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Abstract

This paper is an attempt to investigate whether a computer is
capable of finding similar information in structurally different
texts, as people do it, without relying on lexical matching and
without guessing the meaning of sentences based on word co-
occurrence. Considered texts describe the same event, but
each text may focus on different parts of the event. The
considered texts are not paraphrases, but rather human-
produced descriptions of a simple picture. The goal is not to
find similar words in texts, which can be easily done, but to
meaningfully connect the overlapping concepts and
relationships used in the text descriptions. The meaning-
based approach does not use any statistical/machine-learning
techniques. The performance of a machine in finding
similarity is compared to human performance not just in
numbers but in the found information. The results show that
the machine matches four out of the five human findings.

Keywords: text duplication and similarity, information
overlap detection, meaning processing, ontological semantics.

Overview

This paper examines the use of the Ontological Semantic
Technology (OST)—a modified version (Raskin et al 2010)
of Ontological Semantics (Nirenburg & Raskin 2004)—for
processing similar texts and compares it to human
processing. Instead of selecting existing texts and assessing
their similarity, users were given the same picture to
describe. Clearly, the users will emphasize different objects
or events on the picture, but at the same time, because they
are all looking at the same picture, some of the provided
information will overlap. The experiment is done to
demonstrate the ability of the technology to understand the
meaning of text, regardless of individual words that are used
and of the length of the sentences.

The OST claim to fame is that it “understands” the
meaning of text. The meaning of text includes paraphrases
of sentences or paragraphs. A large number of paraphrases
can be produced from a single sentence, an even larger
number can be produced from a paragraph. Because of this
large number of potential paraphrases, and because it is
unclear which ones are good enough, instead of asking
people to paraphrase a text, we ask them to describe a
picture.

The untested assumption is that looking at the picture
should activate the same schema(ta) as reading a paragraph.
Thus, the main information received should be
approximately the same whether looking at the picture or
reading text. Instead of reconmstructing original sentences
after reading or listening to a text, the subjects were asked to
describe what they see on the picture in their own words.
The tasks of paraphrase and describing a picture are by no

means identical, even for short sentences when compared to
very simple pictures. Several things should be noticed: 1.
Length of the sentences in paraphrases has probably some
correlation to the length of the original sentences. 2. The
choice of words for the description task is not limited by the
original sentence, whereas it is possible that, in the
paraphrase, the subjects would try to come up with
unnatural synonyms in their desire to paraphrase. 3. The
order of sentences is free in the picture description, while it
is possible that the sentences would be ordered according to
the original text in the paraphrase.

While paraphrase detections have received some attention
from the machine-learning community (Fernando &
Stevenson 2008, Clough et al 2002, Qiu et al 2006, Zhang &
Patrick 2005), to the best of our knowledge same picture
descriptions have not been addressed. This is surprising
because most real life event descriptions are more similar to
picture descriptions than to paraphrasing tasks.

The task of paraphrase limits information that is available
to the subjects to that in the task, while describing the
picture provides more freedom of focus. For example, the
sentence a black ball is on top of a green cube, can only be
paraphrased in term of the provided information. Possible
paraphrases are: a green cube is under a black ball; a black
sphere-shaped object is above a green cube; a ball is
positioned on top of a cube, the ball is black and the cube is
green. Notice that there may be a considerable variation
among paraphrases in terms on the words used, the order in
which they are described, and the number of clauses used in
the description. What they all have in common, however, is
the properties and attributes that connect the described
objects: all describe shape either explicitly as in sphere-
shaped object, or by accessing the knowledge of a shape of
a lexical item as in ball or cube; and all describe color.
However, if picture is shown (Figure 1), other things may
come into focus for different people, such as relative size of
the objects.

Figure 1: A black ball on top of green cube

It would be interesting to see if such unmentioned-in-the
text characteristics would ever be brought up by the subjects
in the paraphrase generation as unknown. It is, however, not
the purpose of this experiment. The only significant
assumption for this paper is that the greater variation of text
should be encountered in the picture experiment, which in
turn tests the machine’s capability of catching the overlap to
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a much greater extent. On the other hand, it would be
interesting to see if a coherent description of a situation
could be constructed from a union of all descriptions, as it is
likely that these descriptions, to some extent, complement
each other.

It is this overlap information in descriptions reported by
subjects, as well as the difference or the union, that is
captured and analyzed by the machine, as compared to the
overlap and difference in information in responses as
perceived by human is the subject of the paper. The
theoretical knowledge obtained in this kind of research is
applicable to an increasingly urgent task of easing the
information overload by removing duplicate and
overlapping information'.

Ontological Semantics Technology

OST is an upgraded, much improved and implemented (and,
on occasion, perverted) version of (Nirenburg & Raskin
2004) that detects the meaning of text. Ontological
Semantics is a theory, methodology and technology for
representing natural language meaning, for automatic
transposition of text into the formatted text-meaning
representation (TMR), and for further manipulation of
TMRs for inferencing and more advanced reasoning, both
theoretically and in a growing variety of applications. The
main knowledge resources in OST are the language-
independent ontology and language-specific lexicons.

The OST is not a toy system that works on a handful of
examples; instead, it works with unrestricted texts in real-
life applications, as well as avoiding the scalability
problems (see Raskin et al 2010).

Ontology

The ontology contains information about the world; it is a
constructed, engineered model of reality, a theory of the
world (Gruber 1993, 1995; Nirenburg & Raskin 2004:138-
139). It is a structured system of concepts covering the
processes, objects, and properties in all of their pertinent
complex relations, to the grain size determined by an
application or by considerations of computational
complexity. The ontology contains PROPERTIES, EVENTS,
and OBJECTS. The concepts are named purely for the
convenience of a human: the label itself does not contribute
to the information content. Every OBJECT and EVENT is
defined with a number of properties, thus allowing the
concept to differ not only in label, but also in machine-
understandable information. The child concepts inherit
properties from the parent concepts.

Formally, the OST ontology is a lattice of conceptual
nodes (for a construction of ontology and verification see
Hempelmann et al. 2010 and Taylor et al 2010 respectably),
each of which is represented as:

concept-name

' The author believes that whether an overlap indicates an
importance of information in text is a separate (to her, dubious)
hypothesis, which will not be addressed in this paper.

(property (facet(property-filler"))")"
property-filler
concept-name | literal value

property
attribute | relation
facet
SEM | VALUE | DEFAULT | RELAXABLE-TO’

The current implementation of OST uses the following
three axioms:

= subClassOf for concepts: I1S-A (example: PHYSICAL-
OBJECT IS-A OBJECT)

= subPropertyOf for properties: 1S-A (example: COLOR IS-
A PHYSICAL-OBJECT-ATTRIBUTE)

= inverse for properties: INVERSE (example: THEME
INVERSE THEME-OF)

Concept interpretation (without facets, for the ease of
reading) can be looked at using the following: given a set of
objects D, where D is the disjoint union of Dc (concepts)
and Dd (literals), and given its interpretation function I, for
every atomic concept B, I[B]CDc; for every literal V,
JIVICEDd ; for every relation R, JJR]SDc x Dec; for every
attribute A; JJA]JCDc x Dd. Moreover, the following is true
for concepts C and D:

I[ALL]= D

I[e]=0

I[CD]=J[C] UI[D]

I[and C D]=I[C] N I[D]

I[(Rel(D))]= {xE€Dc|y € I[D], <x, y>EI [Rel]}
I [(Rel(and C D))] = I [Rel(C)] M I[Rel(D)]
T[Rel(C D)] = I [Rel(C)] U I[Rel(D)]
T[C(Rel(D))] = I[C] N I[Rel(D)]

T[(At(V))]= (xEDe|y € T[V], <x, y>EI [Att]}

Clearly, concept C is a descendant of D if JJC]CJ[D]; and
J[(C(R(D))]SI[C]. Whenever relation Rel is defined with a
domain D and range R, if JJC]CJ[D] and J[E]C][R], then
C(Rel(E)) is equivalent to 7 [C] NI [D(Rel(and E R))].

For the examples in this paper, it is sufficient to mention

that when facets are involved, the highest priority facet
takes precedence over the lower priority one.

Lexicon

The lexicon is the starting point for machine interpretation
of language in OST. Since Ontological Semantics is
centered on meaning, we will largely concentrate on the
semantic structure (sem-struc) part of the lexicon entries.

In general, the lexicon can be looked at as a collection of
words (and phrasals), organized such that each word is

% The list shown has been enriched in the current implementation
of OST, but since facets do not contribute much to this paper, the
list is left as it was first introduced.
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listed with all of its senses. Each sense of the word in a
lexicon follows the following structure:

(WS-PosNo

(cat(Pos))

(synonyms “WS-PosNo™))
(anno(def “Str”)(ex “Str”’)(comments “Str’))
(syn-struc((M)(root($var0))(cat(Con))(M))
(sem-struc(Sem))

)

where the following grammar defines what is allowed:

M -> (Srole((root(Var))(cat(Cpos)))
- (Srole((opt(+))(root(Var))(cat(Cpos)))

2> (M(M))
Pos > N | (noun)
2> V| (verb)
> Adj| (adjective)
> Adv | (adverb)
>...
Con > NP | (as defined by rules omitted
> VP | here to save space)
—> Con Con |
- Pos

SRole - subject |
-> directobject |
- pp-adjunct
9

(syntactic roles,
only some are shown
to save space)

No > [19]
Str > [A-Z|a-z|],].]
Var - $varNo
- Str
Sem > C|
2 "Var(R(F(C))) |
- C(R(F(“Var)))

(any digit)
(any string)

(any ontology concept)
(R, F, C from ontology)
(C, R, F from ontology)

When the machine processes text with the help of the
resources, the ontological concepts are accessed through the
(English) lexicon. For example, a lexical entry for the verb
run will contain all the possible senses, of which #6 is
shown below:

(run-v6

(cat(v))

(anno
(comments "...")
(def "meet unexpectedly™)
(ex "I ran into my teacher at the movies last

night."))

(syn-struc
((subject((root($varl))(cat(np))))
(root($var0))(cat(v))

(prep((root(into))(cat(prep))))
(directobject((root($var2))(cat(np)))))

)
(sem-struc
(meet-with
(agent(value(*$varl(should-be-
a(sem(human))))))

(beneficiary(value(*$var2)))
(intentionality(value(<0.3))(relaxable-to(<0.5)))
)
)
)

The entry shows that this sense of 7un means “‘unexpected
meeting event’ (from sem-struc), and it needs a preposition
into (from syn-struc) to be activated. It also shows that in its
normalized form the subject is usually the agent of the
event, and the direct object is the beneficiary. Optional
properties such as time, place, etc are usually not shown in
the lexical items.

OST On Black balls and Green Cubes

OST uses the Semantic Text Analyzer (STAn) to interpret
the meaning of sentences. The (machine generated) output
of STAn is a text meaning representation (TMR) that shows
the conceptual representation of the text, regardless of the
language of the input. Let us go back to the sentence a black
ball is on top of a green cube. The resulting TMR is:

Event: predl
(theme(value (physical-objectl
(shape(value(sphere)))
(color(value(black)))
(above(value(physical-object2
(shape(value(cube)))
(color(value (green)))
)
)

Possible paraphrases from the previous section is: a green
cube is under a black ball:

predl
(theme(value (physical-objectl
(shape(value(cube)))
(color(value(green)))
(below(value(physical-object2
(shape(value(sphere)))
(color(value (black)))
)
)

Another interesting paraphrase is: a ball is positioned on top
of a cube, the ball is black and the cube is green, which will
result in the following:

putl
(theme(value (physical-objectl
(shape(value(sphere)))
(above(value(physical-object2
(shape(value(cube)))
)

)
predl

(theme(value (physical-objectl
(shape(value(sphere)))
(color(value(black)))
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)
pred2

(theme(value (physical-object2
(shape(value(cube)))
(color(value(green)))

D)

Notice that besides the PUT event, corresponding to is
positioned, and the inverse of the BELOW-ABOVE properties,
the rest of the information is identical for any purposes,
including reasoning. The third example is especially
interesting, as the colors are assigned to the indexed objects,
referenced by the previous sentence.

The intersection of the paraphrases, as indicated by the
TMRs once the inverse properties are used, are:

predl
(theme(value (physical-objectl
(shape(value(sphere)))
(color(value(black)))
(above(value(physical-object2
(shape(value(cube)))
(color(value (green)))
)
)

The union of the TMRs adds information only present in
the third example, namely that of PUT, thus, producing

putl
(theme(value (physical-objectl
(shape(value(sphere)))
(color(value(black)))
(above(value(physical-object2
(shape(value(cube)))
(color(value (green)))
)
)

If Figure 1 is described instead of paraphrases, and
sentences like a ball is smaller than a cube happen to be
added to the description, it is easy to see that the intersection
of TMRs will remain the same, while the union will add the
additional size information.

More Complex Pictures

As demonstrated in the previous sections, OST is capable
of understanding the meaning of close paraphrases and
represent it in such a way that the differences and
similarities are shown. The next experiment aimed at
stretching the similarities as far as possible, but asking the
user to describe a picture instead of paraphrasing a text.

The picture shown to the user was selected to depict an
unambiguous object in the foreground, while the
background contains objects that can be described either
very briefly, if at all, or be paid as much attention as
possible. The hypotheses are:

= The description of the central element of the picture
is affected by individual/personal schemata, and

therefore will partially differ from person to person.
However, there should be an overlap in descriptions,
focused on that central object, just as the paraphrases
showed.

= The description of the background will differ from
person to person to a much greater degree. A very
small overlap is expected from pairs of participants
since the background is not in focus (metaphorically).

= The activated schemata are not expected to be known
to a computer, thus the computer will process only
information explicitly stated by the subjects.

This is not at all an attempt to deal with the well-researched
figure-ground phenomenon (see Talmy 2000, vol, 1: 311-
344). Instead, we are only interested in the foreground
display, but the background may provide individual
distinctions.

Methodology

Once a picture was chosen, 3 subjects, unfamiliar with an
experiment’s goals and from unrelated occupations, were
asked to describe the picture. The picture was visible to the
subject all the time, thus the description is not effected by
the accuracy of their recollection of the picture. The
instructions requested to describe only what is seen on the
picture, without alluding to any inferences or encyclopedic
knowledge that the picture may activate. The subjects were
not given any specific time frame to complete the task.

The described text was then entered into a machine for
processing, and the union and intersection of information in
individual texts were computed. Whenever the descriptions
contradicted each other, the contradictions were also added
to the union as alternative interpretation.

To check the validity of the found union and intersection,
a person not participating in the description task and not
involved in the OST part of the experimentation was asked
to highlight the similarities in text. These similarities were
then compared to the intersection of interpretations provided
by a computer.

The foreground of a picture showed a moving elephant.
The background of the picture contained trees, shrubs and
other greenery, as well as a place where several cars were
parked, as seen in Figure 2.

Figure 2: An elephant crossing the road

Results of Human Description

The descriptions of the submitted texts varied length ( the
first text used 54 words, the second text used 124 words,
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and the third text used 151 words) and structure of
sentences.

The following similarities were noticed by a human in all
of the descriptions:

= Elephant’s existence.

=  Road on which the elephant is located.

= Trees in front of the cars, in some spatial relation to
the elephant

= Cars parked in the background

The following information was included in at least one of
the texts (author’s summary below):

= A large African male elephant is shown on the
picture and is moving either on the road or bare
ground or crossing the road. The elephant has large
tusks, 4 legs, one visible ear, one visible eye, a tail
and a trunk. The front right leg of the elephant is
bent at the knee.

* There is dust on road and some dirt or hard soil on
the edges of the road. The road is wide and paved.

= A row of trees are between the elephant and the cars,
past the cars and on the berm. The trees are large
with extensive but not overwhelming foliage. The
grass is mostly yellowish and dusty.

= Cars, red and light blue or white, are parked on the
parking lot. The red car is a hatchback. The cars,
either 4 or 2, are all compact models. All cars are
parked behind the trees on what may be a parking lot.

= A building that has yellow corner is behind the cars.

= It is a bright sunny day; the sky is blue with light
clouds.

From this description, it can be noticed that the hypothesis
of the central element of the picture being similarly
described between all participants could not be accepted.
Interestingly, the descriptions varied in movement
information—it could be argued that it is not salient to the
central object itself—but not in the elephant’s location on
the road. The description of the elephant and its body parts
did not vary as much between any 2 subjects as between all
of them. It should also be noticed that there was no
contradictory description of the elephant itself. Thus,
perhaps a better metric would be to find overlap used by the
majority of the participants, as opposed to all, for real-world
applications.

The second hypothesis, namely the difference in the
background descriptions due to focus on different elements
could not be rejected based on this small set. Between the
objects that were noticed by all participants, the description
varied more than that of the central object, and often the
information was contradictory. For example, there was no
agreement on the number of cars in the picture or their
colors and very different description of greenery.

Computational Description

Computational overlap, as expected, was clustered around
objects. Thus, the following concepts were identified:

ELEPHANT, ROAD, CAR, TREE. Additionally, the following
descriptions of the concepts were found:

undetermined_event
(agent(value(elephantl)))
(location(value(roadl)))
carl
(behind(value(tree 1 (number(greater-than(1))))))
put2
(instrument(value(carl)))
(location(sem(parking-lot)))

In plain English, it says that there is an elephant that is
doing something on the road, there is a car behind trees, and
somebody left a car in the parking-lot. Clearly, what is
missing here from the overlap found by a human is that
there are trees in some special relation to the elephant.

The union of information was not as successful due to
coreference resolution mistakes (with STAn’s coreference
module not yet fully activated), however, the trivial unions
of information were found. The number of unconnected
clusters of information was small enough, that based on the
concepts connected through the overlap above, it is possible
to conclude that the three stories described similar
information.

Perhaps it is worthwhile to demonstrate the computational
process in the discovery of the overlap. Consider the
following sentences:

= (1) A large grey elephant is moving on a road or bare
ground.

= (2) This is a photograph of an elephant crossing a
road. It is a large male African elephant.

= (3) Elephant is on asphalted road.

The sentences result in the following TMRs:

(1) land-animal-motion1
(phase(value(continue)))
(agent(value (elephantl)))

(color(value(grey)))
)
(location(value(roadl groundl)))

(2) predl
(theme(value(photograph

(representation-of(value(change-locationl
(agent(value(elephantl)))
(path(value(roadl)))

)

)
pred2

(theme(value(elephantl
(size(value(large)))
(gender(value(male)))
(location(pnd(Africa)))

)

(3) existl
(agent(value(elephantl)))
(location(value(roadl

(made-of(value(asphalt)))
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)

From the above descriptions, we know the following
about the elephant:

From (1): <land-animal-motion1, elephant1> € J [agent]
From (2): <change-locationl, elephant1> & J [agent]
From (3): <existl, elephant1> € I [agent]

Taking the intersection of the events for which the
elephant is an agent results in x €J [event]. Thus,

producing undetermined event(agent(value(elephantl))).
Continuing with each TMR, we find the following:

From (1): <land-animal-motionl, road1> € I [location]

From  (1): ground1> €7
[location]

From (2): <change-locationl, road1> € I [path]

From (3): <existl, road1> & I [location]

<land-animal-motionl,

It can be easily noticed that groundl occurs only in (1),
thus the intersection with (2) and (3) results in an empty set.
For roadl, the calculation is similar to that of an elephant
with the only addition of parent-child relationship of
location and path.

It should also be noted that if we were to find an overlap
of (1) and (2) and discarded (3), the event in question would
have a considerably finer grain. According to the ontology,
the most specific ancestor of both LAND-ANIMAL-MOTION
and CHANGE-LOCATION is CHANGE-LOCATION. This means
that while the sentences used different verbs to describe the
movement of the elephant (crossing and moving), the OST
understands what both mean and finds the general concept
for both, as opposed to ignoring the similarity in meaning.

Similar processing is done for all sentences, resulting in
the above relationship for carl and put2 in addition to
elephant.

The calculation of overlap is done in a similar manner,
with the exception of the selection rules: each pair of
concepts does not have to overlap in the found properties,
instead uniquely found relationships are added to the
existing set.

Conclusion

This paper was an attempt to investigate whether a computer
is capable of finding similar information in structurally
different texts that describe the same event, each focusing
on potentially different parts of the event. The goal was not
to find similar words in texts, which can be easily done, but
to meaningfully connect the overlapping concepts and
relationships used in the text descriptions. The approach is
radically different from the machine-learning one. The
performance of a machine in finding similarity was
compared to human performance. The machine matched
four out of five human findings.

It is too early to reach a conclusion that it is possible for
computers to find overlap and difference between texts
similarly to those that humans find, and, of course, more

extensive experiments should be conducted. However, it is
promising that the first result is not negative.
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