Ilusions of consistency in quantified assertions
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Abstract

The mental model theory of reasoning postulates that
individuals establish the consistency of a set of assertions
by constructing a mental model in which all the assertions
hold. Mental models represent what is true but not what is
false, and this principle of ‘truth’ predicts that certain
assertions should yield systematic errors. We report an
experiment in which participants evaluated the
consistency of assertions based on quantifiers and
sentential connectives, e.g., A/l of the artists are barbers
or else all of the barbers are artists; Some of the artists
are not barbers. The results showed that participants
judged consistent assertions to be inconsistent, and vice
versa, much more often for the predicted assertions than
for control problems, which should be unaffected by the
failure to represent what is false. These results provide a
litmus test for mental models, because no current
alternative theories of reasoning predict them.

Keywords: deductive reasoning; mental models; consistency;
illusions.

Introduction

Are humans inherently rational? Without any training, they
are able to make valid deductions. Consider the following
problem:

Carol invested in capital securities or else she invested in
municipal bonds.

She did not invest in municipal bonds.

Therefore, she invested in capital securities.

You do not need to know anything about securities or bonds
to tell that the inference is valid. The ability to make valid
inferences is a cornerstone of rationality, and as such, many
theories argue that humans make use of formal rules akin to
those in logic (Braine & O’Brien, 1998; Rips, 1994).
According to those theories, humans make mistakes because
they misapply the rules. Likewise, theories based on a
probabilistic calculus believe that humans are rational, and
that cognitive scientists use the wrong criteria to assess
rationality, because everyday reasoning is probabilistic
(Oaksford & Chater, 1998, 2007). Our own alternative
theory is that human reasoning is based on mental models,
or iconic representations of possibilities (Johnson-Laird,
2006; Johnson-Laird & Byrne, 1991). Mental models
represent what is true and not what is false, and this

constraint can lead to inaccurate models of assertions. Thus,
human reasoning is fallible in practice, and individuals
should succumb to systematic errors in judgment and
inference. These errors are at present a unique prediction of
the model theory, and so they serve as a litmus test for
mental models. In the present paper we examine fallacious
judgments of consistency for assertions combining
quantifiers such as ‘all’ and connectives such as ‘or else’.

Mental models and illusions

A foundational assumption of the model theory is the
principle of truth: the mental models of a set of assertions
represent only those possibilities consistent with the truth of
assertions. The principle applies to assertions as a whole as
well as to clauses within them. For example, an exclusive
disjunction A4 or else not B yields the following mental
models, where each horizontal line represents a model of a
possibility, and ‘—’ is used to denote negation:

A
- B

The models do not represent what is false according to the
disjunction, such as the case in which 4 is false and B is
true. And, for those possibilities that make the exclusive
disjunction true, such as the case in which 4 is true, the
falsity of the corresponding possibility, in this case the
negation of —B, hence B, is not represented in the models.
This means that a literal (a proposition such as —B that
contains no sentential connective) is represented in a model
only if it is true in a possibility. Thus, the first of the models
above represents the possibility that A is true, but it does not
represent the fact that the literal —B is false in the
possibility. Mental models do not represent what is false,
whether it is an affirmative or negative literal, but in certain
cases, such as when an inferential task is easy, individuals
can construct fully explicit models. They represent both what
is true and what is false in each possibility and therefore
yield the correct representation of the assertion. The fully
explicit models of 4 or else not B are as follows:

A B
—-A —B

where the affirmative B in the first model represents the
falsity of the negation, —B, and the negative —A4 in the
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second model represents the falsity of affirmative, 4. As
these models show, the disjunction is equivalent to the
biconditional: 4 if and only if B. However, very few people
grasp the equivalence, because it is evident only to those
who envisage what is false and construct fully explicit
models.

The principle of truth may seem like a useful compromise
to reduce the load on working memory, but it has an
unexpected consequence: it predicts illusions, i.e.,
judgments and inferences that are compelling but erroneous
(Johnson-Laird & Savary, 1999). Illusions can occur when
individuals assess conclusions, make inferences, or evaluate
the consistency of a set of assertions. For example, consider
this problem:

There is a pin and/or a bolt on the table, or else a bolt and
a nail on the table.

There is a bolt and a nail on the table.

Is it possible that both assertions could be true at the same
time?

Reasoners in one study overwhelmingly responded ‘yes’
(Johnson-Laird, Legrenzi, Girotto, & Legrenzi, 2000), but
the response is a fallacy predicted by the principle of truth.
It is a fallacy because ‘or else’ in the first premise is an
exclusive disjunction, i.e., if one clause of the disjunction is
true, the other must be false. Hence, the truth of the second
premise, there is a bolt and a nail on the table, implies that
both clauses in the first premise are true. And that
contravenes the meaning of ‘or else’, which means that the
two assertions cannot be true at the same time. However,
reasoners do not grasp this inconsistency and instead
incorrectly judge the two assertions to be consistent.

Previous studies have corroborated the existence of
illusory deductions from disjunctive and biconditional
premises (Johnson-Laird & Savary, 1999). They have also
corroborated them in singly quantified premises (Yang &
Johnson-Laird, 2000). But, no study has examined the
interaction between connectives and quantifiers. Our aim
was accordingly to test whether illusions also occurred in a
new domain: the evaluation of the consistency of assertions
that depend on both quantifiers and connectives (as in
Problem 1 below).

Illusions with quantified assertions

Our experiment examined two sorts of assertions that should
yield illusions: exclusive disjunctions of quantified
assertions, such as A/l the A are B or else some of the B are
A, and biconditionals of quantified assertions, such as All of
the A are B if and only if All of the B are A. Half of the
problems used in the study were those that the principle of
truth predicts should yield illusory judgments of
consistency, and the other half were those that the principle
of truth predicts should yield correct responses. Here is an
example of an illusory problem based on an exclusive
disjunction:

1. lllusion (disjunction)
All of the artists are barbers or else some of the barbers
are artists.
All of the barbers are artists.
Is it possible for both statements to be true at the same
time?

The disjunction yields two mental models that represent the
two clauses (Al of the artists are barbers and Some of the
barbers are artists). Each model contains a set of
individuals, where each line represents an individual and
denotes the individual’s properties. We lay out the two
models as follows:
1. 2.
[artist] barber

barber  artist
[artist] barber barber  artist
barber

These models represent each set by a small but arbitrary
number of individuals (two or three in the present models),
and the square brackets denote that a set has been
represented exhaustively (cf. the notion of ‘distribution’ in
logic). One consequence of these exhaustively represented
properties is that they cannot be added to new individuals in
the model (see, e.g., Johnson-Laird, 2006). So, you cannot
add instances of artists that are not barbers to the first
model.

Consider the first mental model, which represents the first
clause of the disjunction, All of the artists are barbers. The
second assertion in the problem, All of the barbers are
artists, is true in this model. The model theory predicts that
individuals judge a set of assertions to be consistent if all
the assertions hold in at least one mental model. Hence,
people should judge that the two assertions are consistent.
However, this judgment is flawed. The principle of truth
predicts that the mental models represent the truth of each
clause in an exclusive disjunction, but not the concurrent
falsity of the other clause. Suppose that the first clause in
the disjunction, Al of the artists are barbers, is true. Hence,
the second clause must be false, i.e., none of the barbers is
an artist. This case is inconsistent with the first clause of the
disjunction, and so it is impossible. Now suppose that the
second clause of the disjunction is true, i.e., some of the
barbers are artists. In this case, it must be false that all of the
artists are barbers, i.e., at least some of them are not barbers.
So, we have the conjunction of at least some of the barbers
are artists and at least some of the artists are not barbers.
There is accordingly just one fully explicit model of the
disjunction:

artist barber
artist barber
barber

artist —barber

The second assertion in the problem, all the barbers are
artists, is accordingly inconsistent with this model, and the
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correct evaluation of the two assertions is that they are
inconsistent.

The same compound assertion used in (1) yields a control
problem, as in (1°):

1’. Control (disjunction)
All of the artists are barbers or else some of the barbers
are artists.
None of the barbers is an artist.
Is it possible for both statements to be true at the same
time?

The second assertion, none of the barbers is an artist, is
inconsistent with the mental models above, and so the
theory predicts that individuals should respond that the two
assertions are inconsistent. In this case, they will be correct,
because the second assertion is also inconsistent with the
fully explicit model above.

An example of an illusory problem based on a
biconditional assertion is:

2. Illusion (biconditional)
All of the artists are barbers if and only if all of the
barbers are artists.
None of the artists is a barber.
Is it possible for both statements to be true at the same
time?

Biconditional assertions are true whenever both of its
clauses are true or else when they are both false. In the case
of a biconditional, the principle of truth predicts that a
mental model of a biconditional will represent the
possibility in which both clauses are true, but not the
possibility in which both clauses are false. Hence, the
biconditional assertion yields the following mental model in
which the two sets of individuals are co-extensive:

[artist]
[artist]

[barber]
[barber]

According to the principle of truth, individuals should
respond that the second assertion, None of the artists is a
barber, is inconsistent with the first assertion, because the
second assertion does not hold in the mental model above of
the biconditional assertion. Mental models fail to represent
the possibility in which both clauses of the biconditional are
false, i.e., at least some of the artists are not barbers and at
least some of the barbers are not artists. The fully explicit
models would include both the model above and represent
such a possibility, e.g.:

—artist
[artist]

[barber]
—barber

This model is consistent with the second assertion in the
problem, and so the correct response is that the two
assertions are consistent.

The same compound assertion can also yield a control
problem:

2°. Control (biconditional)
All of the artists are barbers if and only if all of the
barbers are artists.
Some of the artists are barbers.
Is it possible for both statements to be true at the same
time?

The second assertion is consistent with the mental model,
which is a correct possibility, and so individuals should
respond correctly that the two assertions are consistent.

Method

Participants and procedure. 28 participants were recruited
through an online platform hosted by Amazon.com. None of
the participants had received any training in logic.
Participants were told to take as much time as they needed
to answer the questions and were asked to answer as
accurately as possible.

Design and materials. Participants acted as their own
controls and evaluated 18 sets of assertions (see Appendix),
and each set contained one compound quantified assertion
(e.g., All the artists are beekeepers if and only if some of the
beekeepers are not artists) and one simple assertion. There
were four sorts of problem: illusions of consistency (C/I),
where ‘C’ denotes the predicted response of consistent, and
‘I’ denotes the correct response of inconsistent, their
controls (I/I), illusions of inconsistency (I/C), and their
controls (C/C). 12 of the problems were based on
disjunctions, and 6 of them were based on biconditionals,
for which it is impossible to have illusions of inconsistency.
For each set of assertions, participants pressed one of two
buttons on the screen (labeled ‘yes’ and ‘no’) to respond to
the question ‘Is it possible for both statements to be true at
the same time?’ The contents of the assertions concerned
occupations (e.g., artists, beekeepers, and chemists). Each
participant received the problems in a different random
order. The corresponding mental models and fully explicit
models are given in the Appendix.

Results

Table 1 provides the overall percentages of correct
responses for the six sorts of problem. The data strongly
support the predictions of the model theory.

Table 1: The percentages of correct responses for illusory
and control problems in the different conditions

I1lusions Controls
Disjunctions
Consistent problems 36% 85%
Inconsistent problems 7% 75%
Biconditionals
Consistent problems 43% 80%
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Overall, the illusions (29% correct) were reliably harder
than the control problems (80% correct; Wilcoxon test, z =
4.49, p < 0.0001), and 24 out of the 28 participants did
worse on illusions than controls (Binomial test, p <.00001).
There was no reliable difference in performance between
disjunctive and  biconditional consistent problems
(Wilcoxon test, z = 0.12, p > 0.9). And participants
succumbed to illusory inferences in both disjunctive and
biconditional assertions. As the Table shows, however, a
reliable interaction occurred: the illusions of consistency
were more compelling than the illusions of inconsistency
(Wilcoxon test, z = 3.24, p < 0.002). The control problems
demonstrated that participants interpreted the sentential
connectives correctly. The illusions of inconsistency
likewise rule out the possibility that individuals had
alternative interpretations of the connectives.

One might be tempted to argue that the results could be
explained if individuals interpreted the exclusive
disjunctions as inclusive ones. Yet this cannot be the case,
because inclusive disjunctions merely add possibilities, and
so they do not change the consistency of the assertions in
the problems. We conclude that illusions of consistency in
quantified assertions are a robust phenomenon.

General Discussion

Our results show that robust illusions of consistency, and
of inconsistency, occur with compound assertions that
consist of quantified clauses. Participants were more likely
to succumb to illusions of consistency — they judged that
assertions were consistent when in fact they were
inconsistent. One contributory factor may have been that
individuals need to show that no model exists in which the
assertions hold in order to establish inconsistency. In
contrast, to establish consistency, they only need to
construct one model in which the assertions hold. That is,
inconsistency calls for a more exhaustive search than
consistency.

In general, illusions serve as a litmus test for mental
models, because no other current alternative theory can
predict or explain the results. The results of the present
study support the principle of truth., They also show that
judgments of inconsistency are more difficult than
judgments of consistency (Johnson-Laird, Girotto, &
Legrenzi, 2004). Theories based on formal rules of
inference (Braine & O'Brien, 1998; Rips, 1994) cannot
account for the illusions, because these theories rely on
valid rules of inference. If such theories incorporated invalid
rules to explain illusions, they would predict many
inferences that individuals never make. Invalid inference
rules are a recipe for irrationality, and could render theories
of deduction unstable. Moreover, performance can be
enhanced when reasoners are given remedial instructions
(Khemlani & Johnson-Laird, 2009; Yang & Johnson-Laird,
2000).

Theories based on the probability calculus cannot readily
account for performance in the task of evaluating

consistency either. Chater and Oaksford (1999, 2007) assign
probabilistic meanings to quantified clauses. For instance,
All the A are B is interpreted as meaning p(B|A) = 1, and
Some of the A are not B means that p(B|A) < 1. But, how
does one assess consistency? If it is simply a matter of
consistent conditional probabilities, then a problem based on
these assertions:

All of the A are B or else all the B are A.

Some of the A are not B.
should be judged as consistent, because both assertions can
have a probability > 0. But, the model theory predicts that
these assertions should be evaluated (erroneously) as
inconsistent, and indeed 61% of our participants
corroborated this prediction. At the very least, the
probabilistic theory needs to add some additional machinery
to cope with inconsistency. A conditional probability of the
form:

pB&C&DI|A)
has the value of zero in case the conjunction of B, C, and D,
is inconsistent, even if the individual conditional
probabilities p(B | A), p (C | A), p(D | A) all have non-zero
values.

In sum, reasoners in our study made systematic errors in
reasoning about the consistency of disjunctions and
biconditionals of singly quantified assertions. They tended
to err on problems that called for them to take into account
possibilities that rendered the assertions false, and thus
corroborated the model theory’s principle of truth.
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Appendix
The problems in the experiment in an abbreviated form, their mental models and their fully explicit models
Forms of Premises and Questions Mental Models Fully Explicit Models % Correct
1. All of the A are B or else some of [A] B A B A B
the A are B [A] B A A —B
B -A B
Some of the A are not B Illusion of consistency 11
None of the Aisa B Control “no” response 82
2. All of the A are B or else some of [A] B B A A B
the B are A. [A] B B A —B
A -A B
All of the B are A Illusion of consistency 0
None of the Aisa B Control “no” response 71
3. All of the A are B or else all of the [A] B [B] A [A] B [B] A
B are A. [A] B [B] A [A] B [B] A
-A B -B A
Some of the A are not B Illusion of inconsistency 39
Some of the A are B Control “yes” response 68
4. Some A are not B or else some B A B [A] B [B] A
are not A. (A) [B] (B) [A] [A] B [B] A
[B] [A] -A B B A
All of the B are A Illusion of inconsistency 32
Some of the A are B Control “yes” response 96
5. None of the A is a B or else some of [A] A A [B]
the A are not B [B] (A) [B] A —B
(B]
None of the A isa B Illusion of consistency 11
All of the A are B Control “no” response 71
All of the B are A Illusion of inconsistency 36
Some of the B are A Control “yes” response 89
6. None of the A is a B if and only if [A] A [B]
some of the B are not A [B] A
All B are A Illusion of inconsistency 39
Some A are not B. Control “yes” response 71
7. All of the A are B if and only if all [A] [B] [A]
of the B are A [A] [B] [B]
None of the A isa B Illusion of inconsistency 50
Some of the A are B Control “yes” response 71
8. Some A are not B if and only if A —B [A] [B]
some B are not A. —-A B
A
B
All of the A are B Illusion of inconsistency 39
Some of the A are B Control “yes” response 96
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