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Abstract 

Positive priming effect has been found with a short interval 
between the prime and the target, while negative priming effect 
(i.e., a congruent prime causes longer RTs) has been found with 
a long time between the prime and the target. Negative priming 
effect has been shown mainly using masked priming but some 
recent studies have shown it without masks (i.e., in unmasked 
or conscious conditions). We employed our previous model of 
masked priming for the unmasked condition here, only by 
removing mask presentation. The model successfully simulated 
the negative priming effect in unmasked condition found in 
previous experimental studies. 

Keywords: Negative congruency effect; Negative 
compatibility effect; modeling; attention; consciousness. 

Introduction 
Studies on priming have long shown reliable positive effects 
of the congruent prime on target processing. An early study, 
in the age of using tachistoscopes, was one conducted by 
Marcel (1983) on word and color naming. The effect of 
masked priming showed that masked stimuli are indeed 
processed to the level of response. Later studies on 
unmasked and masked conditions showed similar results 
both for masked priming (e.g., Neumann & Klotz, 1994; 
Dehaene et al., 1998; Eimer & Schlaghecken, 2002) and 
masked and unmasked priming differences (e.g., Cheesman 
& Merikle, 1986; Dehaene, Artiges, et al., 2003; 
Schlaghecken & Eimer, 2002). 

In masked priming tasks, a brief masked stimulus 
(the prime) can affect the processing of the stimulus that 
follows (the target). A prime, a mask, and a target are 
presented sequentially and the task is to make a decision on 
the target. The result is usually a Positive Congruency 
Effect (PCE), also known as the positive compatibility 
effect. In PCE, the prime speeds up the performance on the 
target if they are congruent and slows down the performance 
if they are incongruent (e.g., Neumann & Klotz, 1994; 
Dehaene et al., 1998; Eimer & Schlaghecken, 2002; 
Jaśkowski & Ślósarek, 2007). Conversely, a negative 
priming effect has been found, called the Negative 
Congruency Effect (NCE). This effect is also known as the 
negative compatibility effect, where paradoxically the prime 
increases the performance on the target if they are 
incongruent and decreases the performance if they are 

congruent (e.g., Schleghecken & Eimer, 2000, 2002, 2006; 
Eimer, 1999; Eimer & Schlaghecken, 1998; 2001, 2002; 
Lleras & Enns, 2004, 2006; Verleger et al., 2004; Jaśkowski 
& Ślósarek, 2006). The PCE has been shown with a short 
mask-target Stimulus Onset Asynchrony (SOA), while the 
NCE has been shown with a longer mask-target SOA (see 
below). 

The PCE has been found usually with verbal and 
shape stimuli and a short mask (e.g., 71 ms, as in Dehaene 
et al., 1998) and no or a small interval between stimuli. In 
contrast, the NCE has been shown mainly with arrow 
stimuli and a longer mask (e.g., 100 ms). Recently, it has 
been replicated with other stimuli, for example shapes 
(Jaśkowski & Ślósarek, 2006) and faces (Bennett, Lleras, 
Orient, & Enns, 2007). This effect has been found by using 
a long mask (about 100 ms) and a long mask-target SOA 
(>80 ms) or a long (> 30 ms) prime-mask Inter Stimulus 
Interval (ISI) or mask-target ISI (e.g., Eimer & 
Schleghecken, 1998, 2002; Jaśkowski & Ślósarek, 2007). 
These manipulations all increase the prime-target SOA.  

In Eimer and Schlaghecken’s (2002) 
aforementioned experiments on the role of prime duration 
and mask density, participants who were better at detecting 
the prime showed a later change from positive to negative, 
and conversely those who were not good in reporting the 
prime showed an earlier change from positive to negative, 
showing that there is a close relationship between prime 
reportability and the direction of priming. Schlaghecken and 
Eimer (2000) and Eimer and Schlaghecken (2002, see also 
2003) found that when there is no mask or the mask is 
peripheral (i.e., it does not make the prime unreportable), 
the result is PCE, unlike the situation with masked priming. 
Using their motor self-inhibition hypothesis, they argued 
that the inhibition is initiated (as an automatic or evolved 
process) when visual input disappears, otherwise is blocked 
by visual input. Therefore, they claimed that an NCE, being 
a result of this self-inhibition, occurs only in the masked 
condition because prime input is stopped by the mask. They 
added that with the reportable prime, motor self-inhibition is 
prevented by the prime, so a PCE occurs. However, recently 
Lleras and Enns (2006), by comparing different studies, 
showed that prime visibility has no linear relationship with 
NCE, meaning that NCE is not necessarily caused by prime 
invisibility (see below).  
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To investigate whether there is any differences 
between masked and unmasked priming, Cheesman and 
Merikle (1986) employed Marcel’s colour priming task with 
modifications. They changed the ratio of congruent to 
incongruent trials, so that in one condition this ratio was 
25:75 and in the other one it was 75:25. In the unmasked 
condition, they found that when the number of congruent 
trials was high (i.e., the 75:25 condition), the congruency 
effect was higher than when this number was low (i.e., the 
25:75 condition). In other words, when an incongruent trial 
was frequently preceded by a congruent trial, the 
congruency effect increased, and conversely, when an 
incongruent trial was frequently preceded by an incongruent 
trial, the congruency effect decreased. This difference was 
not found in the masked condition. They argued that 
participants can use a strategy based on context only in the 
unmasked condition. 

Jaśkowski (2007) combined Eimer and 
Schleghecken’s paradigm and Merikle and colleagues’ 
(Cheesman & Merikle, 1984, 1986; Merikle & Joordens, 
1997) to study the difference between the masked and 
unmasked conditions. In a congruent to incongruent ratio of 
20:80, a PCE was found in the unmasked condition with 
both medium (100 ms) and long (800 ms) prime-target ISI. 
While in the congruent to incongruent ratio of 80:20, a PCE 
was found in medium (100 ms) ISI but an NCE was found, 
interestingly enough, in long ISI condition. In another 
experiment, while Jaśkowski found an NCE in the masked 
condition with a prime-target ISI of 100 ms, he found only a 
non-significant NCE with a long ISI. Therefore, 
surprisingly, with the long ISI the NCE for the unmasked 
condition was larger than it was for the masked condition, 
ruling out the necessity of the mask and invisibility of the 
prime in NCE. A similar result had already been found with 
a Stroop task (Merikle & Joordens, 1997). 

In our previous work we have modeled masked 
priming using a neurocomputational cognitive model 
(Sohrabi and West, 2009a, b; see also Sohrabi, 2008). We 
employed that model of masked priming for the unmasked 
condition here. We only removed the mask presentation to 
simulate the unmasked condition in human experimental 
studies (here, Jaśkowski, 2007). 

  
The Model 
The model is based on previous neurocomputational 
modeling and nurophysiological studies (e.g., Usher & 
Davelaar, 2002; Gilzenrat et al., 2002, see also Aston-Jones 
& Cohen, 2005). It has been demonstrated that these types 
of reduced models can resemble the neural computation of a 
large group of neurons (e.g., Wong & Wang, 2006). 

The model has been described previously (Sohrabi 
and West, 2009a, b; see also Sohrabi, 2008 and Sohrabi and 
West, 2010). It is a multi-layer dynamic neural model 
(shown in Figure 1) that consists of a feed-forward 
component for perceptuo-motor processing from the Input 
Layer (IL) to the Representation Layer (RL) and Motor 
Layer (ML, not shown). An assumption is that the cognitive 

processing, including the response, is modulated by 
attention. The Alert Attention layer (AA) simulates 
attentional modulation that is supposed to be a model of 
Locus Coeruleus (LC) that potentiates cortical areas through 
norepinephrine (Aston-Jones & Cohen, 2005). The 
executive attention is only modelled through its effects on 
AA, using a Task Layer (i.e., TL) for conflict monitoring. 
The effect of TL on AA simulates direct cortical projections 
to LC (Aston-Jones & Cohen, 2005). The TL and ML are 
affected by both prime and target. The ML’s architecture is 
identical to TL’s, with the exception that it sends no outputs 
to AA, is slower, and noisier (see Table 1).  

Each condition in a simulation consists of 20,000 
trials (200 independent blocks of 100 trials each, with 
congruent and incongruent trials counterbalanced randomly 
within each block). A single trial takes 1100 cycles. Each 
block starts with 500 cycles without changes in IL to let the 
units in other layers reach a steady state of activation. 
Similarly the Inter-Trial Interval (ITI) for each trial is 500 
cycles, which allows the activation of units to return to 
baseline following the responses. The prime is presented by 
clamping one of the two units in the IL to 1, intended to be 
left or right in the case of arrows. The mask units in IL are 
set to 1 at the time of mask presentation and are otherwise 
set to 0. Therefore, the recognition of the stimuli is 
implemented with a localized representation, for example, 
the left unit is turned on when the stimulus is an arrow 
pointing left; otherwise the right unit is turned on. 
Accordingly, as will be described below, in a congruent trial 
the two corresponding units (e.g., the left unit of the prime 
and target in IL) is set to 1 or 0 at the time of stimulus 
presentation, while in an incongruent trial, one of the two 
relevant units of the prime or target is set to 1 and the other 
to 0. 

The units in each layer make connections, via 
excitatory weights, to their corresponding units in other 
layers. The activations of these units (except IL) are 
calculated by a sigmoid (logistic) function of the incoming 
information, and a small amount of random noise. The RL 
sends excitatory activities to ML and TL continuously but 
activates AA only if a unit of the prime or target reaches a 
designated threshold of .62. Similarly, when one of the two 
units in the ML reaches the same designated threshold it 
triggers a manual response (i.e., initiating a hand 
movement). When AA is activated and its activation reaches 
a threshold, it starts modulating information processing in 
RL, TL, and ML by making the activation function of their 
units steeper (see Figure 2, as described below). 

As shown in Figure 1, the IL encodes the prime, 
the mask, and the target, and projects to RL through 
excitatory connections. For the sake of simplicity, prime and 
target units, as well as an identical mask unit for each (not 
activated in this simulation) were implemented in two 
separate paths. All units in TL have a self-excitation 
connection, intended to simulate mutual excitation among a 
group of neurons. Connections between mutual units (for 
prime and target and to the mask) from IL to TL have small 
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cross-talks (see Table 1), indicating feature overlaps or 
similarities among stimuli. The units also have lateral 
inhibition with neighboring units within the same layer.   
The mask units are activated after the prime and before the 
target for a specific time. They have lateral inhibition with 
prime and target. To simulate unmasked condition here the 
mask units are not activated (i.e., are not clamped) but units' 
baseline activities were preserved for the sake of model 
stability without changing the parameters.   

 

Figure 1. Architecture of the model showing hypothetical 
networks and connections. Unit types:  IL  TL and ML 
(not shown here) AA.  Attention types: - Cue/Orient 
Attention (OA) (not employed here) - Executive (conflict 
driven) - Alert. Activation types:  Self-excitation and 

recurrent excitation Lateral inhibition → Feed-forward 
activation. 

  
   

 

 Figure 2. Effect of gain modulation on nonlinear activation 
function (adapted from Servan-Shreiber et al., 1990, see also 
Astone-Jones & Cohen, 2005). 

  The units in all layers (except IL and AA) receive additive 
Gaussian noise (zero mean and variance σ), intended as 
general, irrelevant incoming activities. The activations in 
the model are represented using units with real valued 
activity levels. The units excite and inhibit each other 
through weighted connections. Activation propagates 
through the network when the IL is clamped with input 
patterns, leading to a final response. As will be described 
below, the states of units in RL, ML, and TL are adopted in 
a method similar to a noisy, leaky, integrator algorithm 
(Usher & Davelaar, 2002; Gilzenrat et al., 2002). These 
types of models are noisy versions of previous connectionist 
models.  

In each trial or epoch, one of the prime units in the 
IL is turned on and the network is left active for 43 cycles, 
then it is turned off for 168 cycles (short prime-target SOA), 
234 cycles (long prime-target SOA), or 294 cycles (very 
long prime-target SOA), followed by turning on the target 
input in IL for 200 cycles. This is similar to a trial in human 
data (Dehaene et al., 1998; Eimer & Schleghecken, 2002; 
Jaśkowski & Ślósarek, 2006; Jaśkowski, 2007).  

The prime and target units in the IL are used to 
represent the stimulus features (here, direction). However, 
as mentioned before, the recognition of the stimuli is not 
implemented in detail, but is encoded as a binary code. For 
example, in the case of arrows here, 1 is used for the left 
unit if it points left, and 0 is used for the opposite 
(reciprocal) unit. In the congruent condition, the RL units of 
the prime and target at the same side (left or right randomly) 
are turned on (1) or off (0) in each trial at the time of 
stimulus presentation. By contrast, in the incongruent 
condition, the two units at the opposite sides are turned on 
and the other two are left off, with random selection of the 
two possible cases.  

The RL is governed by a modified version of 
previous models (Usher & Davelaar, 2002; Gilzenrat et al., 
2002), which is calculated with discrete integrational time 
steps using the dynamic equation: 
  

  Xi (t + 1) = λx Xi (t)  
    + (1- λx) ƒ [WXiXi Xi(t) + WXiIi Ii(t) 

            - WXiXj Xj(t) - θXi+ ξXi]        (1) 
  
Likewise, ML and TL are modelled in a similar way with 
their inputs coming from RL:  

Yi (t + 1) = λy Yi (t)  

    + (1- λy) ƒ [WYiYi Yi(t) + WYiXi Xi(t)) 
WYiYj Yj(t) - θYi+ ξYi]        (2) 
  

In equations (1) and (2), X and Y denote the activity 
of units through time t. W is the weight of the connections 
between units, I is the input, and the subscripts i and j are 
indexes of the units. The three weight parameters in the 
brackets correspond to recurrent self-excitation, feed-
forward excitation, and lateral inhibition, respectively. 
However, for the sake of simplicity in equation 1, the lateral 
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excitation from mask units to the prime and target, WXiXj 

Xj(t), and the cross-talk in prime and target to reciprocal 
units and mask units, WXiIj Ij(t), are not present. The term θ 
is the bias, the term ξ is noise, and ƒ is a sigmoid function 
(see equation 3). The term λ represents neural decay which 
is related to the discrete integrational time steps in the 
underlying equation (Usher & Davelaar, 2002).  

The AA modulates other layers by changing their 
activation from sigmoid toward binary responses. The 
activation function, ƒ, transfers the net input, X, of a unit, 
and modulatory gain, g, to its activity state, implementing 
the firing rate of a neuron or the mean firing rate of a group 
of neurons: 

ƒ(Xi)=1/(1+exp (-Xig))      (3) 
  

 

Figure 3. An unmasked congruent trial (where no conflict 
occurs) of 1100 cycles, including 500 cycles inter-trial 
interval) with 234 cycles prime-target SOA that crosses the 
threshold after 876 cycles (including 500 cycles inter-trial 
interval). From the top, ML, TL, and AA (but RL-prime, 
RL-target, and IL are not shown). 
  

A conflict-monitoring measurement was employed to 
take the activations of the units in the TL layer to adjust 
phasic and tonic response modes of AA. The activation of 
the TL units was used to measure the Hopfield energy 
function between units (Hopfield, 1982), as used previously 
(Botvinick et al., 2001). Conflict can be defined as the 
concurrent activation of the competing units and as the joint 

effect of both prime and target in TL. Hopfield energy can 
be calculated as 

        

       (4) 
where E denotes energy, X denotes the activity of a unit, W 
is the weight of the connection between units, and the 
subscripts 1 and 2 are indexes of the two units.  

As noted above, TL combines prime and target 
activations and measures conflict between its two units. 
When one TL unit is active and the other is inactive, conflict 
is low. However, when both units are active concurrently, 
the conflict is high. Activations in TL units are converted to 
1 if they are equal to or greater than .5, and to 0 otherwise 
(i.e., using a threshold function). Also, E > .5 is considered 
as a conflict, otherwise as no conflict. When the activation 
of a prime or target unit in TL reaches the designated 
threshold, .62, the AA is activated with a phasic or tonic 
mode, depending on the absence or presence of conflict in 
TL. The change in AA response mode usually occurs by the 
presentation of a target that is incongruent with the prime.  
Here the AA is modeled using a reduced or abstracted 
version of LC neurons in a Willson-Cowan type of system 
(e.g., Wilson & Cowan, 1972) adopted recently (Usher & 
Davelaar, 2002) (there are similar models and detailed 
implementations of this type of attention (Gilzenrat et al., 
2002): 

X(t + 1) = λx X(t) 
    + (1- λx) ƒ [c (ax X (t) – bY(t) + Ix (t) - θx)], 

Y(t + 1) = λy Y(t) 
       + (1- λy) ƒ [c (ay X(t) – θy)], 

G(t + 1) = λg  G(t) 
         + (1- λg) X(t)        (5) 
where ƒ is again a sigmoid function (as in equation 3), X is 
the fast variable representing AA activity and Y is a slow 
auxiliary variable, together simulating excitatory/inhibitory 
neuron groups in the LC (Usher & Davelaar, 2002). The X 
and Y variables have decay parameters λx and λy, 
excitatory/inhibitory coefficients, ax and ay, as well as 
thresholds θx and θy, respectively. The G variable is the 
output of the AA, which is based on X. The g (used in 
equation 3) is computed from G: g = G * K. The AA 
modulates other layers when g crosses a threshold, 1. Its 
activity modes can be phasic or tonic depending on the 
conflict state, low or high, respectively.  

In all conditions the TL can change the AA mode 
according to the conflict between prime and target (i.e., 
using within-trial conflict). The phasic and tonic modes of 
AA responses are implemented using high or low c value (3 
or 1) (see equation 5). The c value is 3 at the beginning of 
each trial (for the prime), but it is set to 1 (for the target) if 
conflict occurs. The number of computer simulation cycles 
from the target onset until one of the ML units reached a 
designated threshold, .62, was considered as RT. A 
constant, as other sensory and motor processes, could be 
added to this RT, to increase the match between simulation 
and human data. 
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Figure 4. An unmasked incongruent trial (where no conflict 
occurs) of 1000 cycles, including 500 cycles inter-trial 
interval) with 234 cycles prime-target SOA that crosses the 
threshold after 876 cycles (including 500 cycles inter-trial 
interval). From the top, ML, TL, and AA (but RL-prime, 
RL-target, and IL are not shown). 

Simulation Results 
To create the short and long prime-target SOA conditions, a 
relatively short SOA (168 cycles) and two relatively long 
SOAs (234 and 294 cycles) were used. As shown in Figure 
5, a strong PCE was found at prime-target SOA 168 cycles 
and a strong NCE was found at SOA 234 and 294 cycles. In 
the unmasked condition, in the current simulation, NCE 
remains high with further increases in SOA but it decreases 
slowly.  

The simulation results in Figure 5 show a change 
from PCE to NCE and a drop in RTs, similar to the human 
data. However, the SOA in the long condition in Jaśkowski 
(2007) is much longer than the long conditions in the 
current simulation, due to a limited time course in the 
model, as the parameters were set for a short trial. 

The activities in three layers (ML, TL, and AA) are 
shown for a given congruent and incongruent trial in 
Figures 3 and 4, respectively. There is smaller activation left 
in AA for the target, but it can be recovered as an effect of 
conflict in the incongruent condition as the phasic mode 
becomes tonic. 

 

Figure 5. Unmasked priming using 168, 234, and 294 cycles 
prime-target SOAs, indicated by 1, 2, and 3, respectively, 
compared to 116.7 and 816.7 SOAs in Jaśkowski (2007), 
indicated by 1 and 2, respectively.  

Discussion 
A model that we have used for simulating masked 

positive and negative priming previously could simulate 
unmasked priming effect as well. Because there was no 
interruption by the mask, in the relevant unmasked prime 
condition, a PCE was found for short prime-target SOA. In 
this case, the PCE was large, consistent with the unmasked 
condition in Jaśkowski (2007). We assumed that a relevant 
or predicting prime as in Jaśkowski (2007) evokes a phasic 
activation in the so called alert attention to the prime but can 
lead to a refractory period of attentional response to the 
target.  

An unmasked prime caused large PCE and NCE at 
short and long prime-target SOA, respectively. A few 
studies have previously shown an NCE in the unmasked 
condition. Here it is assumed that this effect was found in 
those studies because they used a medium (Koechlin et al., 
1999) and long (Jaśkowski, 2007) prime-target SOA, and 
especially the tasks required action on (which requires 
attention too), or attention to, the prime, respectively. In the 
former, especially because of controlling physical repetition 
priming (and an action on the prime was required as on the 
target), and in the second, especially because of prime 
relevance (participants were told that prime highly predicts 
the target), the NCE was large. It could be caused by the 
strong refractory period created by attention to the 
unmasked prime. To simulate this phenomenon, in this 
simulation the prime was unmasked and AA mode for the 
prime was put in the high phasic mode (c=3), as with 
simulations of masked conditions. 

At longer prime-target SOA, the relevant 
unmasked prime caused an NCE even larger than an 
equivalent masked condition (see Sohrabi and West, 2009a, 
b; see also Sohrabi, 2008; Sohrabi and West, 2010), 
consistent with Jaśkowski & Ślósarek, (2006) and 
Jaśkowski (2007). Interestingly, the conflict period caused 
by an unmasked incongruent prime (in all unmasked 
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conditions) was longer than that of masked incongruent 
prime consistent with Dehaene et al. (2003) that have shown 
more brain activations in unmasked incongruent compared 
to congruent condition. 

 
Table 1. Parameters in the model, fixed for all conditions, 
unless otherwise mentioned. 

WXiIi (IL to RL) [P & T] & WYiXi 

(RL to ML) [P & T] 
3 & 1.5   

WXiIi (IL to RL) [M] & WYiXi (RL 
to TL) [P & T] 

1.5 & 1 

WXiXi (RL) [P & T], WXiXi (RL) 
[M], WYiYi (TL), & WYiYi (ML) 

1.5, 1.25, 1, & .9 

WXiXj (RL) & WYiYj (ML & TL) 1 & 1 
WXiXj (RL) [M to P & T] & WXiIj 

(IL to RL) 
.75+.1 & .33  

K (AA)  4.52 
α & β (RL, TL, & ML) [M, P, T] 1 & 1 
θx, θy (AA), θx (RL), θy (TL), & θy 

(ML)  
1.25, 1.5, .5, .85, & 
2 

b,c, ax & ay (AA) 4, 1-3, 2, & 3 
λx, λg, & λy (AA) .92, .98, & .996 
λ (TL), λ (ML), & λ (RL) .75, .925, & .95 
σ (CL), σ (RL) [P & T], σ (ML),  & 
σ (RL) [M] 

.025, .2, .25, & 1.25 

IL=Input Layer; RL=Representation Layer; TL= Task 
Layer; ML=Motor Layer; AA=Alert Attention; P=Prime; 
T=Target; M=Mask. 
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