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Abstract

Both infants and adults are sensitive to the non-linguisticfea-
tures of speech, and this sensitivity impacts speech sound cat-
egorization, but with somewhat different effects. While both
infants and adults sometimes confuse the non-linguistic for
the linguistic and are susceptible to categorization problems
when the two covary, adults, on the other hand, are often able
to exploit non-linguistic features to improve perceptual cate-
gorization. We present a Bayesian account of both adult and
infant behavior, arguing that differing levels in linguistic ma-
turity correspond to different models of linguistic structure.
The infant’s task is one of structure learning, adults, on the
other hand, are estimating parameters for an already estab-
lished structure.

Keywords: Speech perception; distributional learning; lan-
guage acquisition; Bayesian models.

Introduction
Talker variability is a fundamental challenge in speech per-
ception. The same phonetic category as uttered by two differ-
ent talkers may seem quit different. At the same time, distinct
categories produced by two different talkers may be acousti-
cally quite similar (Dorman, Studdert-Kennedy, & Raphael,
1977; Magnuson & Nusbaum, 2007). Unsurprisingly, this
variability poses a problem for infants as they acquire their
language. In particular, studies have shown that infants are
prone to confounding talker-specific characteristics withpho-
netic categories when the talker covaries with the category
during learning (Houston & Jusczyk, 2000; Creel, Aslin, &
Tanenhaus, 2008). For instance, when taught to recognize
two different categories, one produced exclusively by a fe-
male speaker and the other by a male speaker, infants were
unable later to identify those phones when spoken by the op-
posite sex. This suggests that learning not only involves ac-
quiring information about the features of the exemplars of the
category, but, more fundamentally, about which features re-
late to the categorization task at all.

Adults are not immune to talker variability either and can
also be misled by talker differences (Kraljic, Brennan, &
Samuel, 2008; McQueen, Norris, & Cutler, 2006), but the
same studies also demonstrate that adults are able to adapt
to the differences. In fact, speaker identity may even be
exploited to improve recognition performance at times, as
suggested by experiments with episodic memory. Goldinger
(1996) showed that words spoken by one speaker can be more
easily recognized when uttered by the same speaker even af-
ter significant time has elapsed. This suggests that not onlydo
listeners note linguistically weighted cues but also indexical
cues that might be used for talker identification.

While both infants and adults are faced with similar input
and utilize statistical learning mechanisms, the nature ofthe
problem they each face is quite different. Both face a catego-
rization problem. Infants are still struggling to decide which
dimensions in the high dimensional perceptual space are most
relevant to the categorization task. Voice onset time, for in-
stance, serves largely to distinguish the words “dime” and
“time” since “d” is followed by a much shorter voicing delay
than “t”. Other features such as fundamental frequency may
serve an indexical function (aiding in distinguishing whether
the talker is male or female, for instance) but are much less
clearly related to the linguistic content in a language likeEn-
glish. Infants are engaged in a kind of feature selection, nar-
rowing down the infinite set of possible features to just those
that are most useful. Adults, on the other hand, have already
determined which features are linguistic and which are not.
However, far from simply discarding the non-linguistic in-
formation, adults may employ indexical features to track the
talker, allowing them to adapt to the peculiarities of the indi-
vidual’s speech patterns.

We present a Bayesian account for both the infant and
adult behavioral results. In the infant’s case, the problemcan
be framed in terms of a model selection problem, a search
through some space of models that relate the latent phonetic
category to the observed features, both linguistic and non-
linguistic. In the adult’s case, talker adaptation is more of
a problem of parameter estimation given an already learned
model relating phonetic category, talker, and the observedlin-
guistic and indexical features.

The models we present fall within the distributional learn-
ing paradigm. It is well known that speech sounds of all types
tend to fall according to a Gaussian distribution (Peterson
& Barney, 1951; Lisker & Abramson, 1964; Espy-Wilson,
1992). Furthermore, Maye, Werker, and Gerken (2002) show
that bimodal distributions tend to prompt infants to identify
two sounds where unimodal distributions lead to identifica-
tion of a single category, suggesting that learners may relyto
some extent on an assumption of something like a Gaussian
distribution. Thus, learning can be characterized as a kind
of parametric statistical search over unimodal or, in our case,
Gaussian distributions.

We present an array of models to account for the different
behaviors, arguing that not one, but several different models
of the dependencies between features are required. Linguistic
development is characterized under our assumption of multi-
ple models as the selection of one model over another based

2140



on accumulated evidence. In the early days, when infants
have little evidence of which model is likely to generalize,
infants make decisions based on recent experience. Hence,
covarying talker with phonetic category during training re-
sults in the infant’s selecting a model that does not generalize
to a more natural situation where talker and phonetic category
do not covary. Similarly, we argue that adult talkers also shift
between models depending on the available information. In
the adult’s case experience is not so acute an issue, but some
features are not always present in the input, or are obscured
by noise, and thus they must use an alternative model that
does not depend on those features.

We argue for a fluid shifting between models over a sin-
gle monolithic model. Shifts between qualitatively different
models, as opposed to a gradual adjustment of a single model,
accounts for how distinct situations result in different pro-
cesses. Yet each model operates on the same basic principles
of distributional learning, where even the shift between mod-
els may be accounted for within a Bayesian framework.

Model Definitions

Figure 1 presents the four different structural relationships
we consider, slight variations but with important implications.
At heart, they are all instances of a Gaussian mixture model
which attempts to explain the linguistic featurexi of the ith

sound by a distribution indexed by the sound’s phonetic cate-
goryci . The more complex models (M 3 andM 4) elaborate on
the theme by introducing talker specific distributions overxi ,
and introduce an additional latent variableti for each sound to
represent talker identity. All the models assume exactly two
phonetic categories, and the talker specific models in turn as-
sume exactly two talkers, a restriction that is easily relaxed
but does not interfere with our purpose: explaining the hu-
man behavior in certain psycholinguistic experiments.

In the case of modelsM 1 andM 3 each speech sound also
bears an indexical featurey. The two models treaty quite dif-
ferently, however.M 1 assumes all features are linguistic, and
therefore represents a direct dependency betweenci andyi ,
paralleling the dependency betweenci andxi . M 3, however,
distinguishes between linguistic and indexical features,and
introduces a direct dependency between the indexical feature
and the talker instead of the phonetic category. This change
captures the notion that indexical features primarily serve to
identify the talker, and only secondarily aid in recognition.
This feature could be anything: fundamental frequency, or
even an odd way of smacking ones lips at the end of each
utterance. Since we are primarily interested in modeling pho-
netic category learning and not so much talker recognition,
we treat this feature as a simple Bernoulli variable with a pre-
defined parameter. That is, while the model learns the param-
eters for the distributions overx, y is determined by a pre-
specified Bernoulli parameter.

These models attempt to explain the phenomena ob-
served in certain psycholinguistic experiments. Houston and
Jusczyk (2000) demonstrated that 7.5 month olds were able

to recognize words in a segmentation task when they were
produced by a speaker of the same sex during test time as
during training, but were unable to generalize across sexes.
Singh (2008) demonstrates a similar sensitivity to other co-
variant non-linguistic features. ModelM 1 captures the be-
havior of infants in these situations, where all features are
treated as linguistic. Since the model assumes all featuresare
directly relevant to the categorization task, it will have aten-
dency to over fit when presented with data where talker and
phonetic category accidentally covary (or are contrived todo
so by an experimenter). ModelM 2, on the other hand, treats
the indexical feature as independent, only modeling the de-
pendency betweenx andc, and is more likely to generalize
across speakers.

ModelsM 3 andM 4 introduce the ability to adapt to in-
dividual talkers by providing separate talker-specific distri-
butions for the linguistic featurex. However, the individual
talker-specific distributions for a particular phonetic category
are related to each other by a distribution for the category
common to all talkers. Thus, we introduce a hierarchical
Gaussian distribution over linguistic features, capturing the
notion that, although each talker may have his own peculiar
way of producing a sound, sounds of the same category all
tend to be similar across speakers. The hierarchical distri-
bution allows for speech recognition even when faced with a
completely unfamiliar talker, since theλ andγ parameters de-
fine a prior over talker specific categories, providing a mech-
anism of generalization from familiar talkers to novel talkers.

Goldinger (1996) showed that adults are better able to un-
derstand speech when presented by the same talker. Simi-
larly, Kraljic et al. (2008) noted that adults adapt to speaker-
specific idiosyncrasies. In particular, they showed that when
presented with speech where the alveolar fricative “s” as in
the word “see” was shifted to a more palatal place of articula-
tion resembling “sh” as in “she”, subjects were able to adapt
and correctly identify the shifted “s” sounds — so long as
they were provided with cues as to which variant of “s” was
likely to occur. These situations are modeled byM 3 andM 4.
M 3 uses the additional cuey to help identify the talker, and
hence, the correct distribution for the category over linguistic
cuex. This way the indexical feature has an indirect impact
on recognition even if there is no direct dependency between
c andy. M 4 attempts to adapt to the talker without the aid of
the indexical cue. The model assumes such features exist, but
are not observed and therefore cannot assist in identifyingthe
talker. The prediction forM 4 is that, like the subjects in the
study by Kraljic et al. (2008), the model will perform more
poorly and will incorrectly allow talker-specific variation to
influence recognition of other talkers.

Inference

The models were implemented using WinBUGS
(Spiegelhalter, Thomas, Best, & Lunn, 2003), which
uses an automatic Gibbs sampling MCMC approach to
estimate parameters and allows rapid prototyping and testing
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M 1 M 2 M 3 M 4

c∼ Bern(0.5) c∼ Bern(0.5) c∼ Bern(0.5) c∼ Bern(0.5)
t ∼ Bern(0.5) t ∼ Bern(0.5)

λ ∼ N (30,5 ·10−4) λ ∼ N (30,5 ·10−4)
γ ∼ Gamma(0.2,0.2) γ ∼ Gamma(0.2,0.2)

µc ∼ N (30,5 ·10−4) µc ∼ N (30,5 ·10−4) µc,t |λc,γc ∼ N (λc,γc) µc,t |λc,γc ∼ N (λc,γc)
τc ∼ Gamma(0.2,0.2) τc ∼ Gamma(0.2,0.2) τc,t ∼ Gamma(0.2,0.2) τc,t ∼ Gamma(0.2,0.2)
x|c,µ,τ ∼ N (µc,τc) x|c,µ,τ ∼ N (µc,τc) x|c,t,µ,τ ∼ N (µc,t ,τc,t ) x|c,t,µ,τ ∼ N (µc,t ,τc,t )
y|c,π ∼ Bern(πc) y|π ∼ Bern(π) y|t,π ∼ Bern(πt) y|t,π ∼ Bern(πt)

Figure 1: Four Possible Speech Perception Models:M 1 treats all features as linguistic,M 2 distinguishes the true and false
linguistic features,M 3 models individual talkers and treats some features as indexical, andM 4 models talkers where the
indexical features are absent or obscured. The variables are defined as follows:c is the speech sound category,t is the talker,x
is a linguistic feature,y is an indexical feature, and the other variables are distributional parameters, defining talker and category
specific distributions.C is the set of categories,T is the set of talkers, andS is the set of all speech sound tokens.

of Bayesian models.

We use an explicit initialization strategy, running the
models in a generative mode with no observed variables
and drawing category parameters forx at random from a
N (50,0.0025) for the mean and aGamma(2,2) distribution
for the precision. Using an initialization strategy such asthis
could speed convergence, since it tends to start the model out
in a higher probability space. It also has the effect of reducing
problems with numerical underflow error in WinBUGS. We
were careful to pick the parameters randomly in such a way
as to avoid biasing search in favor of any particular model
or clustering, since we are primarily interested in the model
properties, not the effects of initialization on convergence.

We find that even the more complex models converge in
well under the 30,000 iterations we use. We average over the
next 1000 iterations after convergence to measure the various
parameters and statistics we report in subsequent sections.
We take care in observing performance over these last 1000
iterations for any trends or abrupt changes. These mixture
models have multiple symmetric optimal solutions, where “t”
may be associated with cluster 1 and “d” with 2, or vice versa.
If left to run long enough, the MCMC search strategy tends
to switch between these different symmetric configurations
every few thousand iterations. Averaging over instances of
multiple such symmetric cases results in increased error in
measurement. For instance, attempting to estimate the mean
x value for phones in a cluster that toggles between “t” and
“d” gets an average that is dissimilar to both configurations,
and not only results in a measurement that is far from the
gold standard but does not even accurately reflect the station-

ary distribution of the sampler.

Simulations

Data

We run the model on three synthetic data sets, illustrating the
contrast between English word initial “t” and “d”. The pri-
mary difference between the two is in the voice onset time
(VOT). We generate 100 sounds. Table 1 shows the model
parameters used to generate each of the three data sets. For
data set one we generate sounds as though there is only one
speaker. For data set two we use two talkers, covarying the
category with the talker so that instances of the first phone are
produced by talker one and all instances of the second phone
are produced by talker two. Finally, for data set three we split
the 100 sounds evenly between the two talkers and the two
categories, where talker and category are independent.

Simulation 1: The Developmental Situation

To simulate a situation similar to the psycholinguistic exper-
iments of Houston and Jusczyk (2000), we present the mod-
els with two different data sets: data set one, where there is
only one talker, and data set two, where there are two talk-
ers, each producing just one of the two phones. In the be-
havioral experiment, it was observed that infants trained with
word stimuli in a female voice were only able to reliably rec-
ognize words at test time when they were again presented
in a female voice, and could not generalize to a male voice.
Thus, the infants seem to confuse some non-linguistic fea-
ture of the sound, perhaps fundamental frequency, with the
linguistic identity of the sounds. In this simulation, we shall
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Table 1: Three Synthetic Data Sets

Talker Parameter Data Set
One Two Three

One π1 0.5 0.8 0.8
π2 0.5 0.8 0.8
µ1 15 15 0
µ2 35 - 35
τ1 15−2 15−2 15−2

τ2 5−2 - 5−2

Two π1 - 0.2 0.2
π2 - 0.2 0.2
µ1 - - 15
µ2 - 35 65
τ1 - - 15−2

τ2 - 5−2 5−2

Talkers Covary - Yes No

say that our indexical featurey corresponds to a thresholded
fundamental frequency: sounds with a high fundamental fre-
quency are more likely to be produced by the female talker,
and lower fundamental frequency sounds by the male talker.

To simulate the developmental character of an infant’s
nascent linguistic capabilities, we perform a kind of structure
discovery using Bayesian model selection betweenM 1 and
M 2, where the infant is attempting to determine if the indexi-
cal featurey is relevant to the linguistic category (M 1) or not
(M 2). We do this by introducing an additional latent variable
corresponding to the model and define a uniform prior over
the model. Then, we compute the probability of the model
given the data, integrating out all other variables. To compare
the two models, we simply compare the probabilities assigned
to each model given the data. Typically, in such cases if the
ratio P(M 1|D)/P(M 2|D), called the Bayes factor, is greater
than one, we say that model one is preferred, and otherwise
model two is preferred.

In this case, whether we use data set one or two, virtu-
ally all the probability mass (approximately 100%) is placed
on exactly one of the two models.M 1 is overwhelmingly
preferred when using data set two, the case where talker and
phonetic category covary. On the other hand, data set one, the
data set where both phonetic categories are produced by the
same talker, results in an overwhelming preference forM 2.

Table 2 presents accuracy results for the two models on the
two data sets. Note that in general for these sorts of clustering
algorithms there is an identifiability problem. That is, we can-
not immediately say whether a particular category valuec= 1
corresponds to the “t” or “d” sound. However, this poses less
of a problem for this simple case with only two categories.
For our purposes, it seems sufficient to assign the category
that achieves highest accuracy.

We observe that while the model that mistakes the index-
ical for a linguistic feature (M 1) performs very well for the
artificially contrived covarying data, it performs worse onthe

Table 2: Categorization Accuracy

Model Data Set
One Two Three

M 1 0.77 0.89 0.52
M 2 0.81 0.81 0.76
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Figure 2: The conditional distribution overx givenc for the
true data set as compared to the two modelsM 1 andM 2. The
clusters for the two talkers have been merged for ease of com-
parison. We also compare model 1’s clusters against the dis-
tribution overx given the talkert.

data set that has only a single talker, and very nearly at chance
for the data set with two different talkers that don’t covary
with the category. Figure 2 depicts the clusterings found by
the two models on data set three (the data set with two talk-
ers that don’t covary with the phone). WhileM 2 seems to
do as well as can be hoped considering its inability to adapt
to individual talkers,M 1 very nearly fails to differentiate at
all between “t” and “d”.M 1 attempts to cluster according to
the indexical, collapsing the two categories together for each
talker and clustering by talker instead of by category.

Thus, the model selection approach predicts the psycholin-
guistic results very well. Training on sounds in one talker’s
voice, as in the covarying data set, results in the incorrect
model being learned, which then fails to generalize to the
same sound produced in the other talker’s voice.

Simulation 2: Talker Adaptation

Adult talkers actually have the ability to adapt to indi-
vidual talkers, learning to exploit talker specific variations
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(Goldinger, 1996). To simulate this ability, we compare the
performance of modelsM 3 andM 4. ModelM 3 corresponds
to a case where the subject has learned that the indexical fea-
turey can be used to identify the talker. On the other hand,
M 4 corresponds to the case where, although the subject is
aware that the sounds may be produced by a different talker,
the voice is disguised so that no cue is available for the identi-
fication of the talker. The contrast between these two models
is similar to that demonstrated by Kraljic et al. (2008), where
subjects were presented with ambiguous sounds that, in one
condition, were accompanied by an additional cue indicating
the ambiguity was result of talker dialect, and, in a second
condition, were presented without this cue. This dialectical
indicator, based on a phonological context, corresponds to
our indexical featurey. Thus, condition one corresponds to
M 3 and condition two toM 4. In the behavioral study, it was
observed that subjects were much more prone to confusing
the two different phonetic categories when the sounds were
presented without the additional cue. Thus, we expectM 3 to
do much better.

Table 3 contains the categorization accuracy results forM 3

andM 4. Note that these models can theoretically identify the
talker as well as the phonetic category, and we report accuracy
for both. M 3 does slightly better at clustering the phonetic
categories, which is likely due to its much better ability to
identify the talker. Note that without the indexical feature,
M 4 is at chance with regard to talker identification.

Table 3: Categorization Accuracy for Data Set Three

Model Category Talker
M 3 0.86 0.78
M 4 0.81 0.50

Figure 3 shows the clusters inferred by the two talker
adapting models. The inferred Gaussian distributions for the
two talkers are much more distinct forM 3 than they are for
M 4 and more closely resemble the true distribution.

The inferred clusters, presented in Figure 3, are particularly
interesting when compared against the findings of Kraljic et
al. (2008), who observed that when the dialectical cue was
absent, subjects adjusted their perceptual judgments for all
talkers, not just the talker that produced the ambiguous vari-
ant. Model 3 makes use of the additional featurey for keep-
ing the two talkers distinct, and therefore is less likely tolet
experience with the ambiguous talker influence its judgment
for the other talker. Similarly, model 4 captures the situation
where no additional cues are available. In this case, even if
separate clusters are maintained for each talker, the two are
functionally identical, falling somewhere in between the two
true clusters. The mean is the mean of the two talker specific
variants of the category, and, in the case of the “d” sound,
the variance is much larger. Thus, the ambiguous talker influ-
ences recognition of the other talker when no additional cues
are available, but not nearly as much when additional cues are
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Figure 3: The conditional distribution overx givenc for the
true data set as compared to the two modelsM 3 andM 4.

discernible.
As in the case of the developmental simulation, we see that

the alternate performance of two models predicts the empiri-
cal results much better than would any one of the two.

Discussion and Conclusion
We have presented a computational model demonstrating a
distributional account of certain covariance effects in infant
and adult speech perception observed in the psycholinguistic
literature. In particular, we found that by modeling the de-
velopment of infant speech perception as a type of Bayesian
model selection, we can account nicely for documented ef-
fects of covarying talker and phonetic category on infant con-
fusions between categories (Houston & Jusczyk, 2000). We
also found that by modeling talker identity, the same talker-
specific features that confused the infant models could be ex-
ploited to improve performance, similar to demonstrationsof
talker adaptation in adult subjects (Kraljic et al., 2008).Also
consistent with Kraljic et al. (2008), we found that when the
talker adapting models were deprived of observed indexical
information, talker specific speech habits influenced the cat-
egory representations for all talkers not just the talker that
produced the offending speech sounds.

While it would be difficult to account for all the phenom-
ena with a single model of the statistical dependencies in
the data, multiple models predict the empirical results fairly
closely. This raises the question of how human subjects move
between models, begging a model of the model selection pro-
cess itself. Developmental shifts are readily handled in the
Bayesian framework as a model selection problem, just the
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approach we took for explaining the infant behavior. Though
it is beyond the scope of this paper, a similar selection process
may account for a shift between the infant and adult stages,
perhaps with several additional intermediate structures.We
argue that modeling the developmental process as a shift be-
tween models rather than a gradual adjustment of a single
model better matches the fact that there are distinct develop-
mental stages. One set of models may correspond to a partic-
ular stage, where the underlying behavioral causes are made
explicit by the dependency structure of the model.

Although the simulations we presented dealt primarily with
covariance between talker and phonetic category, we expect
that models based on similar principles could explain equally
well other kinds of covariance phenomena, such as with
speech affect and category (Singh, 2008). Note that the mod-
els we presented to explain infant phenomena had no explicit
model of talker identity. Thus, the choice between the two
models in the developmental case only constituted a feature
selection task, where features that clearly covaried with the
phonetic category were greatly preferred by the selection cri-
terion. Thus, these simple models, in fact, generalize directly.

Similarly, while the talker adapting models do contain an
explicit representation of talker identity, there is nothing that
requires that thet variable refer to a talker. Similar vari-
ables could represent modes of talking, such as infant di-
rected speech, or happy speech, or to dialectical variations or
any number of other categorizable speech types. That is, the
talker adapting models present a general adaptation strategy
that could be employed with little or no modification.

We argue for the generality of the principles underlying
our computational account while stressing that the full speech
recognition problem, or even just that of phonetic category
recognition, is a difficult one, and we have not attempted to
model it in its entirety. In fact, we made several explicit sim-
plifications. First, we assumed there are only two categories
and two talkers. Second, we assumed that there are roughly
equal numbers of tokens of each category, and that each talker
produces about half of the sounds. Also, since we were pri-
marily interested in how phonetic categories are learned, we
assumed a simple Bernoulli distribution for the indexical fea-
ture, when, in fact, in many cases this feature too may very
well be continuous. Furthermore, it was sufficient for our pur-
poses to model a recognition problem along only one or two
dimensions of the perceptual space.

These simplifications eased the implementation work but
did not interfere with our ability to simulate the behavioral
situations in which we were interested. They should not limit
the generalizability of the results, and could be relaxed ina
fairly straightforward manner if we wished to increase the
realism. For instance, the first restriction could be relaxed
by allowing the model to infer how many categories there
are from the data using an infinite mixture model. We could
also use a beta prior to infer relative talker and phonetic cat-
egory frequency. A similar prior could be used to infer the
distribution over the indexical features. Finally, multivariate

Gaussians could be used for multiple correlated linguisticfea-
tures (Vallabha, McClelland, Pons, Werker, & Amano, 2007).
These are obvious extensions to consider for future work.
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