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Abstract

How do we reason with imprecise spatial descriptions? Do
reasoners typically prefer one conclusion (over another) con-
sistent with the imprecise descriptions? Based on empirical
findings we are able to give a positive answer for the second
question for spatial reasoning with cardinal direction relations.
Analyzing further the pattern of the preferred conclusion re-
flects the idea of informativeness of the description. In con-
sequence, we briefly explain heuristics and present a Bayesian
model representing subjective belief of the reasoner.
Keywords: Probabilistic Reasoning; Preferential Reasoning;
Qualitative Reasoning

Introduction
Reasoning with spatial information requires sometimes to
reason with incomplete information. Take for example,

Berlin is north-east of Paris.
Paris is north-west of Rome.

You can (based on this information alone, e.g. no back-
ground knowledge, no map) easily infer that Berlin must be
north of Rome. But you cannot infer (based on this informa-
tion alone) if Berlin is eastern or western of Rome. But if you
have to reason without having assumptions about geographic
positions – do we prefer certain relations? The question on
how humans solve such deduction problems is at the core of
qualitative reasoning. In other words, how do we infer new
knowledge (aconclusion) from given knowledge, and more-
over, what are the differences to formal approaches in artifi-
cial intelligence?

Formally, there are two main approaches in AI on how
such reasoning problems can be solved: By the application
of (transitivity) rules or by the construction and inspection of
models. Principally, both approaches are equivalent (Russell
& Norvig, 2003), i.e. it is not possible to derive more infor-
mation with each of these methods. This equivalence, how-
ever, makes it harder to distinguish which method(s) is ap-
plied by humans while solving such problems. Nonetheless,
a number of empirical studies investigates this research ques-
tion by psychological means. The most prominent and best
supported theory with respect to the number of effects that
can be accounted for is the theory of mental models (MMT)
(Johnson-Laird & Byrne, 1991) (to name only a few: the in-
determinacy effect (Johnson-Laird & Byrne, 1991), the form
of premises and the figural effect (Knauff, Rauh, Schlieder,&
Strube, 1998), the wording of conclusions (Van der Henst &
Schaeken, 2007), etc.). According to theMMT, linguistic pro-
cesses are relevant to transfer information from the premises

into a spatial array and back again, but the reasoning process
itself relies on model manipulation only. Amental modelis
an internal representation of objects and relations in spatial
working memory, which matches the state of affairs given in
the premises. The semantic theory of mental models is based
on the mathematical definition of deduction, i.e. a proposi-
tional statementϕ is a consequence of a set of premisesP ,
writtenP |= ϕ, if in each modelA of P , the conclusionϕ is
true.
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Figure 1: The nine base relations of the cardinal direction
calculus in the projection based representation. Other repre-
sentations are cone-based representations (Ligozat, 1998)

An interesting finding is the so-called preference effect,
i.e. in multiple model cases (nearly always) one preferred
model is constructed from participants and used as a reference
for the deduction process (Rauh, Hagen, Schlieder, Strube,
& Knauff, 2000). Further findings showed that during the
validation phase alternative models are constructed by small
modifications to the initially constructed model. This was the
reason why the mental model theory for spatial reasoning was
extended within the framework of preferred mental models
(Rauh et al., 2000).

A new research line (Oaksford & Chater, 2007) focuses on
Bayesian explanations for preferred solutions, e.g. for syllo-
gistic reason. The authors use here the notion of informative-
ness to explain why a certain quantifier is used. The question
is still open, if the Bayesian approach is sufficient to model
spatial reasoning.

This paper is structured as follows: First, we will present
an empirical investigation analyzing the question about pref-
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erences in cardinal direction. Our empirical findings are then
analyzed w.r.t. the main theories in the field (Theory of Men-
tal Models, Theory of Mental Logic) with heuristics and we
present a Bayesian model representing subjective belief ofthe
reasoner. Finally, we discuss the different findings.

Preferences in Cardinal Direction
The language of cardinal direction consists of points in the
euclidean planeR2. Based on the point algebra it is possible
to distinguish 9 base relationsa,b∈ R

2:
CD EQ N NE E SE S SW W NW
PA (=,=) (=,>) (>,>) (>,=) (>,<) (=,<) (>,<) (<,=) (>,>)

In other wordsa N b := ax = bx∧ay > by, b is a northly.
An assignmentof a set ofCD constraintsC over the vocab-
ulary B = {N,NE,E,SE,S,SW,W,NW,EQ} is a function
α : V(C) → R

2, mapping each variablex, occuring inC to
coordinates in the real plane.

Over the euclidean plane thesejointly exhaustiveandpair-
wise disjoint-base relations (cp. Fig. 1) with the composi-
tion table (cp. Figure 2) form a relation algebra. In the
first experiment discussed here we used relations from the
setB ′ := B\{EQ} to construct a type of relational reason-
ing task that is referred to as three-term-series-problems(3ts-
problems) in cognitive research (e.g. (Hunter, 1957)). In
these tasks always two statements are used as premises and
the task of the participants is to generate a statement that is
consistent with the premises – the conclusion. E.g.,

A is northeast of B.
B is west of C.

Which relation holds between A and C?

The 3ts-problems can be formally described by the compo-
sition of two base relations and the question for a satisfiable
relation. The set of all possible relations with premisesa R1 b,
b R2 c are denoted by the compositionR1 ◦ R2. Normally, it
is presented as a composition table (cf. Figure 2).

For the above example NE◦W contains the following three
relations: NE, N, NW. Since CD consists of nine base rela-
tions, there are without EQ 64 possible compositions of two
base relations. In other words, exactly 64 different three-
term-series problems exist. If we omit all one-relation cases
(cells with one entry in Figure 2), it results in 40 multiple
relation cases out of the 64 possible compositions. The par-
ticipants of our studies were confronted with all 64 problems
and had to infer a conclusion.

Empirical Data
The first central question we are interested in is: How do peo-
ple reason about cardinal directions? Do they construct pre-
ferred mental models, and if so, what are the principles? An
answer to this question might give hints of how preferences
differ between large-scale spaces and small-scale spaces.For
the latter scale of space, preferences have already been iden-
tified (Ragni, Fangmeier, Webber, & Knauff, 2007).

Participants. 24 students of the University of Freiburg took
part in this web experiment (14m/10f,M = 23.5/22.1,SD=
2.3/2.1). They were paid for their participation.

Figure 2: The preferred relations in reasoning with cardinal
direction. In each cell, the first number gives the number of
correct relations and the relations. In the second row we have
the preferred relation, then in the indeterminate case the rel-
ative frequency of this relation, i.e. how often it was chosen
by the participants and then the error rates.

Materials. The experiment used the whole set of Cardinal
Direction relations presented in Fig. 1. In the main part of
the experiment all participants had to solve the same set of 64
3ts-problems. Here is an example-problem:

A is northwest of B.
B is southeast of C.

Which relation holds between A and C?

In half of the trials we asked for the relation between A and
C and in half of the trials between C and A.

Procedure and Design. The experiment was conducted as
a web experiment (partially conducted at our site for control)
using webexp2. Tasks were presented in a randomized or-
der. The premises were presented sequentially, i.e. the first
premise disappeared when the second premise appeared. In
other words, the participants were forced to hold the premise
information in the working memory. All premises were pre-
sented in a self-paced procedure. Finally, the participants had
to give a relation as an answer.

Overall, 87% of the problems were correctly solved. The
results regarding the preference effects can be found in Fig-
ure 2.

As shown in Figure 2 out of the given 64 problems exactly
24 are determinate problems and 40 are indeterminate prob-
lems. Most of the indeterminate problems exactly 90% (only
4 relations were not significantly preferred:N ◦S, W ◦SE,
W◦E, SW◦E) were solved with a clear preference for one re-
lation. However, it is remarkable that several relations could
have been chosen as a possible conclusion, but, in fact, the
participants chose just one of them and their preferences also
often corresponded.
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Discussion. There are differences between preferred rela-
tions in small-scale spaces and in large-scale spaces. Con-
trary to the small-scale spaces (Ragni, Fangmeier, et al.,
2007) where the first-free fit strategy has been identified in
relational reasoning in large-scale spaces participants used a
first-fit strategy. In other words they inserted the third ob-
ject C in-between A and B (cp. the relationsS◦N andE ◦W
where in the first caseS and in the secondW has been re-
ported). The inverse compositionN ◦S andW ◦E are not
statistically significant.

By a formal analysis it was possible to explain the pre-
ferred mental model in indeterminate cases by the following
distinction

• Principle 1 (In-between Insertion Principle): If the two re-
lations of the composition are inverse (e.g. S and N, W
and E) then the third object C is inserted in-between A and
B,(e.g. A is S of C and B is north of C, and so on).

• Principle 2 (Cut Principle): Choose always the relation in
the geometrical cut of the two relations, i.e. ifNE◦NW is
composed and the relations NW, N, NE are possible than
the relation N is chosen.

The participants preferred the cut between relations, e.g.in
the composition ofNE◦NW andNW◦NE they preferred the
relationN. The same pattern holds as well forSW◦NW and
so on. This gives an indication that without additional infor-
mation they use (independently of projection based or cone
based representation of Cardinal Direction) similar distances.

Theories of Deduction
In this section we ground the intuitively used theories for-
mally (and mathematically) and analyze them with respect to
their reasoning power.

A relational structureis a tuple(D,(Ri)(i∈I)) consisting
of a domainD (sometimes called discourse universe) and a
set of (usually binary) relationsRi (Russell & Norvig, 2003).
For example, geographic knowledge likeNew York is north-
east of Washingtoncan be expressed by cardinal direction
relationsN,NE,E,SE, . . . over the domain of cities. More
complex expressions can be formed by using connectives
like conjunctions (New York is north-east of Washingtonand
New York is in the U.S.) and disjunctions (. . .or . . . ). By al-
lowing negations, we have a propositional relational language
L over cardinal direction relations. Such relational structures
can be used to describeknowledge representation. But how
can new information be derived?

Theory of mental logic
The theory of mental logic (Rips, 1994) assumes that we use
(transitivity) rules to draw conclusions, whereas the classi-
cal model theory argues that we use models for this infer-
ence process. The classical mental model theory (Byrne &
Johnson-Laird, 1989) claims that in multiple model cases (i.e.
more than one model is consistent with the premises) other
models are inspected.

1. West(x,y) & North(z,x) → West(z,y)
2. West(x,y) & North(z,y) → West(x,z)
3. West(x,y) & West(y,z) → West(x,z)
4. West(x,y) ↔ East(y,x)
5. (West(y,x) & West(z,x)) → (West(y,z) or West(z,y))
6. (West(y,z) or West(z,y)) & North(w,z) →

(West(y,w) or West(w,y))

Figure 3: Set of (incomplete) inference rules specified for
spatial reasoning adapted from Van der Henst (2002).

The central idea of this approach can be characterized as
follows: “Reasoning consists in the application of mental in-
ference rules to the premises and conclusion of an argument.
The sequence of applied rules forms a mental proof or deriva-
tion of the conclusion from the premises, where these im-
plicit proofs are analogous to the explicit proofs of elemen-
tary logic” (Rips, 1994, p. 40). Hagert (1984) defined a first
set of spatial inference rules (cf. Fig. 2). This set of ruleshas
been extended by two additional rules (cf. the rules 5 and 6 in
Fig. 2) to deal with indeterminacy by Van der Henst (2002).
The rules in Fig. 2 are successively applied to the premises of
a problem description.

There is, however, no recent theory in explaining the con-
struction of the preferred relations (Figure 2).

Theory of mental models

The mental model theory assumes that the human reasoning
process consists of three distinct phases: Themodel gen-
eration phase, in which a first model is constructed out of
the premises, aninspection phase, in which the model is in-
spected to check if a putative conclusion is consistent with
the current model. In thevalidation phase, finally, alterna-
tive models are generated from the premises that refute this
putative conclusion. The indeterminacy effect is mainly re-
sponsible for human difficulty in reasoning (Johnson-Laird,
2001).

Recent findings indicate a phenomenon encountered in
multiple-model cases, namely that humans generally tend to
construct apreferred mental model(PMM). This model is eas-
ier to construct, less complex, and easier to maintain in work-
ing memory compared to all other possible models (Knauff
et al., 1998). The principle of economicity is the determining
factor in explaining human preferences (Manktelow, 1999).
This principle also explains that a model is constructed in-
crementally from its premises. Such a model construction
process saves working memory capacities because each bit of
information is immediately processed and integrated into the
model (Johnson-Laird & Byrne, 1991). In the model variation
phase, thisPMM is varied to find alternative interpretations of
the premises (Rauh et al., 2000). From a formal point of view,
however, this theory has not been formalized yet and is there-
fore not fully specified in terms of necessary operations to
process such simple problems as were described above.

A modelA is calledconsistentwith a set of premisesΦ
over a relational languageL (mathematicallyA |= Φ) if all
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expressions ofΦ are true inA . Then a conclusionΨ can
be derived from the premise setΦ (mathematicallyΦ |= Ψ,
whereby|= is called theconsequence relation) if

Φ |= Ψ ⇔ All models ofΦ are models ofΨ.
⇔ There is no modelA with

A |= Φ andA |= ¬Ψ.

A modelA with the propertyA |= Φ andA |= ¬Ψ is called
counter-example. It follows if there is a counter-example to
Φ andΨ thenΦ |= Ψ cannot hold.

This classical (mathematical) consequence relation, how-
ever, does not explain how initial mental models are con-
structed and varied (Rauh et al., 2000). Since there is a huge
empirical evidence supporting the preferred mental model
theory for different calculi (Rauh et al., 2000; Ragni, Fang-
meier, et al., 2007; Ragni, Tseden, & Knauff, 2007) it seems
worth to ground this theory mathematically.

A Probabilistic Approach
As already stated, a new approach are probabilistic models
(Oaksford & Chater, 2007) to explain preferred relations.
Those are based on the consideration to use probabilities in-
stead of truth values as the representation of semantics. This
is a valid consideration as a probability might be interpreted
in asubjectivemanner describing a subjective degree of belief
rather than a relative frequency of an event. Following this
subjective interpretation probability theory can be utilized for
belief updating and inference. The probabilistic approachto
inference is based on:

P(“If p thenq”) = P(q|p). (1)

Thus, the probability of a conditional proposition is identified
with the conditional probability of the proposition. The a-
posteriori belief in the factq in face of certainty about the
fact p is given by the a-priori conditional probability:P1(q) =
P0(q|p), if P1(p) = 1. This is called “conditionalization”. It
constitutes the basis of probabilistic inference.

The probabilistic representation of conditionals as givenin
equation 1 enables the application of Bayes’ theorem:

P(q|p) =
P(p|q) P(q)

P(p)
(2)

This has two advantages: First, whereasP(q|p) is a rather ab-
stract value, the probabilities of its right hand side can often
be derived from the agent’s experience. Second, it implies
basic patterns of performance while reasoning with condi-
tional propositions which appear as “errors and biases” from
a logicistic standpoint.

Bayesian Rationality arises from a rational analysis of the
problem, the environment, and the constraints of an agent
while conducting deductive tasks. As such, it is not a the-
ory of the actually psychological processes in use, but a de-
scription of general regularities. It is further independent of
cognitionaboutprobabilities. It shows that cognition often
obeys the laws of probabilistic theory.

The following models1 are to reproduce the frequency dis-
tribution of the 3ts-task on cardinal directions this way.

Spatial Bayesian Models The spatial reasoning task of
the previous section uses the set of cardinal relationsB

′ =
{N,E,S,W,NE,SE,SW,NW}. The statement of an item in
the 3ts-task is given by a pair of relationsR1,R2 ∈ B

′ with
aR1b andbR2c for three locationsa,b,c. The subject’s guess
for the relation betweena andc is another relationR3 ∈ B

′.
The relative frequency ofR3 for an itemR1,R2 will be re-
ferred to asfR1,R2(R3).

The objective of a Bayesian model for the 3ts-task is to im-
plement a probability distribution ofR3 parametrized by the
task itemR1,R2, i.e.PR1,R2(R3). This probability distribution
is assumed to be a prediction of the experiment’s relative fre-
quenciesfR1,R2. Thus, modelM’s preferred relation given the
task’s relationsR1 andR2 is

M(R1,R2) := argmax
R3∈B ′

PR1,R2(R3).

The per-item probability distribution ofR3 can be identi-
fied with the probability ofR3 conditioned by the item’s re-
lations. Therefore, it further allows the application of Bayes’
theorem (equation 2):

PR1,R2(R3) := P(R3|R1,R2) =
P(R1,R2|R3) P(R3)

P(R1,R2)
(3)

Consequently, it is sufficient for a Bayesian model of the 3ts-
task to specify merely the reversed conditional probability
P(R1,R2|R3) as well as the marginal probabilitiesP(R3) and
P(R1,R2).

The following sections will describe such implementa-
tions. The quality of each modelM will be compared to the
empirical data by three factors: a) the mean correlationCM

betweenPR1,R2 and the empirical datafR1,R2, b) the sumEM

of the squared differences betweenPR1,R2 and fR1,R2 and c) the
numberNM of correctly predicted preferred relations.

The Unit Layout (Model M1) The computation of
PM1(R1,R2|R3) is based on a heuristic for detours when mov-
ing by R3 in the so calledunit layout. R1 andR2 describe the
detour. The farther the detour the smaller is the conditional
probability ofR1,R2.

The unit layout is a rectangular subset ofZ
2 and separately

defined for each directionR3. The brackets[·]R3 map the lo-
cationsa andc each to a field inZ2 such that[a]R3 R3 [c]

R3.
Each pair of relationsR1,R2 with R3 ⊂ R1 ◦R2 is likewise
mapped to a field inZ2 by [·]R3 such that

[a]R3 R1 [R1R2]
R3 and [R1R2]

R3 R2 [c]
R3 .

The fields[a]R3 and[c]R3 must be chosen in such a way that
each[R1R2]

R3 is definite. That way, the unit layout is definite
in Z

2 up to translations. Figure 4 shows the unit layout for
R3 = NW.

1The source code is available athttp://tiny.cc/hmi3f.
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SE-NW S-NW SW-NW SW-N SW-NE

E-NW a W-NW W-N W-NE

NE-NW N-NW NW-NW NW-N NW-NE

NE-W N-W NW-W c NW-E

NE-SE N-SE NW-SE NW-S NW-SE

Figure 4: Theunit layoutfor R3 =NW. Fielda is to the north-
west ofc. All other field are uniquely labeled with relations
R1-R2. It holds for each of them that fielda is R1-wards of it
and it isR2-wards ofc.

For R3 ⊂ R1◦R2, the unit layout entails the costs of a “de-
tour” moving from field[a]R3 via [R1R2]

R3 to [c]R3 utilizing a
metricd onZ2.

cR3
R1,R2

:=
d([a]R3 , [R1R2]

R3)+d([R1R2]
R3 , [c]R3)

d([a]R3 , [c]R3)

The costscR3
R1,R2

for R3 6⊂ R1 ◦R2 are defined by the model
parameterdistimposs. This cost measure entails the wanted
conditional probability:

PM1(R1,R2|R3) :=
cR3

R1,R2

−1

∑R′
1,R

′
2∈B

′ cR3
R′

1,R
′
2

−1
.

This points out the influence of the model parameter
distimposs: For infinity, the model performs accurate and it
simulates errors for positive numbers.

This is how modelM1 computes the conditional probabil-
ity of the right-hand side of equation 3. The marginal prob-
ability of PM1(R3) is a unit distribution which can be fur-
nished with a probability gain for the main cardinal direc-
tions bycardinalgain and an additional gain towards the west
bywestgain. The probability ofPM1(R1,R2) is assumed to be
a unit distribution.

Parameter Variations Varying the metricd between Eu-
clidian, Manhattan, and maximum had no noteworthy effect
on the quality estimation factors (CM, EM, NM). So we chose
the euclidian metric, as it matches the intuitive concept ofdis-
tance best. The model parameterdistimposs was varied sys-
tematically between 20 and 200, the parameterscardinalgain

andwestgain were varied between 0.1 and 0.9.
We found a maximal convergence against the em-

pirical data with model parametersdistimposs = 150,
cardinalgain= 0.2, andwestgain= 0.2.

It has a mean correlationCM1 = 0.91, a summed error of
EM1 = 2.82 and predicts the preferred relation correctly in
NM1 = 59 cases. This instance of modelM1 has a mean cor-
relation of 0.96 in 60 items of the task. Nevertheless, the
mean correlation for the task items with opposing intermedi-
ate directions is as little as 0.17. This suggest the appearance
of another strategy in these cases.

R2 = N

0
1

R2 = NE R2 = E R2 = SE

R2 = S

N NE E SE S SW NW

0
1

R2 = SW

N NE E SE S SW W NW

R2 = W

N NE E SE S SW W NW

R2 = NW

N NE E SE S SW W NW

Figure 5: Relative frequencies ofR3 for task items withR1 =
NE from the experiment (circles:◦) as well asM1’s (pluses:
+), andM2’s (crosses:×) probabilities .

A Secondary Strategy (Model M2) Model M2 is an ex-
tension of the model presented in the preceding section. It
adds a probability gaingR1,R2 to the value ofPM1

R1,R2
. This

gain implements priming effects on the relationsR1 andR2.
The amounts of priming towardsR1 andR2 are controlled by
the model parametersfirstprim andsecondprim, respectively.
Values of 0 each void the priming effect.

The extent of this probability gain is in turn controlled per
task item by the certaintyzR1,R2 of M1

zR1,R2 := max
R3∈B ′

PM1
R1,R2

(R3).

The (yet to be normalized) probability distribution ofM2 is
defined as

PM2
R1,R2

(R3) := zR1,R2 ·P
M1
R1,R2

(R3) +(1−zR1,R2) ·gR1,R2(R3).

It weakensM1’s probability distributionPM1
R1,R2

and strength-
ens the priming effectgR1,R2 as a function of decreasing cer-
tainty.

Parameter Variations In a systematic search through the
parameters of modelM1 as well asfirstprim andsecondprim
we found an instance ofM2 with mean correlation ofCM2 =
0.94, summed errorEM2 = 2.67 andNM2 = 62 correctly pre-
dicted items. Along with it, this instance has a mean correla-
tion of 0.73 for the task items with opposed intermediate di-
rections. The parameters weredistimposs = 180,cardinalgain
= 0.1,westgain = 0.2,firstprim = 0.3 andsecondprim = 0.2.

Figure 5 shows results both from modelM1 and M2 for
R1 = NE. M2’s improvement is apparent forR2 = SW.

Interpretation
The following lines give a clue of how the found model pa-
rameters can be read as a hints on the underlying cognitive
processes.

Utilizing Experience The first model,M1, shows that the
spatial reasoning task can be modelled by a Bayesian ap-
proach. The computation ofP(R3|R1,R2) is based on an “in-
tuition of the benefit” to move towardsR1 first and then to-
wardsR2 to attain towardsR3 overall. This intuition might
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reflect complying knowledge of the subject arising from ba-
sic experience navigating through the world.

It was possible to further increase the convergence of
the model towards the empirical data by means of higher
marginal probabilities of the cardinal directions, and addi-
tionally the west. This might reflect frequency effects for the
cardinal directions as well as an effect of the reading direction
for the western direction.

Shifting Strategies Whereas modelM1 behaved poorly for
tasks with opposed intermediate directions, modelM2’s cor-
relation on those could be improved by simulating priming
effects on the relations given by the current task item. Those
tasks excel in a high uncertainty about the answer. This sug-
gests the subjects shift their strategy to be driven by priming
effects under uncertainty.

General Discussion
If incomplete information is available only (i.e. several rela-
tions are possible), humans tend to take a relation more into
account than others. This finding complements a series of
findings for preferred spatial reasoning with intervals (Rauh
et al., 2000), with the spatial relations right and left (Jahn,
Knauff, & Johnson-Laird, 2007), and with topological rela-
tions (Ragni, Tseden, & Knauff, 2007).

Our starting point was the question if it is possible to model
preference effects for cardinal directions in both theories (the
Mental Model Theory and the Bayesian rationality) based on
heuristics. Only by a formalization it is possible to compare
human reasoning to approaches in AI. A formal handling of
the preferred mental model theory by a consequence relation
allows to make precise predictions about which kind of con-
clusion(s) are drawn (from a given set of premises) and which
are neglected. These heuristics can be described by two prin-
ciples: the in-between insertion principle and the cut princi-
ple. Both together can explain the preferences in the com-
position table (Figure 2) and support the theory of cognitive
economicity (Manktelow, 1999).

The primer raised question, if the Bayesian approach is ex-
pressible enough to model preference effects in spatial rea-
soning (with cardinal directions) can be positively answered.
Moreover, it reproduces the full frequency distribution quiet
well: The first model is based on a heuristic for detours which
explains the preferences (Figure 2). It has a mean correlation
of 0.91 and predicts the preferred relation correctly in 59 from
64 cases. The second model which adds a priming effect leads
to an increase from 0.17 to 0.73 in the correlation in the four
cases of opposed intermediate directions.

A possible limitation of the Bayesian model is connected
to the certainty of the conclusion. While each statement is
given with absolute certainty (Berlin is north-east of Paris)
a conclusion has only a degree of certainty. Taken together,
the results clearly indicate that the preference effect canbe
explained by heuristics in both mental models and bayesian
approach. Further research necessarily requires an investiga-
tion for a general heuristic explaining preference relations for

the diverse spatial calculi.
One point, however, is certain: the role of heuristics has

been vastly underestimated in explaining the preferences in
spatial reasoning.
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