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Abstract

The current study looks at preschoolers’ ability to discover
higher-order patterns spontaneously, without being explicitly
taught to do so. The higher-order pattern of interest was the
degree of transitivity among the relations of three arbitrary
dimensions. Preschoolers and adults were taught two relations
(i.e., A =B; B =C), and they were asked to guess the third
relation (i.e., between A and C). In each case, a relation was a
perfect correlation between two arbitrary relations (e.g., heavy
= large). The crucial manipulation pertained to how difficult it
was to learn the two relations. The two relations either
matched in direction (which was conceived as low learning
difficulty), or they had opposite directions (which was
conceived as high learning difficulty). Our prediction was that
the higher-order pattern of transitivity becomes apparent
when learning difficulty is high. The argument is that a local
mismatch makes it difficult for children to focus merely on
the isolated relations, and thus sets the stage for higher-order
insights.  Results confirm our hypothesis, both for
preschoolers and adults. Participants were more likely to
engage in higher-order transitive reasoning in the case of a
local mismatch between the to-be-learned relations than in the
case of a local match.
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Introduction

It is commonly believed that young children learn best when
the content is broken down into ‘digestible’ pieces of
information. The implicit expectation is that the pieces of
information are combined into a whole later on, when the
child is thought to be cognitively ready. For example, to
teach children about an overarching principle, say in
physics, one might introduce children to the constitutive
parts of the principle first. When ready, the child might then
put the pieces together and infer the overarching principle.
Basic-level research casts doubt on this logic, however. In
particular there is evidence that children have difficulty
combining pieces of information into larger units (e.g.,
Morris & Sloutsky, 2002; Ruffman, 1999). Therefore,
teaching them piece-meal information might not lead to the
desired success. Take for example a context in which
participants are presented with the three physical
dimensions size, loudness, and grayness (Smith & Sera,
1992). The task is to relate each dimension to the next, such

as to determine whether something small goes with
something loud or quiet, whether something loud goes with
something dark or light, and whether something dark goes
with something big or small. Children at preschool age had
no difficulty relating the dimensions in a consistent way
(e.g., if they decided that small goes with light, they also
related dark with big). However, preschoolers were not
constrained by the higher-order transitivity among these
relations. Children believed, for example, that a big object
was related to a loud sound (A = B), that the loud sound was
related to the light gray (B = C), and that the light gray was
related to the small object (C = not A). Figure 1 shows these
three relations in schematic form. While they are
normatively possible, they do not respect transitivity.

(B _loud
- ) = soft

Figure 1. Representation of three features relations
(combining two dimensions each)
that lack transitivity among each other.

There is another reason why a piece-meal teaching
approach might not work. Children not only fail to combine
pieces of information into a desired higher-order structure,
they impose an incorrect structure, ignoring pieces of
information that conflict with it. In other words, children
might fail altogether to learn a piece of information if it does
not match with other beliefs they might hold. Consider, for
example, children’s beliefs that heavier objects sink faster in
water than lighter objects. When this belief is somehow
elicited in a teaching protocol, children will have difficulty
learning that small objects sink faster than large objects
(Kloos, 2007). There is nothing particularly difficult about
the latter volume-speed relation, and children can easily
learn it if it is the only thing children think about. But as
soon as mass is varied in a salient way, children impose an
overarching belief that mass and volume correspond in their
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effect. They believe that, if heavy objects sink fastest, large
objects should sink fastest too.

If learning the individual parts of the whole does not
necessarily set young children up to spontaneously discover
an overarching principle, and if young children might even
fail to learn individual parts, what could help them learn
higher-order patterns?

To address this question, we used a transitive-inference
task similar to the one used in Smith & Sera (1992)
described. While transitive inference is not a concept
commonly taught to children, it is seen as a basic reasoning
process that might underlie all learning of higher-order
structure (Inhelder & Piaget, 1958). Furthermore, young
children are not incapable of making a transitive inference
(e.g., Adams, 1978). When preschoolers were taught the
length relation between five sticks in a series (e.g., stick A is
taller than stick B, stick B is taller than stick C, and so on),
they were able to incorporate a new stick into the series and
guess its relative size, integrating the sticks into one
continuous dimension.

Of course, Adams’ transitive-inference task on how sticks
relate to each other in their lengths differs from Smith &
Sera’s transitive-inference task on how the alignment of
poles respects higher-order Gestalt. Most notably,
transitivity pertains to a logical necessity in the former case,
but not in the latter case. If Stick A is larger than Stick B,
and Stick B is larger than stick C, then stick A has to be
larger than stick C — by logical necessity. Conversely, if big
goes with loud, and loud goes with dark, it is not logically
required that dark goes with big. Nevertheless, despite these
differences in context, findings from Adams (1987) shed
light on what it is that might help children discover the
higher-order pattern of transitivity.

In particular, preschoolers in Adam’s study were more
likely to make a transitive inference when the length
differences between the sticks were small (approximately 1
cm.). The small difference in length might have allowed
children to think of the series as a whole, rather than to
focus on each pair individually if the length differences
were larger. Based on the findings, we predict that children
are more likely to attend to a higher-order pattern when a
narrow focus on an isolated pattern hinders learning of
isolated parts. In Adams” (1978) transitive-inference task, a
lcm length difference between adjacent sticks made it
difficult to narrowly focus on isolated sticks (none of them
stuck out as particularly long or particularly small).

Similar arguments have been made in mathematical
reasoning, when 11-year-olds spontaneously discovered a
mathematical rule after being presented with individual
instances (Kaminski, Sloutsky, & Heckler, 2009). Learning
was markedly improved when individual instances were
maximally abstract, possibly because it made it difficult for
children to sustain a local focus on the separate instances. In
the current paper, we apply this idea to transitive inferences.

In particular, we adapted a version of the Smith and Sera
(1992) task that involved relations between three physical
dimensions (size, shading, and depth). Given that

dimensions are polar (they have a ‘more’ pole and a ‘less’
pole), a relation can be considered positive or negative. For
example, ‘big’ aligning with ‘dark’ is a positive relation,
while ‘big’ aligning with ‘light’ is a negative relation®.
Transitivity exists when the three relations are congruent
among each other. For example, in a congruent set, ‘big’ is
aligned with ‘dark’ (A = B), ‘dark’ is aligned with ‘deep’ (B
= (), and ‘deep’ is aligned with ‘big’ (C = A). Figure 2
shows the congruence among these relations graphically.

Figure 2. Representation of the three
feature relations that are congruent among each other.

Preschool children were taught two of the relations (e.g.,
how size relates to darkness and how darkness relates to
depth), and they had to guess the third relation (e.g., how
size relates to depth). Adults were included for comparison
purposes.

We tested the idea that children might attend to a
higher-order pattern of transitivity in situations in which
focusing of isolated parts was hampered in the task. The
crucial manipulation was whether the two to-be-learned
relations matched in direction or not. Relations that
matched in direction were either both positive (e.g., ‘big’
goes with ‘dark’, and ‘dark’ goes with ‘deep’), or they
were both negative (e.g., ‘big’ goes with ‘light’, and
‘light” goes with ‘deep’). And for relations that did not
match in direction, one was positive and one was negative
(e.g., ‘big’ goes with ‘dark’, and ‘dark’ goes with
‘shallow’).

Our reasoning was that children could easily learn
relations that match in direction. Children might therefore
merely focus on learning the isolated relations, without
regard for the higher-order pattern of transitivity.
Conversely, children should have more difficulty learning
the two relations of opposite direction. As a result, they
might be more likely to spontaneously integrate the two
into the higher-order patterns of transitivity.

! Note that the ‘more’ pole is ambiguous for shadings (more
grey vs. more white), and for depth (deeper vs. wider). On
an absolute level, it is therefore arbitrary whether a relation
is considered positive (big = more gray) or negative (big =
less white). However, the chosen ‘more’ pole was always
labeled as such (i.e., darkest; deepest) resulting in the
prescribed direction of the relation.
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Method

Participants

A total of 63 children, aged 4 to 5 years (M = 5.0 years, SD
= 3.6 months) were recruited from daycares and elementary
schools located around the Cincinnati, OH and Northern
Kentucky areas. Three children were tested and excluded
from the experiment because they did not meet the learning
criterion (see Procedure), and five children did not finish
due to loss of interest. In addition, we tested 60
undergraduate students (M = 21.4 years, SD = 5.7 years),
recruited from the University of Cincinnati, in return for
class credit.

Materials

Materials were pictures of four cartoon mice, four clouds,
and four bowls, presented on a computer screen. Mice
differed in size (from 1 to 4 cm), clouds differed in
achromatic color (from the lightest shade of gray to the
darkest gray), and bowls differed in depths (from shallow to
deep). Figure 2 shows the four pictures of each element. The
resulting relations are between mouse size and cloud
darkness (MC), mouse size and bowl depth (MB), and
between cloud darkness and bowl depth (CB).

Relations between features were labeled either positive or
negative, depending on how the poles of features size,
darkness, and depth were introduced. For example, for a
positive mouse-cloud relation (MC+), the bigger mouse was
paired with the darker cloud; for a negative mouse-cloud
relation (MC-), the bigger mouse was paired with the lighter
cloud.

Design

There were three conditions that differed in the direction of
the relations presented to participants. Participants were
taught two relations: two positive relations (e.g., MC+CB+)
in the Plus-Plus condition, two negative relations (e.g., MC-
CB-) in the Minus-Minus condition, or a negative and a
positive relation (MC+CB-) in the Plus-Minus condition.

Table 1 shows, in schematic form, how the relations were
combined to create the three different conditions. The first
column contains the two to-be-learned relations participants
were presented with. The second column shows the relation
that participants were asked to guess. Finally, the last
column shows the expected direction of the third relation if
participants pay attention to transitive congruence. For
example, if participants learned a positive cloud-bowl
relation (CB+) and a positive mouse-cloud relation (MC+),
then the direction of the third relation is expected to be
positive as well.

Procedure

The cover story involved an explorer, Toto, who found a
machine on a far-away planet. The machine was said to
transform things. In particular, participants were told that
this machine transformed objects: “If something is put it on

one end, something completely different comes out on the
other end.”

Table 1: How the combinations of the relations create
each condition.
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The next step was to introduce the objects that could go
into the transformer. Six pictures of differently-sized mice
were placed in front of the participant in random order. The
difference in dimension was pointed out (e.g., ‘See how
some mice are big and some are little”), and participants
were asked to point to the biggest mouse. Help was
provided as needed. The chosen picture was moved to the
side, participants had to point to the next biggest mouse,
which again was moved to the side, and so on. Next,
participants were presented with six pictures of differently
colored clouds, and they were asked to order them from
darkest to lightest. Finally, participants were presented with
six pictures of bowls and the required ordering was from
deepest to most shallow. Children and adults had no
difficulty completing this task, suggesting that they could
focus on the dimensions in question.

To prepare participants for the learning task, the
experimenter  provided the following information,
accompanied by pictures on the computer:

“A mouse will either turn into a cloud or a bowl, a cloud will
turn into either a mouse or a bowl, and a bowl will turn into
either a mouse or a cloud. Sometimes the biggest mouse will
turn into the darkest cloud, and sometimes the biggest mouse
will turn into the lightest cloud. Sometimes the darkest cloud
will turn into the deepest bowl, and sometimes the darkest
cloud will turn into the shallowest bowl. Sometimes the
deepest bowl will turn into the biggest mouse, and
sometimes the deepest bowl will turn into the smallest
mouse. Toto is very confused and doesn’t know what’s
going on. But he made some movies for us showing us what
the transformer is doing. Can you help him figure it out?”
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The experiment proper started immediately and had two
phases: a demonstration phase and a testing phase (see
Table 2). During demonstrations, participants watched a set
of movies that conveyed the feature relations. For each
movie, two transformers were displayed above each other,
in the middle of the screen. Two objects entered
simultaneously on one side of each transformer, and another
two objects came out simultaneously on the other side of the
transformer. For example, a big mouse and a small mouse
each entered a transformer, and a dark and a light cloud
each come out on the other end.

Table 2: The experiment phases in step-by-step form.

Phase 1: Demonstration
Relation 1

3 movies - o
Pretest: 4 trials (= ¢ 2

3 movies

—
Pretest: 4 trials .
Relation 2

3 movies
Pretest: 4 trials e — U

3 movies oy ——

Pretest: 4 trials
Phase 2: Testing

Learning Trials

Relation 1: 4 trials (3 2 g

Relation 2: 4 trials s U
Inference Trials

Relation 3: 4 trials a2

(E

U

To convey a relation, there were two sets of three movies,
each followed by pre-testing to gauge initial learning.
Movies pertaining to the same relation differed in the way
items were combined with each other. The order in which
movies were presented was randomized across children.
Pre-testing started with a reminder of the relation presented
during the set of movies. For example, if the movies showed
a bigger mouse turning into a darker cloud, the experimenter
explained: “The biggest mouse will always turn into the
darkest cloud.” Four pre-testing trials followed, each asking
what an object turned into. For example, if the movies
showed a bigger mouse turning into the darker cloud, the
question was: “What cloud did the bigger mouse turn into?”
Participants had to perform consistently, either correct or
incorrect, on at least three of the four trials. They were
excluded otherwise.

After participants watched two sets of movies for one
relation and then two sets of movies for the second relation,
the testing phase started, with the following instructions:

“I think you know everything there is to know about the
transformer. But just to make sure, Toto wants to ask you a
few more questions.”

Then four trials per relation were presented. The learning
trials, for the first and second relations, were identical to
the pre-testing trials presented earlier. The inference trials
came last, following the same format as the other trials.
Participants were asked to make a guess about the third
relation that was not presented. For example, if the
mouse-bowl relation was never shown, the experimenter
would ask “what will the big mouse turn into?”

The demonstration phase lasted about 10 minutes, with
the introduction and testing phases each lasting another 2-
3 minutes. Overall, the experiment lasted around 15
minutes.

Results

In a preliminary analysis, we looked at children’s learning
of the two relations presented to them. For each participant,
we calculated an average proportion-correct score across the
eight learning trials. A 3 by 2 between-subjects ANOVA
was conducted, with condition (Plus-Plus, Minus-Minus,
Plus-Minus) and age (preschoolers, adults) as the factors. It
revealed a significant effect of age, F(1,117) = 31.27, p <
.01, in that adults performed better on learning trials (M =
.96) than preschoolers (M = .77). There was also a
difference in condition, F(2,117) = 5.49, p < .01, suggesting
that participants had some difficulty learning the relations
presented to them. However, there was no interaction with
age and condition, F < 1.85, p > 0.16. Figure 3 shows the
degree of learning (represented as mean % correct), as a
function of age group and condition.

Condition

@ Plus-Minus
® Minus-Minus
OPlus-Plus

% Correct
(]
¥

Children Adults
Figure 3. Mean performance correct on learning trials (to

test the degree of learning), as a function of age and
condition. Standard errors are shown as error bars.

To determine if participants were congruent in their
inferences about the third relation, we considered only those
participants who performed consistently on each set of four
learning trials per relation. ‘Consistent’ here means either
correct performance on at least three learning trials of a
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relation, or incorrect performance on at least three learning
trials of a relation. Eighteen children (29%) and 4 adults
(7%) did not meet this criterion and were not included in the
transitivity analysis. Of the included participants, 13 of the
children and 3 of the adults performed consistently incorrect
on one set of learning trials, and nobody performed
consistently incorrect on both sets of learning trials.

If children make congruent inferences, then the inferred
relation should be negative if one of the learned relations is
positive and the other is negative. The inferred relation
should be positive if the learned relations are either both
negative or both positive. To what degree did participants’
inferences follow this pattern across the four inference
trials? Figure 4 shows participants’ transitivity performance
as a function of age and condition. A score of 1 means that
performance was congruent on all four inference trials,
while a score of 0 means that performance was incongruent
on all four inference trials. As can be seen in the figure, both
children and adults were more likely to give congruent
answers in the Plus-Plus and Plus-Minus condition than the
Minus-Minus condition.

1
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-]
S

0.25

Children Adnlts

Figure 4. Mean proportion transitive inferences, as a
function of age and condition. Standard errors are shown as
error bars.

The transitivity scores were submitted to a 3 by 2
between-subjects ANOVA, with conditions (Plus-Plus,
Minus-Minus, Plus-Minus) and age (preschoolers, adults) as
factors. There was a significant effect of age, F(1,95) =
30.11, p < .01, with adults having higher transitivity scores
(M =.95) than children (M = .69). More importantly, there
was a significant effect of conditions, F(2,95) = 3.59, p =
.03. There was no significant interaction, F < .05, p > .95,
meaning that this pattern stayed the same for both children
and adults. For both children and adults, guesses were
transitive in the Plus-Minus and Plus-Plus conditions, but
less so in the Minus-Minus condition. Learning score was
uncorrelated with transitivity score.

Summary & Discussion

Our prediction was that children would be more likely to
attend to the higher-order pattern of transitivity when the
learning of the local elements (the single relations that make

up the whole) did not afford a narrow focus. Learning two
positive relations did not interfere with a local focus:
children could pay attention to only one of the two relations
and still be able to learn the second one (because the
direction matched). The same was true for learning two
negative relations: focusing locally on one negative relation
did not hinder (and might have even helped) the learning of
the second negative relations. But when children were asked
to learn a positive and a negative relation, a local focus on a
single relation hindered learning.

Results support our prediction — with a twist. Inferences
of children in the Minus-Minus condition were less
transitive than of children in the Plus-Minus condition. And
the lower transitivity performance was not related to the
participants’ learning scores (i.e., the degree of transitivity
of the guessed relation cannot be explained by the degree of
learning of the two presented relations). This finding is
consistent with our hypothesis: when children had to learn
non-matching relations that hindered an overly local focus,
the overarching pattern of transitivity was likely to emerge.
Importantly, the patterns of transitivity appeared
spontaneously for an age group that is commonly known for
having difficulties with transitive inferences.

Adults were more likely to make a transitive inference
than children. However, they were also affected by the
learning manipulation. Transitivity was lower in the Minus-
Minus condition than the Plus-Minus condition. As was
found with preschool children, when single relations were
difficult to learn with a narrow focus on each separate
relation, adults spontaneously applied the higher-order
transitivity to the relations.

A surprising finding pertained to performance in the Plus-
Plus condition. We predicted transitivity to be low in this
condition, because the two to-be-learned relations matched
in direction, and thus afforded a local focus. Nevertheless,
children and adults made higher-order transitive inferences
when asked to guess the direction of the third relation. What
could explain this performance?

A closer look at the specifics of the Plus-Plus condition
might shed light on participants’ inferences. Recall that two
positive relations are congruent with another positive
relation. If ‘big’ goes with ‘dark’ (positive), and ‘dark’ goes
with ‘deep’ (positive), then ‘deep’ should go with ‘big’
(positive). But guessing a positive relation might be a
default (cf., Inhelder & Piaget, 1958). Therefore,
participants might have guessed a positive relation in this
case with little regard to transitivity among all three
relations.

If this is the case, participants’ bias toward a congruent
set of relations in the Plus-Minus condition is even more
impressive evidence of transitive inference. In the case of a
positive and a negative relation, the congruent third relation
is negative (e.g., if ‘big’ goes with ‘dark’, and ‘dark’ goes
with ‘shallow’, then ‘deep’ should go with ‘little’). Thus, to
make a congruent guess, participants (including preschool
children) had to go against a default of guessing a positive
relation and guessed a negative relation. Note that this

2270



interpretation of the results needs to be qualified until we
gain a better understanding of how children match the poles
a priori.

Taken together, the results suggest that higher-order
transitivity is an emergent property, employed as a means of
reducing learning complexity. With higher complexity of
individual elements, a local focus was compromised,
helping children to note the larger whole. In future studies,
it may be useful to follow up with different conditions, such
as other cover stories or other objects. It remains to be seen
if these claims hold across different domains.
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