settings, it is 

necessary to run simulations to check the performance and 

accuracy of the method. Second, simulations could 

demonstrate the advantages of the cognitive tutor over the 

traditional paradigm. Finally, we are able to generate 

hypothesis for later experiments from simulation results. We 

use the topic of numerical estimation as a running example, 

and then discuss the potential to transfer the technology to 

other domains. 

Adaptive Numerical Experiment 

For representational shift problems, specifically in the 

domain of numerical representation, we propose an adaptive 

numerical experiment which infers the representation and 

performs the role of cognitive tutor. The procedure takes a 

perspective of model selection and distinguishes between 

the following models: 

),...,1( niebaxy iii         (1) 

),...,1( log niebxay iii    (2) 

where x denotes the presented stimuli, y denotes the 

perceived numerical magnitude, and e is a normally 

distributed error with mean 0 and standard deviation σ. 

In the experiment, we follow the paradigm used in Opfer 

and Siegler (2007), which shows the importance of 

choosing feedback. The same Number-Line Task is used as 

the numerical estimation task in our experiment. In each 

experiment trial, the child is shown a number between 0-100 

or 0-1000 and is asked to estimate its position on a line.  

The experiment is split into three sessions, as illustrated in 

Figure 1, and mirrors previous number line studies. In the 

pre-test session (Session 1), the Number-Line Task is 

performed to infer the child’s existing representation model; 

each trial children are shown a number and asked to 

estimate its corresponding position on a line. Next in the 

feedback session (Session 2), children respond as in pre-test, 

but after each response are shown the (correct) linear 

position of each number. The post-test session (Session 3) is 

similar to the pre-test session, which examines whether any 

shift occurred in the child’s representation model, with no 

feedback provided.  

The proposed adaptive numerical experiment applies the 

Adaptive Design Optimization (ADO) method and 

reorganizes the three sessions into two processes, the 

adaptive inference and the adaptive tutoring. In what 

follows we define the two processes and describe how ADO 

works and how it is incorporated into the processes. 

Adaptive Inference Process  

The adaptive inference process (AIP) takes place in the 

pre-test session and infers a child's most likely 

representation model (e.g. linear). It conducts a series of 

experiment trials and presents the numerical stimuli 

sequentially. Within each trial, the observed response is 

analyzed and the next stimulus is provided based on the 

analysis. It is adaptive in that it tailors the test procedure to 

individual state from trial to trial. Consequently, it obtains 

sufficient evidence to make inference within the fewest 

possible trials. 

Post-Test Session Pre-Test Session 

Feedback Session 

Adaptive Tutoring 

Adaptive Inference 

 
Figure 1: General structure of adaptive numerical 

experiment consisting of the adaptive inference and the 

adaptive tutoring processes. 
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EXPERIMENT 

… y1 y2 yT 

 
Figure 2: Flowchart of ADO process including repeated 

sessions of design optimization (designs), data collection 

(experiment), and model updating (inferences). 

 

 
Figure 3: A typical curve of model probability change in 

ADO experiments. 
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The adaptive choice of numerical stimuli is formally done 

via experiment design optimization methods, where the 

numerical stimuli are the designs of interest.  The idea of 

design optimization in this task is to find a numerical 

stimulus that is the most informative in distinguishing 

among alternative representational formats (i.e., logarithmic 

vs. linear). This method of adaptive design optimization 

(ADO) is developed and performed in a Bayesian 

framework (Myung & Pitt, 2009). In ADO, design 

optimization (designs), data collection (experiment), and 

model updating (inferences) are repeatedly performed, as 

illustrated in the flowchart in Figure 2. In the process, x 

denotes the numeric value presented to the child and is the 

design variable to be optimized. The symbol y denotes the 

child's response, and s denotes the current inference about 

the child's underlying representation state, such as the 

relative likelihood of candidate models and their parameters, 

which are formally defined later. The numbers the child sees 

in the session are updated trial by trial along the experiment. 

The ADO process is performed as follows. At the 

beginning, the experimenter has some prior information s0 

about the child’s model, from which the initial number x1 is 

drawn and the response y1 is observed. With s0 and y1, the 

posterior s1 is obtained by Bayes theorem. For the next trial, 

s1 serves as the prior and the above process is repeated. The 

process continues until the model information sT after T 

trials meets certain stopping criterion. Such an adaptive 

approach bases the later designs upon previous experimental 

results and makes better use of individual data. Hence, it is 

more efficient compared to the traditional manner of using 

the same designs for every individual. Figure 3 shows a 

typical curve of model probability obtained from an ADO 

simulation. It indicates that the predicted model probability 

of the true underlying model reaches as high as .9 within 

four trials. To summarize, ADO-embedded adaptive 

inference process could find the optimal designs (i.e. 

numerical values to estimate) that tailor to individual state, 

thus could permit efficient inference from the results. 

Adaptive Tutoring Process  

After inferring the child’s representation model through 

AIP, we may know that the child uses some undesired 

logarithmic or linear model. The next concern is to find 

appropriate feedback stimuli that will be most likely to 

induce representational shift. For this purpose, we combine 

the feedback session and the post-test session to form what 

we call the adaptive tutoring process (ATP). Design 

optimization methods are also applied in ATP. In the 

feedback session, the choice of the feedback stimuli is 

optimized in order to teach the child most effectively. For 

this purpose, we make the assumption that the effectiveness 

of the design is determined by the maximum discrepancy 

between the child's model and the target model (e.g., an 

accurate line ii xy  ).  After the optimal feedback stimulus 

is found and provided to the child, ATP moves to the post-

test session. The post-test session infers the child's model 

again and checks if he has changed the model. If the child 

retains a logarithmic model or changes to an undesired 

linear model (e.g. a linear model with slope smaller than .5), 

the feedback and post-test sessions are repeated until the 

child has acquired the target model. Generally speaking, 

adaptive inference is also performed within the adaptive 

tutoring process.  

The adaptive tutoring process starts from the information 

sT obtained at the end of the adaptive inference process. In 

determining the numbers to be used for teaching, our 

assumption is that the most informative feedback stimuli for 

the child lie in the region where the target model and the 

child's current representation model have the largest 

discrepancy. The target model is assumed as a fixed, correct 

model. Hence, we are not adapting to the child’s 

representation states, but are optimizing to the difference 

between the child’s current status and the target model. 

Formally, we are maximizing the informativeness of the 

feedback stimulus described as the discrepancy between its 

true value and its value in the child's representation. The 

child is tested with the optimal feedback and is corrected 

with the true position. Then the experimenter obtains the 

updated information about the child's numerical 

representation model using the same process as in AIP. The 

updated information can be used to find the next optimal 

feedback stimulus, if necessary. The process runs back and 

forth until the child has shown acquisition of the target 

model by giving accurate linear responses to the numerical 

stimuli. In all, the adaptive tutoring process tailors to the 

child's learning progress and provides a way to combine 

optimal teaching and progress verification. 

Bayesian Framework of Design Optimization 

In this section, we provide a brief description of the ADO 

framework implemented in this paper. For fuller technical 

details and applications, the reader is directed to Myung and 

Pitt (2009) and Cavagnaro, Myung, Pitt and Kujala (2010). 

In ADO, each experimental design is assigned a utility 

describing the value of a hypothetical experiment with that 

design. It is analogous to choosing among a set of gambles 

whose payoff is determined by the risks and rewards of each 

type of gamble. The set of all possible designs that could be 

used in a given experiment consist of the design space 

(Amzal, Bois, Parent, & Robert, 2006; Pitt & Myung, 

submitted). The goal of ADO is to search the entire design 

space and find the most informative design(s).  

The problem of design optimization is formally expressed 

as finding an optimal design d* over the design space, 

which maximizes the expected utility function U(d). U(d) 

typically takes into consideration of all unknown but 

possible conditions. If multiple models are plausible for 

describing the underlying process in an experiment, U(d) 

could be defined as: 

 
 



K

i

mmmmii iiii
dydpdypymdumpdU

1

)(),|(),,,()()( 
      (3) 

In the above equation, mi (i = {1, …, K}) is one of K 

models under consideration, d is a design, y is the outcome 

of an experiment with design d under model m, θm is the 
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parameter of model m, and finally, u(d, θm, y) is the “local” 

utility function of deign d, parameter θm and experimental 

outcome y. In general, U(d) represents the expected value of 

local utility functions in which the expectation is taken over 

all possible models and their parameters and over all 

possible experimental observations given the models and 

parameters.  

In adaptive design optimization, the optimization of U(d) 

is repeated over a series of experimental stages. At each 

stage, the model and parameter priors, p(m) and p(θm), are 

updated upon the specific outcome observed in an actual 

experiment carried out with the optimal design d*. This 

updating is performed via Bayes rule and Bayes factor 

calculation (Gelman, Carlin, Stern & Rubin, 2004). 

Simulations 

Pre-test Simulations and Results 

In this section, we describe the computer simulations that 

demonstrate the performance and advantages of the adaptive 

numeric estimation experiment. The purpose of conducting 

simulations is to guarantee that the processes work as 

expected, as well as to show the efficiency of the 

methodology. 

 
Figure 4: Sample curves of linear (black solid lines) and 

logarithmic (red dashed curves) models randomly generated 

from the priors. 
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Figure 5: Prediction density scatter plot of linear and 

logarithmic model predictions at the end of the pre-test. The 

darkness of each dot indicates the probabilities of a response 

y given the presented number x. Black dots indicate the 

highest probabilities and the yellow dots indicate the lowest 

probabilities. 

In order to run the simulations, we first chose the priors 

on the basis of previous experiment data and experts' 

beliefs, so that the priors covered a reasonable range of 

numerical representation models. Several data sets (e.g. 

Opfer & Siegler, 2007, Siegler & Opfer, 2003) were fitted 

and the parameter ranges of the models were obtained. 

Uniform priors over the parameter ranges were then used for 

intercept, slope, and error variance. Figure 4 shows a sample 

of possible models under the priors, in which the linear 

models and logarithmic models are mixed with each other. 

It also suggests the difficulty of depicting intuitive designs 

for distinguishing between the two sets of models. 

The simulation first implemented the pre-test session with 

the above priors. The data-generating model, which was 

assumed to be the child's true model in the simulations, took 

the following logarithmic form: 

)005.0,0(~  ,75.0log21.0 2Neexy iiii   

Within each simulation, we ran 10 trials (number of trials 

fixed for convenience purposes) of the Number-Line Task 

in the pre-test session. Results showed that after 6 trials, we 

had already obtained sufficient evidence to conclude that the 

logarithmic model was over 90% likely to be the data-

generating model. Meanwhile, we also narrowed down the 

range of model parameters as shown in the prediction 

density scatter plot in Figure 5. The darkness of each dot 

indicates the probabilities of a response y given the 

presented number x. Figure 5 shows that the predictions 

from possible linear models are more widely spread than the 

predictions from possible logarithmic models. It suggests 

that the predictions from the logarithmic model posteriors 

are highly concentrated and have higher probabilities, which 

provides strong evidence that the true model takes a 

logarithmic form. 

Feedback and Post-test Simulations 

After the pre-test session, we simulated the adaptive 

tutoring process. The first step was to choose an optimal 

feedback stimulus that maximized the discrepancy between 

the target model and what we knew about the child’s 

existing model. Formally, the utility of the feedback design 

accounted for the prediction probabilities of both models, as 

well as the parameter range of both models. For the specific 

simulated learner, the optimal feedback design was found at 

x = 0.354. That is, the child would be most “surprised” for 

this stimulus when he sees the difference between his 

response and the correct answer. Figure 6 shows the 

location of the optimal feedback and its relationship with 

the child’s model and the target model. 

To simulate the post-test session, we needed to assume a 

learning mechanism that caused the representational shift 

and generated the post-test experiment results. An intuitive 

assumption was a conservative learning mechanism in 

which a child learner made the smallest change to 

accommodate the feedback. Suppose the child could change 

to any models within the range of the priors. Among these 

models, there were a subset of linear models and a subset of 

logarithmic models that were consistent with the learned 
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feedback. A conservative learner would estimate the amount 

of overall discrepancy between these candidate models and 

the current model and choose the one that has the smallest 

discrepancy. That is, the conservative learning mechanism 

assumed the child to be an ideal learner. To demonstrate 

another plausible mechanism, we also assumed a less ideal 

learner, the model-conservative learner. The model-

conservative learning mechanism assumed that the child 

only considered a subset of logarithmic models that were 

consistent with the learned feedback and chose one that 

required the smallest change from the previous model. In 

both mechanisms, the winning model was used as the data-

generating model for the post-test session. Figure 7 shows 

representational shifts of the two hypothesized learners. 

After learning the optimal feedback, the conservative 

learner changes to a linear model iii exy  086.0758.0 , 

and the model-conservative learner changes to another 

logarithmic model iii exy  580.0log218.0 . The two 

models intersect at the point of optimal feedback because 

they both accommodate the feedback. 

 
Figure 6: Optimal feedback for the simulated learner 

indicated by the square at x = 0.354. The prediction density 

scatter plot shows the inference of the child’s representation 

at the end of the pre-test session. The dotted line shows the 

target model ( ii xy  ). 

 
Figure 7: Predicted representational shift to the linear model 

(solid line) and the logarithmic model (dashed curve) caused 

by the two learning mechanisms. Both models intersect with 

the target model at the feedback (the square). 

 

The post-test session simulation started from the same 

priors used for the pre-test session (shown in Figure 4). It 

was because the data-generating model had changed and the 

posterior information from the pre-test session was no 

longer valid. For convenience purpose, we simulated 5 trials 

of Number-Line Task in the post-test session. For the 

conservative learner, there was sufficient evidence to 

conclude that linear model was over 90% likely to be the 

data-generating model after 4 trials. For the model-

conservative learner, it took 5 trials. The range of parameter 

estimates for the data-generating model was also narrowed 

down at the end of the post-test session. Hence, results from 

the post-test simulations showed that the post-test session 

made quick and reliable inferences about the new data-

generating model. 

In general, simulation results of the pre-test, feedback, 

and post-test sessions demonstrated the validity and the 

efficiency of the adaptive numerical experiment. We further 

discuss its practical applications and theoretical implications 

in the next section. 

Discussion 

Previous feedback studies have demonstrated that providing 

children with data that is incommensurate with their current 

numerical representation can promote a representational 

shift.  In the current paper we improved upon this design 

using an adaptive design optimization procedure to perform 

an adaptive-inference, adaptive-tutoring process. This 

process infers the most likely dominant numerical 

representation and provides the optimal feedback to elicit a 

shift to an accurate linear representation.  We simulated this 

process for a logarithmic learner using parameters from 

previous empirical experiments.  Finally we predicted the 

learner's updated numerical representation based on two 

possible learning mechanisms. 

We established the plausibility of the algorithm for the 

problem at hand.  The adaptive design optimization 

procedure was able to infer the data generating function in 

each simulation by optimizing across the design space.  The 

procedure was more efficient than traditional feedback 

studies in inferring the simulated child’s representational 

state in a few trials. This efficiency in turn suggests that a 

shorter pre-test phase is less likely to reinforce the learner's 

initial representation.  Shorter testing and feedback phases 

also provide obvious benefits to both experimentation and 

real world application for testing children; fewer trials 

reduce the overall attentional costs to children and thereby 

reduce the influence of attention-related noise in their 

responses. 

The adaptive tutoring process also proved useful in 

determining optimal feedback.  Feedback points have 

previously been chosen to maximize the discrepancy 

between an ideal logarithmic and linear function (Opfer & 

Siegler, 2007), while our cognitive tutor chooses 

personalized feedback based on the individual learner's most 

likely logarithmic or linear representation. This generates 

very informative results about the ideal feedback points.  
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The magnitudes chosen by the adaptive tutor are 

approximately 30% of the range for a simulated learner 

based on the parameters of children from previous studies. 

They are near to the previously chosen points (15% of the 

range), but are clearly not the same.  These optimal 

feedback points may prove to vary widely in actual children, 

highlighting the need for the adaptive tutoring process to 

control for individual differences in representations. 

The adaptive numeric estimation experiment clearly needs 

to be run on children to determine its external validity, 

which we plan to carry out.  Nevertheless, we were able to 

use the adaptive experiment to accurately infer the 

representational state of a simulated learner.  A byproduct of 

this process was the implementation of two potential 

learning mechanisms to test the end-state representation of 

the simulated learner.   The conservative and model-

conservative learning mechanisms were used to produce 

quantitative predictions. A conservative model that uses 

optimal feedback to adjust parameters and the model form 

with the least amount of change showed a shift to a more 

accurate linear function with parameters near to the ideal 

model. The model-conservative mechanism resulted in a 

preserved logarithmic function with an overall decrease in 

the model parameters.  

If these results can be extended to children, they would 

support a perspective that learner will behave as a modeler 

and update his dominant representation with ideal feedback. 

We might then further test whether the child learner is 

engaging in Bayesian learning; specifically whether the 

different learning mechanisms can be seen as a variation in 

the learner's likelihood ratio.  Conservative learning asserts 

equal likelihood to the representations, while model-

conservative learning gives weight only to the dominant 

representation.  These may be plausible mechanisms of 

cognitive change based on culture and the strength of each 

representation, with emphasis on mathematical education 

directly affecting the learner's likelihood ratio of a linear 

representation. 

Adaptive inference of the probability that a learner is 

linear or logarithmic in representation and an adaptive tutor 

function that maximizes the effect of feedback are necessary 

to understand the learner's representation which might apply 

to many types of representations in diverse areas.  The 

process could easily be extended to similar numerical 

estimation tasks that use a variety of presented numerical 

stimuli to determine perceived magnitude.  It is possible to 

extend this design to other areas in which representational 

shifts are seen, whether to determine children's past tense 

verb use and predict errors in overgeneralization (Marcus, 

1995) or function learning to predict attention to relevant 

cues (Kruschke 1996).  The adaptive design optimization 

procedure is of obvious use as a means of better modeling 

the learner and refining training. 
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