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Abstract

Theories of causal reasoning and learning often implicitly as-
sume that the structural implications of causal models and
empirical evidence are consistent. However, for probabilistic
causal relations this may not be the case. We propose a causal
consistency hypothesis claiming that people tend to create
consistency between the two types of knowledge. Mismatches
between structural implications and empirical evidence may
lead to distortions of empirical evidence. In the present re-
search we used trial-by-trial learning tasks to study how
people attempt to create consistency between structural as-
sumptions and learning data. In Experiment 1 we show bias-
ing of empirical evidence with causal chains even after re-
peated testing of direct and indirect relations. Experiment 2
investigates whether different causal models lead to different
judgments, despite identical data patterns. Overall, the find-
ings support the idea that people try to reconcile assumptions
about causal structure with probabilistic data, but also suggest
that this may depend on the type of causal structure under
consideration.
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Causal Reasoning and Empirical Evidence in
Covariation Assessment

Probability judgments about indirect causal relationships
may be based on direct observations of covariations be-
tween events (empirical evidence) or they may be derived
from top-down assumptions about the underlying causal
structure (structural knowledge). The crucial advantage of
causal model knowledge is that we can make inferences
about relations which we have not directly observed. For
example, we may first learn about a causal relation A—B,
and later about a causal relation B—C. By combining the
single links into a causal chain A—B—C we can make infe-
rences regarding the initial event A and the final event C.
For example, deterministic causal relations warrant transi-
tive inferences, that is, the occurrence of A allows us to infer
that C is present, too (like in logical ‘Modus Barbara’).
However, most causal relationships tend to be probabilistic:
a virus does not always cause a disease; a gene does not
always cause a phenotypic trait. Crucially, in the case of
probabilistic relations, transitivity relations do not necessari-
ly hold (see Ahn & Dennis, 2000; von Sydow, Meder, &
Hagmayer, 2009). However, causal models may neverthe-
less be used for assessing indirect relations from knowledge
of direct relations, in a way that is inconsistent with direct
empirical evidence.
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Figure 1: A causal chain, a common cause (CC) and a
common effect (CE) model.

The representation of causal relationships in qualitative
causal models (Gopnik et al., 2004; Rehder, 2003; Sloman,
2005; Waldmann, Hagmayer, & Blaisdell, 2006; Waldmann
& Holyoak, 1992) and in causal Bayes nets (Pearl, 2000;
Spirtes, Glymour, & Scheines, 1993) suggests that people
only represent direct causal relations and infer other rela-
tions from these causal models based on abstract assump-
tions about the structures. At the center of the Bayes net for-
malism is the causal Markov condition, which states that a
variable in a causal network is conditionally independent of
all other variables apart from its effects, given its direct
causes. If the Markov condition holds, a causal chain (Fig.
1a) with positive direct relations, A—>B and B—C, entails a
positive contingency between variables A and C. More spe-
cifically, the conditional probability of A given C, P(C|A), is
given by:

P(CIA) = P(BJA) - P(C|B) + P(=BJA) - P(C|-B) 1)

Similarly, other indirect conditional probabilities can be
derived from applying the Markov condition to the causal
model. If we have a common cause model (CC, cf. Fig. 1b)
A«B—C, the Bayes net formalism implies a positive rela-
tion between A and C. On the other hand, if the variables are
linked in a common effect structure A—»B<«C (CE, cf. Fig.
1c), no positive relation between A and C is entailed.

From a computational point of view, the Markov assump-
tion is used as prerequisite for inducing causal structures
from conditional dependency and independency relations,
and as a basis for probabilistic inferences across complex
causal networks (Spirtes et al., 1993; Pearl, 2000). On the
other hand, the status of the Markov condition as a neces-
sary and universal feature of causal representations has been
criticized (Cartwright, 2001). However,, the status of the
Markov condition in human causal reasoning is still under
dispute (e.g., Rehder & Burnett, 2005; Mayrhofer, Good-
man, Tenenbaum, & Waldmann, 2008).
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A Causal Consistency Hypothesis

A number of studies in causal learning have shown that
people tend use initial assumptions about causal models and
do not tend to necessarily verify whether the assumptions
underlying the model hold in the data. For example, Wald-
mann and Hagmayer (2001) showed that people make use of
instructions regarding causal structures when assessing
causal strengths, even when the data contradicted the initial-
ly suggested causal model. Waldmann, Meder, von Sydow
and Hagmayer (2010) connected this research with categori-
zation and demonstrated similar effects of category transfer
with variable categorization schemes.

Similar phenomena may arise when participants are re-
quested to make inferences about indirect relations within
causal models. Previous research on inferences about indi-
rect relations in causal chains has shown that people have a
tendency to assume the Markov condition when making
inferences from an initial event A to the final event C. Ahn
and Dennis (2000) and Baetu and Baker (2009) have pre-
sented participants with data about direct relations between
binary events. Learners’ inferences about the indirect rela-
tions were consistent with the use of the Markov condition.
However, they only investigated inferences in the absence
of any evidence regarding the indirect relation.

Von Sydow, Meder and Hagmayer (2009) provided direct
evidence about the indirect relation when learning causal
chains. They showed that participants reasoned transitively
(apparently assuming the Markov condition) even if the
learning data provided evidence against transitivity. The
present research continues in the wake of this work. Partici-
pants are again provided with data about the indirect rela-
tion. In addition, the influence of the amount of learning
input, task features, and different causal structures are ex-
amined. We here particularly focus on the interplay between
the implications of causal structures when the Markov con-
dition is assumed and the observed data sample. Consider
the data shown in Table 1. In these data, it holds that P(B|A)
= 0.75 and P(C|B) = 0.75. Nevertheless, according to the
data there is no contingency between A and C, since P(C|A)
= P(C|-A) = 0.5. However, if we used these data to parame-
terize a causal chain A—B—C, and assumed the Markov
condition, this causal model would imply that there is a
positive contingency between the initial event A and the
final effect C (i.e., P(C|A) > P(C|-A), cf. Equation 1). Thus,
depending on whether we assess the indirect relation be-
tween A and C directly from the data, or induce a causal
model from the data and use the model to make inferences
regarding indirect relations, we may arrive at very different
conclusions. However, whether there is a potential tension
between structural knowledge and data depends on the exact
structure of the causal model. For example, a common effect
model A—>B<«C (Fig. 1c) does not entail a statistical depen-
dency between A and C, as in this model the two events
constitute independent causes of their common effect B.

Our causal consistency hypothesis suggests that when
there is a mismatch between the causal model’s structural
implications and the observed data, people will create con-

Table 1: Sample of intransitive data from Experiment 1.

A B C
1 present present present
2 present present present
3 present present absent
4 present absent absent
5 absent present present
6 absent absent present
7 absent absent absent
8 absent absent absent

sistency by aligning the observed evidence with the causal
model’s implications. As a consequence, for an actually
intransitive causal chain one should observe an overestima-
tion of the statistical relations between the indirectly linked
events A and C. For example, if learners assume the Markov
condition when inducing a causal chain they should infer
P(CJA) > P(C|-A). This should also hold for common cause
structures (but see von Sydow et al., 2009). By contrast, a
common effect model implies no statistical dependency
between A and C, as they represent independent cause of
their common effect B. Thus, for this model there should be
no conflict between the structural knowledge and the ob-
served empirical probabilities.

Another potentially important factor which may affect
how people deal with conflicts between structural implica-
tions and empirical evidence are the number and the focus
of the test questions. In a previous study (von Sydow et al.,
2009), participants were confronted with a causal chain and
intransitive data, which did not show a positive statistical
relation among the initial cause A and the final effect C,
although the direct causal relations were positive. In these
studies participants were first queried about the direct causal
links before being asked about the indirect causal relation
among A and C. Although participants had all relevant data
available, they misjudged the relation between A and C to be
positive. However, when participants are queried more often
about the indirect relation, they may assess the relation
directly, thereby arriving at estimates that correspond more
closely to empirical probabilities.

Goals of Experiments and Hypotheses

The goal of the first experiment was to investigate how task
features affect the integration of structural knowledge and
empirical evidence. Participants were either asked frequent-
ly or only once about the indirect causal relation. We sus-
pected that frequent queries would direct participants’ atten-
tion to the empirical evidence regarding the indirect causal
relation. Unlike in our previous studies (von Sydow et al.,
2009) we presented subjects with trial-by-trial data instead
of grouped data. Moreover, we used simpler dichotomous
learning items, as opposed to variable category exemplars.
Our goal was to find out whether these changes would make
the empirical conditional probabilities more salient, thereby
leading to judgments corresponding closer to the learning
data. The main goal of Experiment 2 was to study other
causal structures as well. While keeping the trial-by-trial
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contingencies identical, we aimed to investigate whether the
different possible causal structures modify the distortion of
the empirical evidence. Participants were instructed about a
causal chain, a common cause or a common effect model
(Fig. 1). Their task was to investigate conditional probabili-
ties between the direct and indirect causal relations. As
outlined above, applying the Markov condition to these
causal models leads only to a mismatch between data and
model-based inferences in the chain model and in the com-
mon-cause model, but not in the common-effect model.

Experiment 1

Experiment 1 studied conditional probability judgments
after successive trial-by-trial learning of two generative
causal relations, A—B and B—C, which were instructed to
be part of a causal chain. Assuming the causal Markov con-
dition, these relations imply a positive contingency between
A and C. However, the learning data showed no statistical
dependency between A and C, that is, P(C|A) = P(C|-A) =
0.5. We explored how the structure of the learning course,
such as repeated queries about P(C|A) might affect learners’
estimates.

Methods

Design Experiment 1 had three conditions, each of which
comprised eight learning phases and up to 12 test phases.
Figure 2 depicts the succession of the phases. In all condi-
tions, in the final test phase (P20) we requested estimates of
the conditional probability P(C|A) (Fig. 2). The state of all
three events A, B, and C was presented simultaneously dur-
ing learning, although the instructions focused participants
on the direct relations of the causal chain, A—B and B—C.
Moreover, the directly linked pairs were circled to highlight
their causal relation. After each learning phase, participants
were requested to give probability estimates of the respec-
tive direct causal relation (A—B or B—C). Because of the
focus on direct relations we expected a substantial influence
of structural knowledge.

In Condition 2 (C2), participants were also focused on the
direct causal relations, but the conditional probability esti-
mates of the indirect relation (P(C|A)) were additionally
requested several times during learning (Fig. 2). This proce-
dural change was intended to draw participants’ attention to
the indirect relation as well. We expected that repeated
testing of the A-C relation would strengthen the influence of
the empirical data.

Condition 3 (C3) served as control condition to ensure
that participants used the scales correctly and were able to
detect the zero contingency between A and C. In this condi-
tion participants only received the subset of information
about the relation between A and C (cf. Fig. 2, Table 2).
Participants Sixty students from the University of Gottin-
gen took part in the experiment for course credit or were
paid 5€. They were randomly assigned to the conditions.
Procedure and Material Participants were instructed to
take the role of a developmental biologist investigating
newts that undergo a metamorphosis. The metamorphosis

proceeded in three stages. In each stage a particular type of
carotene (Alpha, Beta, and Gamma; henceforth denoted as
A, B, and C) could occur or not occur. These carotenes may
or may not affect the presence of other carotenes in a later
stage.

Learning and Test Phases

P1 P2 P3 P4 P5 P6 ... P20
Learn Test Learn  Test Learn Test
Cl A—B, P(BJA) A, P(CB) — A—-B, ... P(CJA)
s C B—C C
E Learn Test Learn  Test Test  Learn Test
S C2 A—B, P(BJA) A, P(CB) P(CIA) A—B, ... P(CA)
o c B—C C
Learn Learn Test  Learn Test
C3 Asc — A-C  —  P(CA) A-C -+ P(CIA)

Figure 2: Design of Experiment 1

In the first condition (C1) participants were asked to as-
sess one of the two causal relations after each learning phase
(cf. Fig. 2), alternating between the first relation (A—B) and
the second (B—C). Although in all learning phases all three
events were shown, participants were only asked about the
indirect relation between A and C after all eight learning
phases. Condition 2 was similar, but here participants were
asked to assess the indirect relation between A and C after
every other learning phase (see Fig. 2). In the control condi-
tion (C3) participants only observed the relation between A
and C. After every second learning phase learners had to
assess P(CJA).

In the two experimen-
tal conditions (Cl1 and

Table 2: Learning data in Expe-
riments 1 and 2.

C2) information about Pattern Phase  Total
the state (present vs. A B C 6 48

absent) of all three types A B -C 3 24
of carotene was presented

in a trial-by-trial learning A -B -C 3 24
procedure. Table 2 shows A B C 0 0

the learning input. In ~A B -C 0 0

each of the eight learning -A B C 3 24
phases, 24 newts were _a B C 3 24
presented in randomized “A —B =C 6 48

order. In total, 192 newts Al 24 192

were shown. The empiri-
cal conditional probabilities were: P(BJA) = P(C|B) = 0.75,
P(B|-A) = P(C|-B) = 0.25, P(C|A) = P(C|-A) = 0.5. Thus,
in the data there was a zero contingency between C and A.
The probabilities entailed by the chain model assuming the
Markov condition were P(C|A) = 0.625 and P(C|-A) =
0.375, that is, a positive contingency.

Based on the outlined design (cf. Fig. 2) three types of
test phases were used, in which we assessed participants
estimates of the relations between A and B, B and C, and A
and C. For each judgment we used a rating scale ranging
from -100 to +100. For instance, when accessing P(C|A),
participants were asked whether newts that had developed
Alpha carotene (A) in the first stage rather tended to develop
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Gamma carotene (C) or to develop no Gamma carotene
(=C) in the subsequent stage. The scale ranged from -100
(‘newts with Alpha carotene never develop Gamma caro-
tene’) to +100 (‘newts with Alpha carotene always develop
Gamma carotene’) in steps of 10. The middle point of the
scale, 0, was labeled ’Alpha and Gamma carotene occurred
together only by chance‘ (i.e., with P(C|A) = 0.5).

Results

Figure 3 shows the means of participants’ ratings concern-
ing the probability of B given A, of C given B, and of C
given A over the course of learning (the different measure-
ment points are denoted as t1 to t4).

Panels 1 and 2 reveal that participants detected the po-
sitive causal relation between the directly linked events
quickly and rated the probabilities P(B|A) and P(C|B) rough-
ly correctly (P(BJA) = P(C|B) = .75 or +50 on the used
scale). Panel 3 shows learners’ estimates of the indirect
relation P(C|A). The results suggest that in both experimen-
tal conditions (C1 and C2) the estimates were affected by
structural knowledge. While in the control condition (C3)
learners® estimates were around zero (corresponding to a
probability of P(C|A) = 0.5), a very different pattern of judg-
ments was obtained in the two experimental conditions. In
both condition C1 and C2 participants gave judgments
above zero; and the obtained estimates also differed from
the control condition (C3). The results of C1 complement
previous findings by showing that abstract causal know-
ledge guides learning and reasoning even when people are
provided with almost 200 trials on the state of all three va-
riables with a shown objective zero contingency. Nonethe-
less, the average estimate of P(CJA) was actually about as
high as if it were exclusively based on inference assuming
the Markov condition (cf. Equation 1, P(C|A) = .625, or +25
on the used scale). The second condition (C2) illustrates the
interplay between abstract causal knowledge and empirical
evidence over the course of learning. From the first (t1) to
the last measurement (t4) participants’ estimates of the indi-
rect relation A-C declined, showing the influence of the
learning data. Nevertheless, even in the last test phase (t4)
the judgments were above zero and higher than in the con-
trol condition. An analysis of variance of the final judg-
ments with the three conditions as between subjects factor
yielded significant results, F(2,56) =6.95, p<.05 MSE
=594.0. Additionally, we computed pair-wise comparisons,
with a significant contrast between C1 and C2 (Mc¢; = 24.5,
Mc, = 8.5) (F(1, 56) = 17.21, p <.0001), as well as between
C2 and C3 (M¢3 = -7.5; F(1, 56) = 4.40, p < .05) and be-
tween C1 and C2 (F(1, 56) = 4.31, p <.05).

In sum, Experiment 1 supports the idea that subjects’
judgments for indirect causal relations were derived from
causal model representations obeying the Markov condition,
even when the available evidence indicated that this condi-
tion did not hold. C1 shows that even after a long period of
learning of zero contingencies, a positive contingency be-
tween the initial and final event was inferred. The difference
between C1 and C2 shows that the impact of evidence also

depends on the attentional focus during learning: when the
attention is directed more clearly to the indirect relation, the
distortion of the learning by top-down inferences is reduced.
But even after almost 200 trials the bias did not disappear
completely.
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Figure 3: Mean judgments (£SE) in Experiment 1. t1 to t4

denote measurements at different points in time over the
course of learning.

Cl, C2 eachn =20 C1,C2,C3eachn=20

Experiment 2 — Causal Models

In Experiment 2 we investigated further causal structures. In
addition to a causal chain we also used a common cause and
a common effect model (Fig. 1). The learning data presented
to participants were identical in all conditions and corres-
ponded to Experiment 1 (Table 2). Although in the experi-
ment participants were confronted with identical data about
the three events the mapping of the events to their causal
roles differed. In the chain condition A caused B and B
caused C, in the common cause condition B was the com-
mon cause of A and C, and in the common effect condition
A and C were independent causes of their common effect B
(Fig. 1). If participants’ mental causal models obeyed the
Markov condition, increased values of P(C|A) should be
obtained in the chain and the common cause condition, but
not in the common effect condition. Due to the lack of a
mismatch between model and data in the CE model, partici-
pants should provide ratings corresponding to the empirical
conditional probability of P(C|A) = 0.5.

Methods

Participants 150 students from the University of Gottingen
participated for course credit or 5€. They were randomly
assigned to one of the three causal model conditions.

Procedure and Material The procedure was almost iden-
tical to Condition 2 of Experiment 1 (Fig. 2), apart from the
manipulations of the initial causal model assumptions. A
different cover story was used, concerning the development
of the metabolism of ravens. As causes and as effects we
used three substances, which could be present or absent in
different developmental stages of the ravens: Xantan, Yojan,
and Zetosan (henceforth denoted as A, B, C). Participants in
all condition were informed that they would have to answer
questions about the potential direct causal relations (be-
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tween A and B, and between B and C) as well as about the
indirect relation between A and C after the learning phases.
The causal links be present or absent.

The task investigated whether people assumed the Mar-
kov condition to hold when integrating single links into a
larger causal structure. Although the instruction may well be
interpreted to put a higher prior probability on the respective
causal structures, the instructions were completely silent on
whether one should assume the Markov condition. Hence,
this provides a test for whether participants implicitly as-
serted the Markov condition and distorted the empirical
probabilities accordingly.

Like in Condition 2 of Experiment 1 there were eight suc-
cessive learning phases showing all three events A, B, and
C. Again participants were focused on the respective direct
causal relationship by the instructions and a circling of the
directly related events. The data patterns were randomized
within each learning phase; the learning data was identical
in all conditions (Table 2).

In the test phases participants were again asked to assess
conditional probabilities on a scale between +100 and -100
(cf. Experiment 1). When investigating the direct relations
between A and B and B and C we assessed conditional prob-
abilities in the causal direction (chain: P(A|B), CC: P(B|A)).
But note that in our learning data both conditional probabili-
ties were identical (P(BJA) = P(A|B). The wording of the
question for P(CJA) was identical, irrespective of condition.

Learning and Test Phases

P1 P2 P3 P4 P5 P6 ... P20
Learn Test  Learn  Test Test Learn ... Test
A—B, P(BJA) A, P(CB) P(CJA) A-B, P(CIA)

C B—C C

Figure 3: Design of Experiment 2.

Results

Figure 4 shows participants’ mean estimates in the three
conditions (Panel 1 — 3) across the four test phases (t1 — t4).
Estimates of P(B|A) and P(C|B) were all positive, although
they underestimated the correct value. With regard to the
crucial estimate, P(C|A), an inspection of the data reveals
that the results of the chain condition replicate the results of
Exp. 1, but that the expected effect for the CC model was
not obtained. Consistent with our predictions, participants’
estimates in the CE condition were close to zero. We con-
ducted an ANOVA with the test phases (t1 to t4) as within-
subject factor and causal structure (Chain, CC, CE) as be-
tween-subject factor. This resulted in a significant main
effect of causal structure, F(2, 147) = 4.34, p < .05, MSE =
2312. No other effects proved significant. The pair-wise
contrasts between the chain and the CE condition and be-
tween the chain and the CC condition yielded significant
differences, F(1, 147) = 5.31, p < .05 and F(1, 147) = 7.52,
p <.01. However, the contrast between the CC and CE con-
dition was not significant: F(1, 147) = 0.19, p = .66. A test
of the mean estimates of P(C|A) against zero showed that
only the chain condition consistently and significantly dif-
fered from zero, with no reduction over time. (Chain: t1,

t(50) = 2.49, p < .05; t2, t(50) = 2.04, p < .05; 3, t(50) =
2.98, p < .01; t4, t(50) = 3.27, p < .01; CC: t1, t(50) = -0.90,
p = .37; 2, t(50) = -0.66, p = .51; t3, t(50) = .43, p = .66; t4,
t(50) = -0.41, p = .68; CE: t1, t(50) = -0.19, p = .84; t2, t(50)
.99, p =.32; 3, t(50) = -0.49, p = .62; t4, t1, t(50) = .15, p
.88).
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Figure 4: Means (+SE) of conditional probability esti-
mates on a scale from -100 to +100 for the three causal
structures (chain, common cause (CC), and common effect
(CE)) across the four test phases (t1 to t4).

In sum, Experiment 2 replicated the biasing effect of
structural knowledge with causal chains. As predicted by
Bayes nets, no such effect was found for the common effect
model for which top-down assumptions and empirical evi-
dence were consistent with each other. Interestingly, no
effect was obtained for the common cause model.

We can only speculate why we did not find an effect in
the CC condition. Maybe the Markov condition is more
intuitive in causal chains, in which the intermediate event
can be easily represented as separating the initial from the
final event. In contrast, screening-off relations may be hard-
er to envision in common cause structures in which the
intermediate event simultaneously causes several effects
(see Cartwright, 2001). Actually, von Sydow et al. (2009)
suggested that CC structures may often be interpreted to
violate the Markov assumption, at least if one is concerned
with the predication of attributes of a category (without
representing alternative causes of the attributes). Attributes
of categories are often represented as CC structures (Rehder,
2003). It has been argued that people may represent dif-
ferent kinds of noisy logical interaction patterns of such
attributes (including XOR) (von Sydow, 2009). If such
judgments correspond to a causal logic of CC structures,
they would violate the assumption of conditional indepen-
dence and unconditional positive correlation between effects
(the Markov condition). However, further research is needed
to connect models of noisy logical predication with theories
of causal induction.

Another possibility may be that attentional factors caused
the low ratings in the CC and CE condition, since we
switched the direction of the question formats for the local
causal links (e.g., P(A[B) in the chain and P(BJA) in the CC
condition). Although, a predictive question format seemed
to be most natural to elicit the causal representations that we
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aimed to manipulate, this remains a factor that should be
controlled for in future research.

General Discussion

The results of Experiment 1 corroborate our prediction that
in a causal chain A—»B—C conditional probability judg-
ments about the indirectly linked events A and C will be
distorted by structural assumptions of the underlying causal
model. We investigated the influence of causal inferences
based on the Markov condition when learning such rela-
tions. Going beyond previous studies (Baetu & Baker, 2009;
Ahn & Dennis, 2000), we provided data on the indirect
relation, which showed a zero contingency. Hence, transitiv-
ity did not hold in the data (cf. von Sydow et al., 2009). In
Experiment 1 we investigated this issue in a trial-by-trial
learning scenario, assessing the role of repeated questions.
The conditional probability estimates of P(C|A) matched the
values that would have been predicted if people estimated
this probability based on their knowledge about the direct
relations and structural assumptions about causal models
(i.e., the Markov condition). This biasing effect was re-
markably stable even if people obtained contradicting em-
pirical evidence in several learning phases and were repeat-
edly queried about the indirect relation, which was intended
to draw participants’ attention to the indirect relation. With
repeated queries the influence of causal reasoning became
smaller, but did not disappear even after almost 200 trials.

Experiment 2 confirmed that chains and common effect
structures (A—B «-C) led to different judgments of P(C|A)
despite identical learning input. As predicted by causal
Bayes nets, a biasing effect only occurred in the chain con-
dition in which the data violated the structural constraints
underlying chains. Consistent with this idea, no influence of
structural knowledge was obtained for the common effect
model. Interestingly, in the common cause structure
(A«~B—C) we did not found an influence of the causal
model on participants’ judgments. The reasons for this fail-
ure are unclear at present. One hypothesis may be that
people find the Markov condition less plausible for these
models (see also von Sydow et al., 2009). Alternatively,
attentional effects during learning may have had an effect.

Taken together, the results provide further evidence for
our claim that people try to create consistency between
structural top-down knowledge and empirical evidence
when making probabilistic causal inferences (von Sydow et
al., 2009; cf. also Waldmann et al., 2010).
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