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Abstract

Using interactive computer-based methods of instruction, this
research examined the contribution of whole (3D) anatomical
knowledge to learning sectional anatomy. Participants either
learned sectional anatomy alone or learned whole anatomy
prior to learning sectional anatomy. Sectional anatomy was
explored either with perceptually continuous navigation or
discretely, as in the use of an anatomical atlas. Learning
occurred over repeated cycles of study, test, and feedback,
and continued to a high performance criterion. After learning,
transfer of knowledge to interpreting biomedical images and
long-term retention were tested. Whole anatomy was learned
quickly and transferred well to the learning of sectional
anatomy: initial accuracy was higher, learning of sectional
anatomy was completed more rapidly, and there was less
error over the entire course of learning. Knowledge of whole
anatomy benefited the long-term retention of sectional
anatomy at 2-3 weeks. Learners demonstrated high levels of
transfer to the interpretation of biomedical images.
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Introduction

In medicine and many areas of science, anatomy education
serves as a vital foundation for high level knowledge and
skill. Unfortunately, anatomy is challenging to learn. Large
volumes of material must be learned in relatively short
periods of time. Anatomical structures often have irregular
and indistinct shapes. They have little variation in color and
texture, and they are related to each other in complex three-
dimensional arrangements. Moreover, a comprehensive
education in anatomy extends to include a thorough
knowledge of sectional anatomy, which is necessary for
diagnostic imaging, microscopy, and dissection.

Sectional anatomy is particularly challenging to learn. A
spatial transformation occurs when a two-dimensional
section is taken from a three-dimensional object. The two
and three-dimensional structures may look very different
from each other. In addition, multiple mappings are possible
between these representations of anatomy. One-to-many
mappings occur because anatomy can be sectioned at
different depths and orientations, resulting in significant
variation in the presentation of structures across a series of
sections. Many-to-one mappings occur because differently
shaped structures can appear similar in a sectional image.

The challenges in learning sectional anatomy might be
reduced by facilitating cognitive organization of the mass of
information in the sections (consider Bower, Clark, Lesgold,

& Winzenz, 1969). Given that anatomical sections are
derived from whole anatomy, helping students develop a
thorough understanding of the shapes and relationships of
whole structures prior to learning sectional anatomy would
seem an ideal way to help students organize the information
in the sections. The benefit of organization for learning and
memory has been established for verbal materials, but it is
not clear what effect organization has in domains where
spatial reasoning is required.

Knowledge of whole anatomy may also serve as a mental
model that supports reasoning about sectional anatomy.
Reasoning has been found to play a large role in the
successful interpretation of histological sections viewed
under the microscope (e.g., Pani, Chariker, & Fell, 2005).

A second approach to helping students organize
information in sectional anatomy may be in the presentation
of sectional anatomy itself. Serial presentation of the
sections would be expected at a minimum, but additional
support may be found by providing smooth, seamless
navigation through the sections. Work in anorthoscopic
perception and kinetic completion suggests that with this
approach, learners may see the series of sections as a unified
whole. On the other hand, continuous presentation of
sectional anatomy can be considered a form of animation,
and there has been mixed success in using animation in
instruction (e.g., Hegarty, 2005; Tversky, Morrison, &
Betrancourt, 2002).

In the current study, we explored both approaches to
organizing sectional anatomy. Half of the participants
learned whole anatomy before learning sectional anatomy
(transfer groups), while the other half learned only sectional
anatomy (sections alone groups). Within each of these
groups, half of the participants learned sectional anatomy
using a continuous presentation, and half learned with a
discrete presentation -- analogous to turning the pages of an
anatomical atlas.

Participants learned neuroanatomy in interactive
computer-based environments. This approach holds
potential for helping learners build rich mental

representations of anatomy. For example, a computer-based
model of 3D anatomy can be rotated to allow exploration of
anatomy from any angle. It can be virtually dissected,
restored to its original state, and then dissected again.

The instructional programs were designed to promote
efficient learning through a method that we call adaptive
exploration. With graphical models and exploratory tools
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Figure 1: Screenshots of the anatomical model and the interface in the study phase of the whole anatomy learning
program (left) and the sectional anatomy learning program (right).

available, learning was measured over multiple trials of
study, test, and feedback until a high performance criterion
was reached. In testing and feedback, participants learned
the nature of the test to be mastered and were continually
updated on progress in learning. This information allowed
learners to adaptively adjust exploration of anatomy during
study. Additionally, this approach to learning conforms to
what appears to be best practices in regard to optimizing
long-term retention through repeated testing (e.g., Karpicke
& Roediger, 2008).

All participants learned 19 neuroanatomical structures
across three standard views of anatomy: coronal, sagittal,
and axial. After learning was completed, we measured the
degree to which participants could transfer anatomical
knowledge to interpreting biomedical images. Retention of
anatomical knowledge was measured 2-3 weeks after
learning was completed.

Method
Participants

Seventy-two undergraduate students at the University of
Louisville were recruited for the study through
advertisements placed around campus. All were at least 18
years of age. Only those respondents who reported minimal
knowledge of neuroanatomy were enrolled. Participants
were paid $8.00 per hour for their participation.

Each participant was administered the Space Relations
subtest of the Differential Aptitude Tests, a test of spatial
ability, prior to beginning the study (DAT-SR; Bennett,
Seashore, & Wesman, 1989). The mean and the distribution
of scores were balanced across the four learning groups.

Materials

A three-dimensional (3D) computer graphical model of the
human brain was created for this research (see Figure 1).
Digital images of neuroanatomical cryosections in the
Visible Human project (Vers. 2.0) of the National Library of
Medicine were used as source material for the model (Ratiu,
Hillen, Glaser, & Jenkins, 2003). The brain model is

composed of 19 structures, including the cerebral cortex,
ventricles, cerebellum, brainstem, amygdala, caudate
nucleus,  fornix, globus pallidus, hypothalamus,
hippocampus, mammillary bodies, nucleus accumbens,
optic tract, pituitary, putamen, red nucleus, substantia nigra,
subthalamic nucleus, and thalamus. The structures were
colored in dark gray (ventricles), medium gray, and white to
approximate the basic appearance of light and dark
structures in typical biomedical images of the brain.

Three relatively dense sets of serial sections were created
from the brain model. There were 60 coronal sections, 50
sagittal sections, and 46 axial sections. All sections were
taken at equal intervals.

MRI images were used to test transfer of knowledge. The
images were made available from the SPL-PNL Brain Atlas
(Kikinis et al., 1996). The images are typical gray scale T1
images of structures in the head and neck. The images were
slightly brightened and contrast enhanced and presented at a
screen resolution of 895 x 895 pixels. Visible Human
images also were used to test transfer. These images were
from the Visible Human 2.0 dataset. The images were high
resolution color images of structures in the head and neck.

Computer programs for learning neuroanatomy were
created using the C++ programming language and the Open
Inventor library for interactive graphics. There was a
common format for all of the learning programs. The
differences between the programs were modifications
related to the type of anatomy presented and the different
presentations of sectional anatomy.

In all of the learning programs, a participant completed
two learning trials -- one block of trials -- before a single
run of the program terminated. Participants were presented
with the same form and view of anatomy (e.g., sectional
anatomy, coronal view) throughout the two trials in a block.

Each learning trial was composed of three phases: study,
test, and feedback. Throughout each phase, tools were
available that functioned specifically for either whole or
sectional anatomy. In the study phase, participants had three
minutes to freely explore the brain. On selecting a structure,
its name appeared on the screen. In the test phase, the
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participant’s task was to identify the anatomical structures
in the model. Testing was self-paced. In the feedback phase,
the participant saw the same orientation of the brain, and
used the same tools and procedures, as in the study phase. In
addition, structures were color coded to provide participants
with information about their performance on the test.

In the study and feedback phases for whole anatomy
learning, a rotation tool allowed participants to smoothly
rotate the model 360 degrees forward and backward or right
and left. A zoom tool allowed participants to move the
model closer or further from view. Buttons were available
that allowed participants to remove or restore structures.

In the test phase of a trial, model rotation was constrained
to a total range of 90 degrees of motion -- 45 degrees in any
direction from the initial viewpoint. This ensured that a
participant’s performance on the test was specific to the
viewpoint being learned in that trial.

Two programs were created for learning sectional
anatomy, one for the continuous and one for the discrete
form of navigation. In the study phase of a trial, both
programs presented a set of anatomical sections in serial
order in a single viewing plane. There was a slider at the
bottom of the screen, and the two learning programs
differed in the way the slider functioned. In the continuous
program, moving the slider resulted in continuous
movement back and forth through the series of sections. A
section of the brain was always visible, and the transition
between sections comprised a type of animation. In
addition, a highlighted structure remained highlighted in
each section in which it appeared.

In the discrete presentation program, movement between
sections was perceptually discontinuous. When participants
moved the slider, the brain became invisible. The number of
the corresponding section in the series appeared prominently
at the bottom of the viewing area. On stopping at a
numbered section, a 0.75 second delay occurred before the
appropriate section of the brain appeared. When participants
moved to a new section, highlighting was removed.

The test phase of a learning trial was the same in the two
programs. Participants were given a series of test sections,
presented one at a time. In each section, one or more
structures were indicated with a red arrow, and the
participant’s task was to correctly label those structures.
Although all 19 structures were tested in each trial, the
section of a structure that was tested varied across trials.

During the feedback phase of the trial, participants used
the slider to find each of the test sections in the series. A
message reading “Test Section” appeared prominently on
the screen when a test section was accessed by the slider.
The tested structures in each test section were identified
with the same red arrows that appeared in the test.

Three computer programs were created to test transfer of
knowledge to the interpretation of biomedical images. In the
first test, Uncued Recognition, participants were presented
with a set of 9 images, one at a time, and asked to identify
all of the structures they thought they recognized in each
image. Participants identified structures by indicating the

location of a structure with the mouse (leaving a red dot on
the image) and then selecting the name of the structure from
a list on the interface. The images alternated through
coronal, sagittal, and axial views, in that order.

The remaining two test programs provided cues to the
presence of structures in the images. In the Submit Structure
test, the name of a single structure was presented at the
bottom of each image, and participants selected the
appropriate structure in the image. In the Submit Name test,
a single structure was designated by a red arrow in each
image, and participants selected its name from a list on the
interface. Each test was comprised of three subtests, one for
each view of anatomy.

A sectional anatomy test and a whole anatomy test were
created for testing long-term retention. For participants who
had only seen sectional anatomy, the test of whole anatomy
was a test of transfer rather than retention. These tests were
the same as tests given during learning and were created for
all three views of anatomy.

Apparatus

Participants sat individually at computer workstations with
large high resolution LCD screens (24 inch, 1200 x 1952
pixels). Participants were tested alone in small quiet rooms
with the doors closed.

Design and Procedure

The core experimental design was a 2 X 2 between-groups
factorial: anatomy course (transfer vs. sections alone) by
sectional anatomy presentation (continuous vs. discrete).

Prior to beginning any of the learning or testing programs
in the study, participants were trained on all aspects of the
task using instructional software developed for this purpose.

During the learning portion of the study, performance in
identifying 19 neuroanatomical structures was measured
over multiple blocks of trials. Percent correct was calculated
for each trial, and mean percent correct was calculated for
each block of two trials. Participants continued learning
anatomy until they reached a minimum of 89.5 percent
accuracy (17 of 19 structures) in each of three consecutive
learning blocks—all three views of anatomy. Across blocks
of learning trials and throughout testing, the order in which
view was presented was standardized at coronal, followed
by sagittal, and then axial.

Immediately after learning was completed, participants
were given the three tests of transfer to biomedical images
in the order Uncued Recognition, Submit Structure, and
Submit Name. For each test, participants were tested with
each image type (MRI and Visible Human) in all three
views of anatomy. The two image types were
counterbalanced across participants.

Two to three weeks after learning was completed,
participants were given the test of long-term retention for
sectional anatomy followed by the test of long-term
retention/transfer for whole anatomy. Tests were given for
all three views of anatomy.
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Results

Learning

Learning Trajectories Multilevel modeling was used for
statistical analysis of performance in learning (Raudenbush
& Bryk, 2002). Binomial models were appropriate for these
data. Variables tested for inclusion in the multilevel model
included learning block, anatomy course (AC), sectional
anatomy presentation (SAP), and spatial ability (DAT-SR).
Spatial ability was a significant factor in each of the models
of learning but will not be discussed in this paper. Details of
model parameters are available from the authors.

To establish the relative efficiency of learning whole
anatomy and sectional anatomy, the transfer group’s
performance in whole anatomy was compared to the
sections alone group’s performance in sectional anatomy.
Participants learning whole anatomy had substantially
higher performance in the first block of trials and learned at
a faster rate than participants learning sectional anatomy
(see Figure 2). Mean percent correct identification in block
one was 54 percent for whole anatomy and 36 percent for
sectional anatomy, t(69) = 5.780, p < .001. Both groups
improved in performance over successive blocks, t(68) =
15.746, p < .001; however, the increase in performance was
much greater for participants learning whole anatomy: AC,
t(68) = 7.359, p < .001.

There were no effects on the efficiency of learning
sectional anatomy due to the type of sectional anatomy
presentation in any of the analyses of learning. This variable
was not retained in the multilevel models and will not be
discussed further in the presentation of results on learning.

In a second analysis, transfer of learning from whole to
sectional anatomy was measured by comparing performance
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in sectional anatomy for the transfer and sections alone
groups. Participants in the transfer groups performed
significantly better in the first block of sectional anatomy
learning than participants in the sections alone groups (see
Figure 2). Mean percent correct identification was 73
percent in the transfer groups and 36 percent in the sections
alone groups, t(69) = 13.522, p < .001. Although both
groups improved over time, the transfer groups continued
their learning at a slower rate than the sections alone groups:
AC, t(70) = -3.321, p =.002.

In a third analysis, differences between conditions were
further explored by comparing performance in sectional
anatomy for the transfer and sections alone groups after
relating performance to the total time spent learning
neuroanatomy. For the transfer groups, learning blocks were
numbered to reflect the time participants spent learning both
whole and sectional anatomy. Nearly two thirds of the
participants in the Transfer groups (21 of 36) completed
whole anatomy learning in 4 blocks and transferred to
sectional anatomy in block 5. Therefore, performance in
sectional anatomy learning was compared beginning at
block 5. Modeled performance in Block 5 was 71 percent
for the Transfer groups and 81 percent for the Sections
alone groups, AC, t(69) = -3.030, p = .004. The 10 percent
difference is equivalent to 2 of the 19 structures on the test.

Learning Time to Achieve Criterion Performance In
each learning trial, time was constrained to 3 minutes for
study and 3 minutes for feedback. Therefore, we considered
the number of blocks required to reach the performance
criterion as one measure of learning efficiency. An
ANCOVA was performed to compare the number of blocks
of trials required to complete learning for whole and
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Figure 2: A comparison of performance in whole anatomy and sectional anatomy (left) and a comparison of performance

in sectional anatomy beginning at block 1 (right).
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Figure 3: Sectional anatomy retention.

sectional anatomy. Spatial ability was correlated with the
number of blocks required (r = -.236, p = .046) and was
entered as a covariate, F(1,67) = 7.785, p = .007.
Participants learned whole anatomy in significantly fewer
blocks (M = 5.2) than participants learned sectional anatomy
(M =10.7), F(1, 67) = 57.555, p < .001.

A second ANCOVA compared the transfer and the
sections alone groups on the number of trial blocks required
to reach criterion in sectional anatomy learning. Again,
spatial ability was correlated with the number of blocks to
reach criterion (r = -.298, p = .011) and was included as a
covariate, F(1,67) = 7.678, p = .007. Participants in the
transfer groups completed sectional anatomy in 2.5 fewer
blocks (M = 8.2) than participants in the sections alone
groups (M =10.7), F(1, 67) = 7.282, p = .009.

A third ANCOVA was performed to look for differences
between the groups in the number of blocks of trials
necessary to complete all learning in neuroanatomy. Spatial
ability was correlated with the number of blocks to reach
criterion (r = -.344, p = .003) and was included as a
covariate, F(1,67) = 10.129, p = .002. Participants in the
transfer groups completed whole anatomy and sectional
anatomy in 2.7 more blocks than participants in the sections
alone groups completed sectional anatomy (transfer, M =
13.4; sections alone, M = 10.7), F(1, 67) =6.021, p = .017.

Total Error in Learning Neuroanatomy Over the entire
course of learning, participants in the transfer groups made
fewer errors (M = 77) in learning neuroanatomy than
participants in the sections alone groups (M = 100), F(1, 67)
= 3.870, p = .053. This occurred even though the transfer
groups were required to complete two presentations of
anatomy and took 2.7 more blocks to do so. Spatial ability
was a significant covariate in the analysis of total error, F(Z1,
67) = 13.995, p < .001.

Testing

Long-Term Retention and Transfer MANCOVA was
used to analyze retention of sectional anatomy and
retention/transfer of whole anatomy. DAT-SR was included
as a covariate.

Retention of sectional anatomy remained high two to
three weeks after learning, with several participants
reaching 100% accuracy in the first test (see Figure 3).
There was an interaction of AC with view, Wilks” Lambda
(A) = .898, F(2, 63) = 3.570, p = .034. The transfer groups
were more accurate than the sections alone groups for
retention of the sagittal view of sectional anatomy (transfer
M = 87.8, sections alone M = 83.1), t(57) = -2.675, p = .03
(Bonferroni). No differences between the groups occurred
for retention of the coronal and axial views.

In the analysis of retention/transfer for whole anatomy,
participants in the transfer groups were more accurate than
participants in the sections alone groups in identifying
whole anatomy, F(1, 64) = 15.306, p < .001. Participants in
the transfer groups tested at 97% mean accuracy in
identifying whole brain structures. Although participants in
the sections alone groups had never seen whole anatomy,
they reached an overall mean accuracy of 89.5%. This meets
the numerical criterion used for successful learning. Given
this high rate of transfer, it is important to consider that
there was a relatively substantial effort required to achieve
this performance. All tests in this experiment were self-
paced. In an analysis of test duration, participants in the
sections alone groups took substantially more time than the
transfer groups to complete the three tests for whole
anatomy (M = 14.5 minutes vs. 8.8 minutes, a difference of
nearly 6 minutes), F(1, 61) = 54.331, p < .001. This
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Figure 4: Transfer to MRI and Visible Human images for
the discrete and the continuous sectional anatomy
presentation groups.
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suggests that participants who had received sectional
learning alone were not recalling a representation of whole
anatomy but were inferring it.

Transfer to Biomedical Images In scoring Uncued
Recognition and Submit Structure, correct answers were
decided ahead of time, and images were created with the
structure boundaries drawn on them. During scoring, the
experimenters were blind to the participants' identities and
experimental conditions. MANOVA was used to analyze
performance on each test.

Transfer performance was quite high, particularly for the
two cued tests (Submit Structure and Submit Name; see
Figure 4). Within each test, performance varied widely
among individuals, with some participants performing
extremely well. In Submit Structure and Submit Name, the
best performing participants were above 90% accuracy.

There were no differences in transfer due to learning
group. Performance was higher for Visible Human than for
MRI images in all three tests: Uncued Recognition, VH M =
47%, MRI M = 40%, A = .440, F(1, 65) = 82.659, p < .001;
Submit Structure, VH M = 72%, MRI M = 58%, A = .704,
F(1, 64) = 26.913, p < .001; Submit Name, VH M = 80%,
MRI M = 64%, A = .378, F(1, 64) = 105.282, p <.001.

In two of the three transfer tests, Uncued Recognition and
Submit Name, there was a main effect of sectional anatomy
presentation: Uncued Recognition (continuous M = 41.7,
discrete M = 44.9), F(1, 65) = 3.962, p = .051; Submit Name
(continuous M = 70.1, discrete M = 73.4), F(1, 64) = 4.835,
p = .032. Participants who learned with a discrete
presentation were more accurate in identifying structures
than participants who learned with a continuous
presentation.

Discussion

Knowledge of whole anatomy served as an effective basis
for learning sectional anatomy. Whole anatomy was learned
quickly—in half of the time of sectional anatomy.
Knowledge of whole anatomy transferred well to learning
sectional anatomy. Accuracy in block 1 of sectional
anatomy was twice as high for the transfer groups, and
learning of sectional anatomy was completed more quickly.
There was less error over the entire course of learning for
participants learning both representations of anatomy.

Knowledge of whole anatomy benefited long term
retention of sectional anatomy. Because the participants
who learned whole anatomy required fewer trials with
sectional anatomy, this advantage for retention is
inconsistent with the well-known test effect. In the test
effect, a greater number of tests of knowledge during
learning leads to an advantage for long-term retention.
However, tests administered during learning and at retention
are identical to each other. For the present research, such a
test effect would show better long-term retention for the
sections alone groups.

On the other hand, the groups that learned both whole and
sectional anatomy did require more total trials to learn.

Thus, the improvement in long-term retention is potentially
due to a type of test effect, one that we have not seen
described elsewhere. In this case, additional testing of whole
anatomy is contributing to the long-term retention of
sectional anatomy, a further instance of transfer of learning.

The transfer of knowledge to the interpretation of
biomedical images served as a gold-standard test of the
present ~methods of computer-based learning of
neuroanatomy. The high levels of transfer obtained, along
with the high levels of long-term retention, strongly
encourage the use of these methods in neuroanatomy
instruction.
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