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Abstract into a spatial array and back again, but the reasoning psoces

How do we reason with imprecise spatial descriptions? Do ItS€lf relies on model manipulation only. ental modeis
reasoners typically prefer one conclusion (over another) con- an internal representation of objects and relations ini@pat

sistent with the imprecise descriptions? Based on empirical - \yorking memory, which matches the state of affairs given in
findings we are able to give a positive answer for the second h . Th ic th f I dels is b d
question for spatial reasoning with cardinal direction relations, tN€ premises. The semantic theory of mental models is base

Analyzing further the pattern of the preferred conclusion re- on the mathematical definition of deduction, i.e. a proposi-

sequence, we briefly explain heuristics and present a Bayesian

model representing subjective belief of the reasoner. written 2 = ¢, if in each model of ©#, the conclusiord is

Keywords: Probabilistic Reasoning; Preferential Reasoning; true.
Qualitative Reasoning

I ntroduction

Reasoning with spatial information requires sometimes to
reason with incomplete information. Take for example, NW

Berlin is north-east of Paris.
Paris is north-west of Rome. —W

You can (based on this information alone, e.g. no back-
ground knowledge, no map) easily infer that Berlin must be
north of Rome. But you cannot infer (based on this informa- SwW
tion alone) if Berlin is eastern or western of Rome. But if you |
have to reason without having assumptions about geographic
positions — do we prefer certain relations? The question on
how humans solve such deduction problems is at the core of
qualitative reasoning. In other words, how do we infer newFigure 1: The nine base relations of the cardinal direction
knowledge (aconclusion from given knowledge, and more- calculus in the projection based representation. Otheerep
over, what are the differences to formal approaches in-artifisentations are cone-based representations (Ligozat) 1998
cial intelligence?

Formally, there are two main approaches in Al on how An interesting finding is the so-called preference effect,
such reasoning problems can be solved: By the applicatione. in multiple model cases (nearly always) one preferred
of (transitivity) rules or by the construction and inspentdf =~ model is constructed from participants and used as a referen
models. Principally, both approaches are equivalent @uss for the deduction process (Rauh, Hagen, Schlieder, Strube,
& Norvig, 2003), i.e. it is not possible to derive more infor- & Knauff, 2000). Further findings showed that during the
mation with each of these methods. This equivalence, howvalidation phase alternative models are constructed byl sma
ever, makes it harder to distinguish which method(s) is apmaodifications to the initially constructed model. This wias t
plied by humans while solving such problems. Nonethelessieason why the mental model theory for spatial reasoning was
a number of empirical studies investigates this researel-qu extended within the framework of preferred mental models
tion by psychological means. The most prominent and besfRauh et al., 2000).
supported theory with respect to the number of effects that A new research line (Oaksford & Chater, 2007) focuses on
can be accounted for is the theory of mental modrisIT) Bayesian explanations for preferred solutions, e.g. fdosy
(Johnson-Laird & Byrne, 1991) (to name only a few: the in- gistic reason. The authors use here the notion of informativ
determinacy effect (Johnson-Laird & Byrne, 1991), the formness to explain why a certain quantifier is used. The question
of premises and the figural effect (Knauff, Rauh, Schliefler, is still open, if the Bayesian approach is sufficient to model
Strube, 1998), the wording of conclusions (Van der Henst &spatial reasoning.

Schaeken, 2007), etc.). According to tWeIT, linguistic pro- This paper is structured as follows: First, we will present
cesses are relevant to transfer information from the presnis an empirical investigation analyzing the question aboaf-pr
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erences in cardinal direction. Our empirical findings asnth W 1EN£V] 1&%} 3[Nv'::N.N51 1&%} 3[NWZN.NE] 3[sws‘,NmNW1 3[SW§V.NW1 s(sSv)vElal ]
analyzed w.r.t. the main theories in the field (Theory of Men- 1 .o o Lo o o o 0D
tal Models, Theory of Mental Logic) with heuristics andwe " | "W | W | & [ W | W& [PSw | O | e
. . . . 1.0 1.0 1.0 1.0 1.0 0.67 0.5 0.64
present a Bgye&an mo.del representlng supjegtlve belteof ___ | ow [ ow | oo | om | ox 1 o e
reasoner. Finally, we discuss the different findings. N ne Ne o ne o o £
0.29 05 0.36 0.36 0.29 0.0 0.21 0.29
. R . . 1] TINW] TINW] 3NWNNE] [ 1MWl | 2@) W.E] TISW] T[SW] | 3[SW,S.SE] |
Preferencesin Cardinal Direction ol W | e | [em | % | e
The language of cardinal direction consists of points in the——smwameT—rre—— T 2ol T sErese— B
euclidean plan®?. Based on the point algebra it is possible ots it i (Sem ) o Bl
to distinguish 9 base relatiomsb € R?: TTSW[SEWWNW] [SEWWNAT[REGEIN  1[SW] | SEWSSE [ SWT | oW | SEWSsE |
[COTEQ] N [ NE[ E [ SE] S [SW][ W [ NW | o s s 10 ag iq 10 s
[PATGAE)C)CAICIEICAIIAEG>)] s w 2(:?)5:.51 ﬁ 1135‘,\5\/] 10§Eg] 1153\?] ?s[isg] 1055]
In other wordsa N b:= a, = by Aay > by, bis a northly. a7 ez a7 5 i 10 i K
An assignmenbf a set ofCD constraint<C over the vocab- SE | QBT | SSEENS | SIEENA[OBNSSE [ TEE | SEHSSE T TfE 1l
ulary B = {N,NE,E,SE S, SW,W,NW,EQ} is a function 5 oz | am ae o a on RS
a :V(C) — R?, mapping each variable occuring inC to
coordinates in the real plane. Figure 2: The preferred relations in reasoning with caidina

Over the euclidean plane thdsintly exhaustiveandpair- direction. In each cell, the first number gives the number of
wise disjointbase relations (cp. Fig. 1) with the composi- correct relations and the relations. In the second row we hav
tion table (cp. Figure 2) form a relation algebra. In thethe preferred relation, then in the indeterminate caseehe r
first experiment discussed here we used relations from thative frequency of this relation, i.e. how often it was chose
set B := B\{EQ} to construct a type of relational reason- by the participants and then the error rates.
ing task that is referred to as three-term-series-prob(@ss
problems) in cognitive research (e.g. (Hunter, 1957)). In
these tasks always two statements are used as premises adterials. The experiment used the whole set of Cardinal
the task of the participants is to generate a statementshat Direction relations presented in Fig. 1. In the main part of

consistent with the premises — the conclusion. E.g., the experiment all participants had to solve the same set of 6
A is northeast of B. 3ts-problems. Here is an example-problem:
B is west of C.
Which relation holds between A and C? A is northwest of B.
The 3ts-problems can be formally described by the compo- B is southeast of C.
sition of two base relations and the question for a satigiabl Which relation holds between A and C?
relation. The set of all possible relations with premiaég b, . .
b R, c are denoted by the compositi®i o R,. Normally, it In half of the trials we asked for the relation between A and
is presented as a composition table (cf. Figure 2). C and in half of the trials between C and A.

For the above example NBV contains the following three  Procedure and Design. The experiment was conducted as
relations: NE, N, NW. Since CD consists of nine base rela-a web experiment (partially conducted at our site for cdptro
tions, there are without EQ 64 possible compositions of twausing webexp2. Tasks were presented in a randomized or-
base relations. In other words, exactly 64 different threeder. The premises were presented sequentially, i.e. the firs
term-series problems exist. If we omit all one-relationesas premise disappeared when the second premise appeared. In
(cells with one entry in Figure 2), it results in 40 multiple other words, the participants were forced to hold the premis
relation cases out of the 64 possible compositions. The painformation in the working memory. All premises were pre-
ticipants of our studies were confronted with all 64 probdem sented in a self-paced procedure. Finally, the particgphat
and had to infer a conclusion. to give a relation as an answer.

Overall, 87% of the problems were correctly solved. The

. Emplrlcal Data L results regarding the preference effects can be found in Fig
The first central question we are interested in is: How do peoyq 2.

ple reason about cardinal directions? Do they construet pre

ferred mental models, and if so, what are the principles? A% As shown in Figure 2 out of the given 64 problems exactly

4 are determinate problems and 40 are indeterminate prob-
ems. Most of the indeterminate problems exactly 90% (only
4 relations were not significantly preferretito S, W o SE,

o E, SWo E) were solved with a clear preference for one re-
lation. However, it is remarkable that several relationsldo
Participants. 24 students of the University of Freiburg took have been chosen as a possible conclusion, but, in fact, the
part in this web experiment (14m/10¥] = 23.5/22.1,SD= participants chose just one of them and their preferences al
2.3/2.1). They were paid for their participation. often corresponded.

answer to this question might give hints of how preference
differ between large-scale spaces and small-scale spaoes.

the latter scale of space, preferences have already been id
tified (Ragni, Fangmeier, Webber, & Knauff, 2007).
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Discussion. There are differences between preferred rela- 1 Westxy) & North(z x) — Wes{zy)
tions in small-scale spaces and in large-scale spaces. Con- 2. Westxy) & Northizy) — Westx 2)
! p ge paces. 3. Westx,y) & Westy,z) — Westx,z)
trary to the small-scale spaces (Ragni, Fangmeier, et al., 4. Westxy) < Easfy,x)
2007) where the first-free fit strategy has been identified in 5. (Westy,x) & Westz, X))) ;

i ing i _ i~ 6. (Westy,z) or Westzy)
relational reasoning in large-scale spaces participased a (Westy.w) or Westw y))

(Westy, z) or Wes{z,y))
North(w,z) —

first-fit strategy. In other words they inserted the third ob-

ject C in-between A and B (cp. the relatioBsN andEoW  Figure 3: Set of (incomplete) inference rules specified for

where in the first cas& and in the secontV has been re-  gspatial reasoning adapted from Van der Henst (2002).
ported). The inverse compositidto S andW o E are not

statistically significant.

By a formal analy§|s_ It was p_055|ble to explain the P The central idea of this approach can be characterized as
ferred mental model in indeterminate cases by the following |, vs- “Reasoning consists in the application of mental i

distinction ference rules to the premises and conclusion of an argument.

e Principle 1 (n-between Insertion Princip)elf the two re-  The sequence of applied rules forms a mental proof or deriva-
lations of the composition are inverse (e.g. S and N, wiion of the conclusion from the premises, where these im-
and E) then the third object C is inserted in-between A andplicit proofs are analogous to the explicit proofs of elemen

B,(e.g. Ais S of C and B is north of C, and so on). tary logic” (Rips, 1994, p. 40). Hagert (1984) defined a first
set of spatial inference rules (cf. Fig. 2). This set of rulas

e Principle 2 Cut Principle:: Choose always the relation in been extended by two additional rules (cf. the rules 5 and 6 in
the geometrical cut of the two relations, i.eNEoNW is  Fig. 2) to deal with indeterminacy by Van der Henst (2002).
composed and the relations NW, N, NE are possible tharrhe rules in Fig. 2 are successively applied to the premies o
the relation N is chosen. a problem description.

There is, however, no recent theory in explaining the con-

The participants preferred the cut between relations,e.g. struction of the preferred relations (Figure 2).

the composition oNEo NW andNWo NE they preferred the
relationN. The same pattern holds as well ®Wo NW and

so on. This gives an indication that without additional mfo
mation they use (independently of projection based or cond e mental model theory assumes that the human reasoning

based representation of Cardinal Direction) similar dises. ~ Process consists of three distinct phases: irrelel gen-
eration phasein which a first model is constructed out of

Theories of Deduction the premises, amspection phasen which the model is in-

In this section we ground the intuitively used theories for-SPected to check if a putative conclusion is consistent with
mally (and mathematically) and analyze them with respect tdh€ current model. In thealidation phasefinally, alterna-
their reasoning power. tive models are generated_ from thg premises that refute this
A relational structureis a tuple (D, (R)ciy) consisting putative conclusion. Thg mdet'ermlnacy' effect is mainly re
of a domainD (sometimes called discourse universe) and aSPonsible for human difficulty in reasoning (Johnson-Laird
set of (usually binary) relatior® (Russell & Norvig, 2003). 2001).
For example, geographic knowledge likew York is north- Recent findings indicate a phenomenon encountered in
east of Washingtoan be expressed by cardinal direction multiple-model cases, namely that humans generally tend to
relationsN,NE, E,SE, ... over the domain of cities. More construct preferred mental mod¢PMM). This model is eas-
complex expressions can be formed by using connectivel§r to construct, less complex, and easier to maintain irkwor
like conjunctions (New York is north-east of Washingtomd ~ ing memory compared to all other possible models (Knauff
New York is in the U.S.) and disjunctions (ar....). By al-  etal., 1998). The principle of economicity is the determi
lowing negations, we have a propositional relational laggu ~ factor in explaining human preferences (Manktelow, 1999).
£ over cardinal direction relations. Such relational smues ~ This principle also explains that a model is constructed in-
can be used to descritimowledge representatiorBut how  crementally from its premises. Such a model construction

Theory of mental models

can new information be derived? process saves working memory capacities because each bit of
_ information is immediately processed and integrated inéo t
Theory of mental logic model (Johnson-Laird & Byrne, 1991). In the model variation

The theory of mental logic (Rips, 1994) assumes that we usphase, thi®MM is varied to find alternative interpretations of
(transitivity) rules to draw conclusions, whereas the silas the premises (Rauh et al., 2000). From a formal point of view,
cal model theory argues that we use models for this inferhowever, this theory has not been formalized yet and is there
ence process. The classical mental model theory (Byrne &ore not fully specified in terms of necessary operations to
Johnson-Laird, 1989) claims that in multiple model cases (i process such simple problems as were described above.
more than one model is consistent with the premises) other A model 1 is calledconsistentwith a set of premise®
models are inspected. over a relational languagé (mathematicallyq = @) if all
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expressions ofp are true in4. Then a conclusiot¥ can The following model$ are to reproduce the frequency dis-
be derived from the premise s&t(mathematicallyd = ¥, tribution of the 3ts-task on cardinal directions this way.

wherebyl= is called theconsequence relatigri Spatial Bayesian Models The spatial reasoning task of

®E=W < Allmodels of® are models of¥. the previous section uses the set of cardinal relatiBhs:
< There is no modef with {N,E,S,W,NE, SE SW,NW}. The statement of an item in
A= ®and4 = -W. the 3ts-task is given by a pair of relatioRs, R, € B’ with

A model 4 with the property4 = ® and 4 = -W is called aR;b andbRyc for three locationg, b, c. The subject’'s guess

counter-examplelt follows if there is a counter-example to for the relation betweea andc is another relatioR; € B’

® and¥ then® = W cannot hold. The relative frequency oRs for an itemRy, R will be re-
This classical (mathematical) consequence relation, howferred to asfr, r,(Rs).

ever, does not explain how initial mental models are con- The objective of a Bayesian model for the 3ts-task is to im-

structed and varied (Rauh et al., 2000). Since there is a hugdement a probability distribution d®s parametrized by the

empirical evidence supporting the preferred mental modelask ittmRy, Ry, i.e. Pr, r,(Rs). This probability distribution

theory for different calculi (Rauh et al., 2000; Ragni, Fang is assumed to be a prediction of the experiment’s relatie fr

meier, et al., 2007; Ragni, Tseden, & Knauff, 2007) it seemgluenciesfr, g,. Thus, modeM’s preferred relation given the

worth to ground this theory mathematically. task’s relationsx; andR; is

A Probabilistic Approach M(Ry,Rp) := argmaxPg, r,(Rs).
As already stated, a new approach are probabilistic models Roc
(Oaksford & Chater, 2007) to explain preferred relations. The per-item probability distribution d®s can be identi-

Those are based on the consideration to use probabilities ified with the probability ofR; conditioned by the item’s re-

stead of truth values as the representation of semantiés. Thiations. Therefore, it further allows the application ofyBa’
is a valid consideration as a probability might be interpdet theorem (equation 2):

in asubjectivananner describing a subjective degree of belief
rather than a relative frequency of an event. Following this
subjective interpretation probability theory can be méti for
belief updating and inference. The probabilistic appraach
inference is based on:

P(Ry,Rz2|Rs) P(Rs)
P(R1,Rp)

Pri.R, (Ra) i= P(Ra|Ry, Rz) = (3)

Consequently, it is sufficient for a Bayesian model of the 3ts
task to specify merely the reversed conditional probapbilit

P(“If ptheng”) = P(q|p). 1) P(R1,R2|R3) as well as the marginal probabiliti®R3) and
P(R1,Ry).
Thus, the probability of a conditional proposition is idéetl The following sections will describe such implementa-

with the conditional probability of the proposition. The a- tions. The quality of each mod# will be compared to the
posteriori belief in the facy in face of certainty about the empirical data by three factors: a) the mean correla@tn

factpis given by the a-priori conditional probabilitPy (q) =  betweenPg, g, and the empirical datég, gr,, b) the sumgM
Po(q|p), if Pi(p) = 1. This is called “conditionalization”. It of the squared differences betwe@q r, andfr, g, and c) the
constitutes the basis of probabilistic inference. numbemMM of correctly predicted preferred relations.

The probabilistic representation of conditionals as given

equation 1 enables the application of Bayes’ theorem: The Unit Layout (Model M) The computation of

PM1(Ry, Ry|Rs) is based on a heuristic for detours when mov-

P(p|q) P(q) ing by Rz in the so calledinit layout R; andR; describe the
P(dlp) = TR (2)  detour. The farther the detour the smaller is the conditiona
probability of Ry, Ro.
This has two advantages: First, wher4g|p) is arather ab-  The unit layout is a rectangular subsefZ3fand separately

stract value, the probabilities of its right hand side caerf defined for each directioRs. The brackets]™ map the lo-
be derived from the agent's experience. Second, it impliesationsa andc each to a field irz? such thata)™ Rs[c]™.
basic patterns of performance while reasoning with condiEach pair of relation®;, R, with R3 C RioR; is likewise
tional propositions which appear as “errors and biaseshfro mapped to a field itZ? by [ such that
a logicistic standpoint.

Bayesian Rationality arises from a rational analysis of the

problem, the environment, and the constraints of an agent | . « Rs Rs ,
: . . . iel n m hosenin h away th
while conducting deductive tasks. As such, it is not a the- e fieldsfaJ"™ and|c] ustbe chosen in such a way that

Rs - . ; -
ory of the actually psychological processes in use, but a deeach[Rle] is definite. That way, the unit layout is definite

L 2 . . in Z2 up to translations. Figure 4 shows the unit layout for
scription of general regularities. It is further indepentdef Rs — N\[/)V g y
cognitionabout probabilities. It shows that cognition often '
obeys the laws of probabilistic theory. 1The source code is availablehdtt p: // tiny. cc/ hni 3f .

[a® Ry [RiRz)™e and [RiR) e R[]
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SE-NW | S-NW | SW-NW | SW-N | SW-NE 1

E-NW a W-NW W-N W-NE
NE-NW | N-NW | NW-NW | NW-N | NW-NE
NE-W N-W NW-W c NW-E -]

NE-SE | N-SE | NW-SE | NW-S | NW-SE

Figure 4: Theunit layoutfor R3 = NW. Fieldais to the north-
west ofc. All other field are uniquely labeled with relations

R;-R. It holds for each of them that fiellis R;-wards of it ~ °" - : \’/\*ﬂ(‘é \af\

N NE E SE S SW NWN NE E SE S SW W NWN NE E SE S SW W NWN NE E SE S SW W NW
and it isR,-wards ofc.

Figure 5: Relative frequencies B§ for task items withR; =
NE from the experiment (circless) as well asM;’s (pluses:
For R; C Ry o Ry, the unit layout entails the costs of a “de- +), andMy’s (crossesx) probabilities .
tour” moving from field[a]™ via [RyR2]™ to [¢]™ utilizing a

H 2
metricd on Z<. A Secondary Strategy (Model M) Model M5 is an ex-

Ry Rs Rs [~Rs tension of the model presented in the preceding section. It
dila”, [RuRe ) +d(lRuRo] 7, [c] ) adds a probability gaimg, g, to the value ofPQ"l%Rz. This
gain implements priming effects on the relatidRsand R».

R . The amounts of priming toward®, andR; are controlled by

The costscg’ g, for Rs ¢ Rio R, are defined by the model  the model parametefsstprim andsecondprim, respectively.

parametedistimposs. This cost measure entails the wantedy/g)yes of 0 each void the priming effect.

conditional probability: The extent of this probability gain is in turn controlled per
task item by the certaintgg, r, of M1

Rs ._
T (@™ )

R3 -1

C
PML(Ry, Ry|Rs) = RiRp

1 2Ry Ry -= Max Pgll,R (Ra).
zR'l,R'zeiB/C;i% . R3zeB 1,2
The (yet to be normalized) probability distribution Bt is

This points out the influence of the model parameterdefined as
distimposs: For infinity, the model performs accurate and it
simulates errors for positive numbers. PRiR, (R8) =R R, PylfRz(%) +(1-2r, R,) " OR.R (R3)-

This is how modeM; computes the conditional probabil- ' R T
ity of the right-hand side of equation 3. The marginal prob-It WeakensMy’s probability distributionPz ‘s, and strength-
ability of PM1(Rs) is a unit distribution which can be fur- €nS the priming effeddr, g, as a function of decreasing cer-
nished with a probability gain for the main cardinal direc- @Ity

tions bycardinalgain and an additional gain towards the west parameter Variations In a systematic search through the
by westgain. The probability oPV1(Ry, Ry) is assumed to be parameters of modédl; as well asfirstprim andsecondprim

a unit distribution. we found an instance dfl, with mean correlation oEM2 =
Parameter Variations Varying the metricd between Eu-  0.94, summed errdE™2 = 2.67 andNMz2 = 62 correctly pre-
clidian, Manhattan, and maximum had no noteworthy eﬁecﬂiCtEd items. Along with it, this instance has a mean cotrela
on the qua“ty estimation fac[or@l(l' EM, NM) So we chose tion of 0.73 for the task items with Opposed intermediate di-

the euclidian metric, as it matches the intuitive concepligf ~ rections. The parameters wefietimposs = 180,cardinalgain

tance best. The model paramediétimposs was varied sys- = 0-1,westgain = 0.2,firstprim = 0.3 andsecondprim = 0.2.
tematically between 20 and 200, the parameterdinalgain Figure 5 shows results both from moddh and M for
andwestgain were varied between 0.1 and 0.9. Ry = NE. M2’s improvement is apparent fét, = SW.

We found a maximal convergence against the em; nterpretation
pirical data with model parameterdistimposs = 150,
cardinalgain = 0.2, andwestgain = 0.2.

It has a mean correlatioB™? = 0.91, a summed error of
EM: = 2.82 and predicts the preferred relation correctly in
NM1 — 59 cases. This instance of modé] has a mean cor- Utilizing Experience The first modelM;, shows that the
relation of 0.96 in 60 items of the task. Nevertheless, thespatial reasoning task can be modelled by a Bayesian ap-
mean correlation for the task items with opposing intermedi proach. The computation &f(Rs|R1,Ry) is based on an “in-
ate directions is as little as 0.17. This suggest the appeara tuition of the benefit” to move towardg; first and then to-
of another strategy in these cases. wardsR; to attain towarddRs overall. This intuition might

The following lines give a clue of how the found model pa-
rameters can be read as a hints on the underlying cognitive
processes.
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reflect complying knowledge of the subject arising from ba-the diverse spatial calculi.

sic experience navigating through the world. One point, however, is certain: the role of heuristics has
It was possible to further increase the convergence obeen vastly underestimated in explaining the preferentes i

the model towards the empirical data by means of highespatial reasoning.

marginal probabilities of the cardinal directions, andiadd
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Shifting Strategies  Whereas mode\l; behaved poorly for
tasks with opposed intermediate directions, maddgk cor-
relation on those could be improved by simulating primingH
effects on the relations given by the current task item. €hos
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gests the subjects shift their strategy to be driven by mgmi
effects under uncertainty.
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