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Abstract 

The current study looks at preschoolers‟ ability to discover 

higher-order patterns spontaneously, without being explicitly 

taught to do so. The higher-order pattern of interest was the 

degree of transitivity among the relations of three arbitrary 

dimensions. Preschoolers and adults were taught two relations 

(i.e., A = B; B = C), and they were asked to guess the third 

relation (i.e., between A and C). In each case, a relation was a 

perfect correlation between two arbitrary relations (e.g., heavy 

= large). The crucial manipulation pertained to how difficult it 

was to learn the two relations. The two relations either 

matched in direction (which was conceived as low learning 

difficulty), or they had opposite directions (which was 

conceived as high learning difficulty). Our prediction was that 

the higher-order pattern of transitivity becomes apparent 

when learning difficulty is high. The argument is that a local 

mismatch makes it difficult for children to focus merely on 

the isolated relations, and thus sets the stage for higher-order 

insights. Results confirm our hypothesis, both for 

preschoolers and adults. Participants were more likely to 

engage in higher-order transitive reasoning in the case of a 

local mismatch between the to-be-learned relations than in the 

case of a local match.  
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Introduction 

It is commonly believed that young children learn best when 

the content is broken down into „digestible‟ pieces of 

information. The implicit expectation is that the pieces of 

information are combined into a whole later on, when the 

child is thought to be cognitively ready. For example, to 

teach children about an overarching principle, say in 

physics, one might introduce children to the constitutive 

parts of the principle first. When ready, the child might then 

put the pieces together and infer the overarching principle.  

Basic-level research casts doubt on this logic, however. In 

particular there is evidence that children have difficulty 

combining pieces of information into larger units (e.g., 

Morris & Sloutsky, 2002; Ruffman, 1999). Therefore, 

teaching them piece-meal information might not lead to the 

desired success. Take for example a context in which 

participants are presented with the three physical 

dimensions size, loudness, and grayness (Smith & Sera, 

1992). The task is to relate each dimension to the next, such 

as to determine whether something small goes with 

something loud or quiet, whether something loud goes with 

something dark or light, and whether something dark goes 

with something big or small. Children at preschool age had 

no difficulty relating the dimensions in a consistent way 

(e.g., if they decided that small goes with light, they also 

related dark with big). However, preschoolers were not 

constrained by the higher-order transitivity among these 

relations. Children believed, for example, that a big object 

was related to a loud sound (A = B), that the loud sound was 

related to the light gray (B = C), and that the light gray was 

related to the small object (C = not A). Figure 1 shows these 

three relations in schematic form. While they are 

normatively possible, they do not respect transitivity.  

 

 

loud
soft  

 
Figure 1. Representation of three features relations 

(combining two dimensions each)  

that lack transitivity among each other. 

 

There is another reason why a piece-meal teaching 

approach might not work. Children not only fail to combine 

pieces of information into a desired higher-order structure, 

they impose an incorrect structure, ignoring pieces of 

information that conflict with it. In other words, children 

might fail altogether to learn a piece of information if it does 

not match with other beliefs they might hold. Consider, for 

example, children‟s beliefs that heavier objects sink faster in 

water than lighter objects. When this belief is somehow 

elicited in a teaching protocol, children will have difficulty 

learning that small objects sink faster than large objects 

(Kloos, 2007). There is nothing particularly difficult about 

the latter volume-speed relation, and children can easily 

learn it if it is the only thing children think about. But as 

soon as mass is varied in a salient way, children impose an 

overarching belief that mass and volume correspond in their 
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effect. They believe that, if heavy objects sink fastest, large 

objects should sink fastest too.  

If learning the individual parts of the whole does not 

necessarily set young children up to spontaneously discover 

an overarching principle, and if young children might even 

fail to learn individual parts, what could help them learn 

higher-order patterns?  

To address this question, we used a transitive-inference 

task similar to the one used in Smith & Sera (1992) 

described. While transitive inference is not a concept 

commonly taught to children, it is seen as a basic reasoning 

process that might underlie all learning of higher-order 

structure (Inhelder & Piaget, 1958). Furthermore, young 

children are not incapable of making a transitive inference 

(e.g., Adams, 1978). When preschoolers were taught the 

length relation between five sticks in a series (e.g., stick A is 

taller than stick B, stick B is taller than stick C, and so on), 

they were able to incorporate a new stick into the series and 

guess its relative size, integrating the sticks into one 

continuous dimension.  

Of course, Adams‟ transitive-inference task on how sticks 

relate to each other in their lengths differs from Smith & 

Sera‟s transitive-inference task on how the alignment of 

poles respects higher-order Gestalt. Most notably, 

transitivity pertains to a logical necessity in the former case, 

but not in the latter case. If Stick A is larger than Stick B, 

and Stick B is larger than stick C, then stick A has to be 

larger than stick C – by logical necessity. Conversely, if big 

goes with loud, and loud goes with dark, it is not logically 

required that dark goes with big. Nevertheless, despite these 

differences in context, findings from Adams (1987) shed 

light on what it is that might help children discover the 

higher-order pattern of transitivity.  

In particular, preschoolers in Adam‟s study were more 

likely to make a transitive inference when the length 

differences between the sticks were small (approximately 1 

cm.). The small difference in length might have allowed 

children to think of the series as a whole, rather than to 

focus on each pair individually if the length differences 

were larger. Based on the findings, we predict that children 

are more likely to attend to a higher-order pattern when a 

narrow focus on an isolated pattern hinders learning of 

isolated parts. In Adams‟ (1978) transitive-inference task, a 

1cm length difference between adjacent sticks made it 

difficult to narrowly focus on isolated sticks (none of them 

stuck out as particularly long or particularly small).  

Similar arguments have been made in mathematical 

reasoning, when 11-year-olds spontaneously discovered a 

mathematical rule after being presented with individual 

instances (Kaminski, Sloutsky, & Heckler, 2009). Learning 

was markedly improved when individual instances were 

maximally abstract, possibly because it made it difficult for 

children to sustain a local focus on the separate instances. In 

the current paper, we apply this idea to transitive inferences. 

In particular, we adapted a version of the Smith and Sera 

(1992) task that involved relations between three physical 

dimensions (size, shading, and depth). Given that 

dimensions are polar (they have a „more‟ pole and a „less‟ 

pole), a relation can be considered positive or negative. For 

example, „big‟ aligning with „dark‟ is a positive relation, 

while „big‟ aligning with „light‟ is a negative relation
1
. 

Transitivity exists when the three relations are congruent 

among each other. For example, in a congruent set, „big‟ is 

aligned with „dark‟ (A = B), „dark‟ is aligned with „deep‟ (B 

= C), and „deep‟ is aligned with „big‟ (C = A). Figure 2 

shows the congruence among these relations graphically.  

 

 
 

Figure 2. Representation of the three  

feature relations that are congruent among each other. 

 

Preschool children were taught two of the relations (e.g., 

how size relates to darkness and how darkness relates to 

depth), and they had to guess the third relation (e.g., how 

size relates to depth). Adults were included for comparison 

purposes.  

We tested the idea that children might attend to a 

higher-order pattern of transitivity in situations in which 

focusing of isolated parts was hampered in the task. The 

crucial manipulation was whether the two to-be-learned 

relations matched in direction or not. Relations that 

matched in direction were either both positive (e.g., „big‟ 

goes with „dark‟, and „dark‟ goes with „deep‟), or they 

were both negative (e.g., „big‟ goes with „light‟, and 

„light‟ goes with „deep‟). And for relations that did not 

match in direction, one was positive and one was negative 

(e.g., „big‟ goes with „dark‟, and „dark‟ goes with 

„shallow‟).  

Our reasoning was that children could easily learn 

relations that match in direction. Children might therefore 

merely focus on learning the isolated relations, without 

regard for the higher-order pattern of transitivity. 

Conversely, children should have more difficulty learning 

the two relations of opposite direction. As a result, they 

might be more likely to spontaneously integrate the two 

into the higher-order patterns of transitivity.  

                                                           
1
 Note that the „more‟ pole is ambiguous for shadings (more 

grey vs. more white), and for depth (deeper vs. wider). On 

an absolute level, it is therefore arbitrary whether a relation 

is considered positive (big = more gray) or negative (big = 

less white). However, the chosen „more‟ pole was always 

labeled as such (i.e., darkest; deepest) resulting in the 

prescribed direction of the relation.  
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Method 

Participants 

A total of 63 children, aged 4 to 5 years (M = 5.0 years, SD 

= 3.6 months) were recruited from daycares and elementary 

schools located around the Cincinnati, OH and Northern 

Kentucky areas. Three children were tested and excluded 

from the experiment because they did not meet the learning 

criterion (see Procedure), and five children did not finish 

due to loss of interest. In addition, we tested 60 

undergraduate students (M = 21.4 years, SD = 5.7 years), 

recruited from the University of Cincinnati, in return for 

class credit.  

 

Materials 

Materials were pictures of four cartoon mice, four clouds, 

and four bowls, presented on a computer screen. Mice 

differed in size (from 1 to 4 cm), clouds differed in 

achromatic color (from the lightest shade of gray to the 

darkest gray), and bowls differed in depths (from shallow to 

deep). Figure 2 shows the four pictures of each element. The 

resulting relations are between mouse size and cloud 

darkness (MC), mouse size and bowl depth (MB), and 

between cloud darkness and bowl depth (CB).  

Relations between features were labeled either positive or 

negative, depending on how the poles of features size, 

darkness, and depth were introduced. For example, for a 

positive mouse-cloud relation (MC+), the bigger mouse was 

paired with the darker cloud; for a negative mouse-cloud 

relation (MC-), the bigger mouse was paired with the lighter 

cloud. 

 

Design 

There were three conditions that differed in the direction of 

the relations presented to participants. Participants were 

taught two relations: two positive relations (e.g., MC+CB+) 

in the Plus-Plus condition, two negative relations (e.g., MC-

CB-) in the Minus-Minus condition, or a negative and a 

positive relation (MC+CB-) in the Plus-Minus condition.  

Table 1 shows, in schematic form, how the relations were 

combined to create the three different conditions. The first 

column contains the two to-be-learned relations participants 

were presented with. The second column shows the relation 

that participants were asked to guess. Finally, the last 

column shows the expected direction of the third relation if 

participants pay attention to transitive congruence. For 

example, if participants learned a positive cloud-bowl 

relation (CB+) and a positive mouse-cloud relation (MC+), 

then the direction of the third relation is expected to be 

positive as well.   

 

Procedure 

The cover story involved an explorer, Toto, who found a 

machine on a far-away planet. The machine was said to 

transform things. In particular, participants were told that 

this machine transformed objects: “If something is put it on 

one end, something completely different comes out on the 

other end.”  

 

Table 1: How the combinations of the relations create 

each condition. 

 

 To-be-Learned 

Relations 

To-be-Inferred 

Relation 

If congruent… 

Plus-Plus (two positive relations) 

 

 

 

 
Minus-Minus (two negative relations) 

 

 

 

 
Plus-Minus (one positive and one negative relation) 

 

 

 

 

 

 
 

The next step was to introduce the objects that could go 

into the transformer. Six pictures of differently-sized mice 

were placed in front of the participant in random order. The 

difference in dimension was pointed out (e.g., „See how 

some mice are big and some are little”), and participants 

were asked to point to the biggest mouse. Help was 

provided as needed. The chosen picture was moved to the 

side, participants had to point to the next biggest mouse, 

which again was moved to the side, and so on. Next, 

participants were presented with six pictures of differently 

colored clouds, and they were asked to order them from 

darkest to lightest. Finally, participants were presented with 

six pictures of bowls and the required ordering was from 

deepest to most shallow. Children and adults had no 

difficulty completing this task, suggesting that they could 

focus on the dimensions in question.  

To prepare participants for the learning task, the 

experimenter provided the following information, 

accompanied by pictures on the computer:  

 
“A mouse will either turn into a cloud or a bowl, a cloud will 

turn into either a mouse or a bowl, and a bowl will turn into 

either a mouse or a cloud. Sometimes the biggest mouse will 

turn into the darkest cloud, and sometimes the biggest mouse 

will turn into the lightest cloud. Sometimes the darkest cloud 

will turn into the deepest bowl, and sometimes the darkest 

cloud will turn into the shallowest bowl. Sometimes the 

deepest bowl will turn into the biggest mouse, and 

sometimes the deepest bowl will turn into the smallest 

mouse. Toto is very confused and doesn‟t know what‟s 

going on. But he made some movies for us showing us what 

the transformer is doing. Can you help him figure it out?” 
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The experiment proper started immediately and had two 

phases: a demonstration phase and a testing phase (see 

Table 2). During demonstrations, participants watched a set 

of movies that conveyed the feature relations. For each 

movie, two transformers were displayed above each other, 

in the middle of the screen. Two objects entered 

simultaneously on one side of each transformer, and another 

two objects came out simultaneously on the other side of the 

transformer. For example, a big mouse and a small mouse 

each entered a transformer, and a dark and a light cloud 

each come out on the other end.  

 

Table 2: The experiment phases in step-by-step form. 

 

Phase 1: Demonstration  

Relation 1 

3 movies 

Pretest: 4 trials 

3 movies 

Pretest: 4 trials  

Relation 2 

3 movies 

Pretest: 4 trials 

3 movies 

Pretest: 4 trials 
 

 

Phase 2: Testing  

Learning Trials 

Relation 1:  4 trials 
 

Relation 2: 4 trials 

 
Inference Trials 

Relation 3: 4 trials 

 
 

To convey a relation, there were two sets of three movies, 

each followed by pre-testing to gauge initial learning. 

Movies pertaining to the same relation differed in the way 

items were combined with each other. The order in which 

movies were presented was randomized across children. 

Pre-testing started with a reminder of the relation presented 

during the set of movies. For example, if the movies showed 

a bigger mouse turning into a darker cloud, the experimenter 

explained: “The biggest mouse will always turn into the 

darkest cloud.” Four pre-testing trials followed, each asking 

what an object turned into. For example, if the movies 

showed a bigger mouse turning into the darker cloud, the 

question was: “What cloud did the bigger mouse turn into?” 

Participants had to perform consistently, either correct or 

incorrect, on at least three of the four trials. They were 

excluded otherwise.  

After participants watched two sets of movies for one 

relation and then two sets of movies for the second relation, 

the testing phase started, with the following instructions:  

 
“I think you know everything there is to know about the 

transformer. But just to make sure, Toto wants to ask you a 

few more questions.”  

 

Then four trials per relation were presented. The learning 

trials, for the first and second relations, were identical to 

the pre-testing trials presented earlier. The inference trials 

came last, following the same format as the other trials. 

Participants were asked to make a guess about the third 

relation that was not presented. For example, if the 

mouse-bowl relation was never shown, the experimenter 

would ask “what will the big mouse turn into?” 

The demonstration phase lasted about 10 minutes, with 

the introduction and testing phases each lasting another 2-

3 minutes. Overall, the experiment lasted around 15 

minutes. 

 

Results 

In a preliminary analysis, we looked at children‟s learning 

of the two relations presented to them. For each participant, 

we calculated an average proportion-correct score across the 

eight learning trials. A 3 by 2 between-subjects ANOVA 

was conducted, with condition (Plus-Plus, Minus-Minus, 

Plus-Minus) and age (preschoolers, adults) as the factors. It 

revealed a significant effect of age, F(1,117) = 31.27, p < 

.01, in that adults performed better on learning trials (M = 

.96) than preschoolers (M = .77). There was also a 

difference in condition, F(2,117) = 5.49, p < .01, suggesting 

that participants had some difficulty learning the relations 

presented to them. However, there was no interaction with 

age and condition, F < 1.85, p > 0.16. Figure 3 shows the 

degree of learning (represented as mean % correct), as a 

function of age group and condition.  

 

 
Figure 3. Mean performance correct on learning trials (to 

test the degree of learning), as a function of age and 

condition. Standard errors are shown as error bars. 

 

To determine if participants were congruent in their 

inferences about the third relation, we considered only those 

participants who performed consistently on each set of four 

learning trials per relation. „Consistent‟ here means either 

correct performance on at least three learning trials of a 
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relation, or incorrect performance on at least three learning 

trials of a relation. Eighteen children (29%) and 4 adults 

(7%) did not meet this criterion and were not included in the 

transitivity analysis. Of the included participants, 13 of the 

children and 3 of the adults performed consistently incorrect 

on one set of learning trials, and nobody performed 

consistently incorrect on both sets of learning trials.  

If children make congruent inferences, then the inferred 

relation should be negative if one of the learned relations is 

positive and the other is negative. The inferred relation 

should be positive if the learned relations are either both 

negative or both positive. To what degree did participants‟ 

inferences follow this pattern across the four inference 

trials? Figure 4 shows participants‟ transitivity performance 

as a function of age and condition. A score of 1 means that 

performance was congruent on all four inference trials, 

while a score of 0 means that performance was incongruent 

on all four inference trials. As can be seen in the figure, both 

children and adults were more likely to give congruent 

answers in the Plus-Plus and Plus-Minus condition than the 

Minus-Minus condition.  

 

Figure 4. Mean proportion transitive inferences, as a 

function of age and condition. Standard errors are shown as 

error bars. 

 

The transitivity scores were submitted to a 3 by 2 

between-subjects ANOVA, with conditions (Plus-Plus, 

Minus-Minus, Plus-Minus) and age (preschoolers, adults) as 

factors. There was a significant effect of age, F(1,95) = 

30.11, p < .01, with adults having higher transitivity scores 

(M = .95 ) than children (M = .69). More importantly, there 

was a significant effect of conditions, F(2,95) = 3.59, p = 

.03. There was no significant interaction, F < .05, p > .95, 

meaning that this pattern stayed the same for both children 

and adults. For both children and adults, guesses were 

transitive in the Plus-Minus and Plus-Plus conditions, but 

less so in the Minus-Minus condition. Learning score was 

uncorrelated with transitivity score. 

 

Summary & Discussion 

Our prediction was that children would be more likely to 

attend to the higher-order pattern of transitivity when the 

learning of the local elements (the single relations that make 

up the whole) did not afford a narrow focus. Learning two 

positive relations did not interfere with a local focus: 

children could pay attention to only one of the two relations 

and still be able to learn the second one (because the 

direction matched). The same was true for learning two 

negative relations: focusing locally on one negative relation 

did not hinder (and might have even helped) the learning of 

the second negative relations. But when children were asked 

to learn a positive and a negative relation, a local focus on a 

single relation hindered learning.  

Results support our prediction – with a twist. Inferences 

of children in the Minus-Minus condition were less 

transitive than of children in the Plus-Minus condition. And 

the lower transitivity performance was not related to the 

participants‟ learning scores (i.e., the degree of transitivity 

of the guessed relation cannot be explained by the degree of 

learning of the two presented relations). This finding is 

consistent with our hypothesis: when children had to learn 

non-matching relations that hindered an overly local focus, 

the overarching pattern of transitivity was likely to emerge. 

Importantly, the patterns of transitivity appeared 

spontaneously for an age group that is commonly known for 

having difficulties with transitive inferences.  

Adults were more likely to make a transitive inference 

than children. However, they were also affected by the 

learning manipulation. Transitivity was lower in the Minus-

Minus condition than the Plus-Minus condition. As was 

found with preschool children, when single relations were 

difficult to learn with a narrow focus on each separate 

relation, adults spontaneously applied the higher-order 

transitivity to the relations.  

A surprising finding pertained to performance in the Plus-

Plus condition. We predicted transitivity to be low in this 

condition, because the two to-be-learned relations matched 

in direction, and thus afforded a local focus. Nevertheless, 

children and adults made higher-order transitive inferences 

when asked to guess the direction of the third relation. What 

could explain this performance?  

A closer look at the specifics of the Plus-Plus condition 

might shed light on participants‟ inferences. Recall that two 

positive relations are congruent with another positive 

relation. If „big‟ goes with „dark‟ (positive), and „dark‟ goes 

with „deep‟ (positive), then „deep‟ should go with „big‟ 

(positive). But guessing a positive relation might be a 

default (cf., Inhelder & Piaget, 1958). Therefore, 

participants might have guessed a positive relation in this 

case with little regard to transitivity among all three 

relations.  

If this is the case, participants‟ bias toward a congruent 

set of relations in the Plus-Minus condition is even more 

impressive evidence of transitive inference. In the case of a 

positive and a negative relation, the congruent third relation 

is negative (e.g., if „big‟ goes with „dark‟, and „dark‟ goes 

with „shallow‟, then „deep‟ should go with „little‟). Thus, to 

make a congruent guess, participants (including preschool 

children) had to go against a default of guessing a positive 

relation and guessed a negative relation. Note that this 
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interpretation of the results needs to be qualified until we 

gain a better understanding of how children match the poles 

a priori. 

Taken together, the results suggest that higher-order 

transitivity is an emergent property, employed as a means of 

reducing learning complexity. With higher complexity of 

individual elements, a local focus was compromised, 

helping children to note the larger whole. In future studies, 

it may be useful to follow up with different conditions, such 

as other cover stories or other objects. It remains to be seen 

if these claims hold across different domains. 
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