Mathematical reasoning with higher-order anti-unifcation

Markus Guhe, Alison Pease, Alan Smaill
(m.guhela.peasela.smaill@ed.ac.uk)
University of Edinburgh, School of Informatics, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, Scotland

Martin Schmidt, Helmar Gust, Kai-Uwe Kihnberger, UIf Krumnack
(martisch|hgust|kkuehnbe|krumnack@uni-osnabrueck.de)
University of Osnabriick, Institute of Cognitive Science, Albrechtstr. 28, 49076 Osnabriick, Germany

Abstract

We show how heuristic-driven theory projection (HDTP, a
method based on higher-order anti-unification) can be used to
model analogical reasoning in mathematics. More precisely,
HDTP provides the framework for a model of the inductive
analogy-making process involved in establishing the fundamen-
tal concepts of arithmetic. This process is a crucial component
for being able to generalise from the concrete experiences that
humans have due to their embodied and embedded nature. Such
generalisations are a cornerstone of the ability to create an ab-
stract domain like arithmetic. In addition to generalisations,
HDTP can also transfer concepts from one domain into an-
other, which is, for example, needed to introduce the concept
ZERO into arithmetic. The approach presented here is closely
related to the theories of Information Flow and Institutions.
The latter in particular provides a compelling way to integrate
concept blending into the HD TP approach.

Keywords: mathematical cognition; mathematical reasoning;
analogy; anti-unification; concept blending

Mathematical reasoning as a cognitive process

Although mathematics is usually presented in terms of axioms,
concise proofs, theorems and so on, the actual cognitive pro-
cess of mathematical reasoning is very different. For example,
when a mathematician changes a definition this affects the
proofs that use it, but such changes are not discussed in mathe-
matical papers. Additionally, mathematics, at least partly, does
not consist of discovering eternal, Platonic ideals but in cre-
ating mathematical concepts. For example, Lakatos’s (1976)
account of the history of Euler’s conjecture illuminates how
the concept POLYHEDRON can differ and how its definition
depends on the current circumstances and needs of the mathe-
matician. Put differently, if the Platonic ideal POLYHEDRON
does exist, it is not clear how it can be identified by mathemat-
ical means — what cognitive processes mathematicians can use
to find the correct definition. Thus, mathematical concepts are
not necessarily the same as the ideals.

Lakoff and Nafiez (2000) describe how our embodied, situ-
ated experience is the basis on which abstract mathematical
concepts are developed by a process of metaphorical abstrac-
tion and transfer. In chapter 3, they describe how basic arith-
metic is created from four everyday experiences, which are
the source domains of the metaphors. In this way, arithmetic
is grounded in situated cognition. To motivate that these four
domains in particular are source domains, Lakoff and Nifiez
analyse linguistic expressions used in the target domain, arith-
metic, which they trace back to these four domains. For exam-
ple, we use the terms add and take away in arithmetic. Lakoff
and Nafiez argue that these terms were originally used for

talking about collections of objects, such as physically placing
an object into a container, e.g. adding an onion to the soup, or
physically removing a substance or an object from a container,
e.g. take a book out of the box.

Analogical reasoning is a central component of the pro-
cess transforming knowledge of this kind into mathematical
concepts. For present purposes we assume that metaphor and
analogy are essentially the same cognitive process (Gentner,
Bowdle, Wolff, & Boronat, 2001), and we have demonstrated
how structure mapping (Gentner, 1983; Gentner & Markman,
1997) — a basic method to compute analogical relations — can
account for the overall cognitive process (Guhe, Pease, &
Smaill, 2009).

In this paper, we describe a formal cognitive model of this
process. This has a twofold motivation: firstly, we want to spec-
ify the cognitive processes that mathematicians use, to better
understand how mathematical discovery works; secondly, we
want to use the model to improve automated theorem provers
by incorporating cognitive mechanisms. In Guhe, Smaill, and
Pease (2009a, 2009b) we presented formal representations of
the four grounding metaphors (the 4Gs) and suggested how
Information Flow theory (Barwise & Seligman, 1997) may be
used to model the analogies involved. The 4Gs are: (1) arith-
metic is object collection, (2) arithmetic is object construction,
(3) measuring stick and (4) arithmetic is motion along a path.

Here, we present a proof-of-concept of how performing
anti-unification (Plotkin, 1970) on such representations can
account for aspects of the analogical reasoning involved in
the 4Gs. This inductive kind of reasoning provides us with a
procedural version of the otherwise static Information Flow
models and enables us to computationally determine the re-
lationships between the domains (classifications in the case
of Information Flow). More precisely, we will use Heuristic-
Driven Theory Projection (HDTP; Schwering, Krumnack,
Kihnberger, & Gust, 2009), a general framework for making
analogies. HD TP provides us with the means to generalise
over two of Lakoff and N{fiez’s domains to establish a basis
for arithmetic as well as the means to generalise over one of
the domains as source domain and arithmetic as the target
domain to add concepts to arithmetic that are only present in
one of the grounding domains. We will also outline how this
conception of mathematical reasoning is linked to Goguen’s
(2006) notion of concept blending (which is based on notions
by Gardenfors, 2000 and Fauconnier & Turner, 2002), a fur-
ther cognitive process for creating mathematical concepts.

1992

Metaphors for arithmetic
Arithmetic is object collection

The arithmetic is object collection metaphor (Table 1) is based
on the notion that the repeated manipulation of (small, count-
able, physical) collections of objects lets us notice certain
regularities. For example, we can determine which one of two
collections is bigger by aligning the objects in the two col-
lections one-to-one, and the collection that has at least one
unpaired object left over is the bigger collection. (Smaller
and equal are, of course, determined correspondingly.) This
corresponds to the (abstract) arithmetic notion GREATER.

By comparing collections of objects in this way we can
also group such collections into groups of collections of equal
size, i.e. where after the aligning procedure no object is left
unpaired. Each of these groups corresponds to a number in
arithmetic.

There are two things to note about this basic metaphor.
Firstly, it does not produce a concept of ZERO, because the
empty collection is a collection that does not exist physically.
(Even calling one object a collection with one object is an
abstraction of the term collection.) Lakoff and N(fiez (2000,
p. 64) propose that an entity-creating metaphor is required to
create a concept that is not part of the basic metaphor (like
ZERO). This corresponds well with the fact that, historically,
ZERO was a rather late invention. Secondly, the subtraction
operation requires that a smaller collection be taken from a
bigger one, because physically, negative objects do not exist.!

Table 1: Arithmetic is object collection metaphor (Lakoff &
Nafiez, 2000, p. 55)

object collection arithmetic
collections of objects of the same size numbers
size of collection number
bigger greater
smaller less

smallest collection

putting collections together

taking a smaller collection from a
larger collection

the unit (one)
addition
subtraction

Arithmetic is object construction

The arithmetic is object construction metaphor (Table 2) runs
along the same lines, except that it is not based on collections
of objects, but on objects that are constructed from smaller
objects. In this way, fractions are added to arithmetic, although
they are not part of the basic metaphor. Consider, for example,
an object that is constructed out of seven smaller objects. If
now a smaller object that consists of three of the seven overall
objects is removed from the original object, the two resulting
objects have a size of 3 and 4 of the original.

10One is reminded of the old joke: If on one floor 5 people leave
an elevator containing 3 people, 2 people have to enter the elevator
on the next floor in order for it to be empty.

Table 2: Arithmetic is object construction metaphor (Lakoff &
Nfiez, 2000, pp. 65-66)

arithmetic
numbers

the unit (one)
size of number

object construction
objects

smallest whole object
size of object

bigger greater

smaller less

constructed object result of arith.
operation

whole object a whole number

putting objects together to form addition

larger objects
taking smaller objects from larger
objects to form other objects

subtraction

Arithmetic is motion along a path

The motion along a path metaphor (Table 3) adds concepts
to arithmetic that we experience by moving along straight
paths. Numbers are point locations on paths. Addition and
subtraction correspond to a movements from point one point
on the path to another point on the path. An important new
concept that is added to arithmetic by this metaphor is zERO,
which is based on the concept of a path’s origin and which
provides a direction for the movements along paths, namely
towards the origin or away from it.

Table 3: Arithmetic is motion along a path metaphor (Lakoff
& Nufez, 2000, p. 72)

arithmetic
arith. operations
result of an oper-
ation; number
origin; beginning of the path Zero
unit location, a point location distinct one
from the origin

motion along a path
acts of moving along the path
a point location on the path

further from the origin than greater

closer to the origin than less

moving away from the origin a addition
distance

moving toward the origin a distance subtraction

Heuristic-Driven Theory Projection
Overview

This section provides a short overview of the basic ideas of
heuristic-driven theory projection (HD TP), a formal frame-
work to model analogical mapping and reasoning. A more
detailed description can be found in Schwering et al. (2009).
HDTP establishes analogies between two domains, the
source and the target, by detecting common structures. In the
mapping phase, source and target are compared for structural
commonalities and a generalised description is created, which

1993

subsumes the matching parts of both domains. In the transfer
phase, unmatched knowledge in one domain can be mapped
to the other to establish new hypotheses.

HDTP is a formal framework that computes analogical
relations and inferences for domains represented in first-order
logic. Both, source and target domain, are given by axiomati-
sations, i.e. finite sets of first-order formulae. The basic idea
is to associate pairs of formulae from the domains in a sys-
tematic way. HD TP uses anti-unification (Plotkin, 1970) to
identify common patterns in formulae. In anti-unification, two
formulae are compared and the least general generalisation
that subsumes both formulae is identified.

Figure 1 provides some examples of anti-unification of
terms. Terms are generalised to an anti-instance where differ-
ent constants or function symbols are replaced by a variable.
In (i), first-order anti-unification is sufficient. However, the
terms in (ii) differ in the function symbols, i.e. first-order
anti-unification fails to detect structural commonalities. Here,
higher-order anti-unification generalises function symbols to a
variable and retains the structural commonality. It is even pos-
sible to generalise terms in which common parts are embedded
structurally in a different way, as shown in (iii).2 Substitutions
accompanying the generalised terms are created, which can be
used to reconstruct the original terms.

f(X) F(a) F(a,b)
X—>a/ \X*}b Fﬁf/ \Fﬂg FHI/ QX&LE»
f(a) f(b) f(a g(a@ f(ab) h(a,g(b))
() (i) (iii)

Figure 1: Anti-unification of terms

HDTP extends this classical anti-unification of terms to
formulae and logical theories by iteratively picking pairs of
formulae to be generalised from the domains. This process
is driven by heuristics. Coherent mappings are preferred, i.e.
mappings in which substitutions can be reused. The gener-
alised theory together with its substitutions specifies the ana-
logical relation between source and target. Additional informa-
tion about the source domain, i.e. formulae with no correspon-
dence in the target domain, can be transferred by replacing
symbols using the established substitutions.

Modelling the arithmetical metaphors

HDTP provides two different ways in which Lakoff and
N(fiez’s (2000) grounded domains (Object Collection, Object
Construction etc.) can be related to the abstract domain of Arith-
metic. Following Lakoff and N(fiez, the grounded domains
constitute the source, while Arithmetic is the target domain.
To establish an analogical relation between Object Collection
and Arithmetic, HD TP can construct a generalisation of these

2HDTP uses a restricted form of higher-order substitutions, that
allows to expand terms by introducing arguments and nested struc-
tures as described in Krumnack, Schwering, Gust, and Kiihnberger
(2007).

domains:

Generalisation

‘/analogical\\

Object Collection < oiation > Arithmetic

In this model, both domains are already given. The analogy
explains abstract concepts like numbers by linking them to
familiar entities from the grounded domains. Thus, the gener-
alisation provides a description of the commonalities of the
grounded and the abstract domains.

However, from the cognitive perspective, Arithmetic does
not initially exist — it has to be created by an act of abstraction
as well. This idea can be modelled by analogically relating
two grounded domains, e.g. Object Collection and Object Con-
struction. Arithmetic then emerges as a generalisation of these
domains.

Generalisation
(Arithmetic)

Obiject Collection Object Construction

In our view, a combination of both approaches is needed to
model the cognitive bootstrapping process. By generalising
over two grounded domains, an abstract domain is estab-
lished, which serves as a ‘proto-domain’ of Arithmetic, i.e.
a domain that already contains some arithmetical concepts.
This is then refined subsequently, by relating it analogically
to other grounded domains, removing peculiarities of the two
original domains and/or adding new concepts by analogical
transfer.

Generalisation
(Arithmetic-2)

Generalisation
(Arithmet%
Object
Construction

.. transfer

otion
Along a Path

Object
Collection

It should be noted that in pursuing this approach the results
may vary depending on which grounded domains are chosen
for generalisation and on the order in which other grounded
domains are added for refinement. This is due to the heuristics
that HD TP applies when building up the generalisation. The
more similar the grounded domains are, the richer the general-
isation will be, while dissimilar domains give coarser results.
Nevertheless, we expect that this effect can be compensated
by further mapping the initial generalisation to other domains.
A detailed examination of this will be a focus of our future
work.

Formalisation of domains

We demonstrate the feasibility of the outlined approach by
applying it to simple formalisations of Lakoff and N(fiez’s

1994

Gy VV,Va: G(V1, Vo) — L(Va, V)
Generalisation ©2: VV1,V2,V3: P(V1,V2,V3) — M(V3,V2,V1)
(Arithmetic-2) 03
64: VV,V2:8(V1) = (=Q(V2) — =G(V1,V2))

YV, V2,V3,Va 1 (A(V1,V2) ANP(V2,V3,Vy)) — G(V4, V1)

T GV, V2) —
furtherFromOrigin(Vy,V,, path)

T L(V1,Va) —
closerToOrigin(Vy,Va, path)

T3 P(Vi,V2,V3) —

K1 : G — bigger K3: A—align

Ky : L — smaller Kq: Q — false

moveAwayFromOrigin(Vy,V,, V3, path)

T4 M(Vi,Vp,V3) —
moveTowardsOrigin(Vy,V,,Va, path)

T5: A — true

p1: VYV, Vs i bigger(Vy,Va) — smaller(V,,V))
Generalisation p2: VV1,V2,V3: P(V1,V2,V3) — M(V3,V2, V1)
(Arithmetic-1) p3:

pa: YV, V2 S(Vi) — —bigger(Vi,V2)

T6: S — closestToOrigin
t7: Q(V) — origin(Vy, path)

VV1,V2, V3, Va : (align(V1,V2) AP(Va,V3,Va)) — bigger(Va, V1) v

Motion Along A Path

uy : P — putTogether
o : M — takeAway
w3 . S — smallestCollection

M : P — combine
Ay M — split
A3 S — smallestWholeOb ject

Object Collection
o @ VC1,Cy: bigger(Cy,Ca)
— smaller(C,,C)
o VC1,Cp,C3 :putTogether(Q ,C27C3)
— takeAway(C3,C,,C)
o3 : VC,(,G5,Cy
(align(Cy,Cy) A putTogether(Cy,C3,Cy))
— bigger(Cy,C1)
oy : YCy,C; : smallestCollection(Cy)
— —bigger(Cy,Cz)

Object Construction

Bi: YO1,0; : bigger(01,0,)
— smaller(07,01)

ﬁz : V01,02, 03 : combine(Ol,Oz,Og)
— split(03,0,,01)

B3: ¥01,0,,03,04:
(align(0y,0,) N combine(02,03,04))
— bigger(04,01)

Bg: VO1,0; : smallestWholeObject(O1)
— —bigger(01,07)

Vit

Y2

Ya:

Y5 :

VPP

furtherFromOrigin(Py, Py, path)

— closerToOrigin(P, Py, path)
VPI,Pz,P3 :

moveAwayFrom(Py, P>, P, path)

— moveTowardsOrigin(P3, Py, Py, path)

: VPP, P;:

moveAwayFromOrigin(Py, P, P3, path)
— furtherFromOrigin(Ps, Py, path)
V Py, P : closestToOrigin(Py)
— (—origin(Py, path) —
—furtherFromOrigin(Py, Py, path))
YV Py,Origin :
moveTowardsOrigin(Py, Py, Origin, path)
— origin(Origin, path)

Figure 2: Developing Arithmetic from Object Collection, Object Construction and Motion Along a Path

grounding metaphors. The original descriptions of the domains
are only given informally, but we tried to stay as closely to
original as possible. One possible axiomatisation in HD TP
of the Object Collection domain is given in Table 4. Such a for-
malisation specifies the vocabulary that is used in the form of
sorts, entities and predicates and then provides facts and laws
to describe the structure of the domain. For example, axiom
03 states that if two collections C; and C, can be aligned, i.e.
all their objects can be paired up, and C, is created by putting
C, and C3 together, then C4 will be bigger than C;. Note that
further formulae need to be added to get a complete axioma-
tisation, but such formulae can easily be introduced into the
system as long as some elementary consistency constraints are
satisfied. While adding more formulae to this formalisation
might strengthen the support for a specific alignment, it does
not necessarily introduce new mappings of concepts to other
domains. An example for this is ag, which states the transi-
tivity of bigger. This formula embeds bigger further in the
structure of the domain but does not introduce new concepts.
putTogether, takeAway, bigger and smaller are considered core
concepts of the Object Collection domain. In what follows, we
will restrict our axiomatisations to such simple versions in
which just the cores of the domains are represented and con-
nected to each other. Furthermore, we will omit technical
details as well as the specification of sorts and signatures for a
more concise presentation.

Generalising two domains

We tested various alternative formalisations, which all resulted
in HD TP being able to establish appropriate analogies. Here
we present axiomatisations of the grounded domains that are
compact and consistent and that import integral parts of the
domains. Furthermore, we demonstrate how the transfer of
knowledge from one domain to another one works, because
this is a hallmark of “interesting” analogies.

In a first step, we generalise the domains of Object Collec-
tion and Object Construction. (We only use the basic version of
the Object Construction domain here, which largely resembles
Obiject Collection. This version is not sufficient to introduce the
concept of fractions.) The axiomatisation of the two domains
can be found in the two boxes in the bottom left of figure 2.
The grounded domains are restricted to the operations that in
arithmetic correspond to greater, less, addition and subtrac-
tion. The axioms a; and B; (fori € {1,...,4}) correspond to
each other and are generalised in the obvious way by intro-
ducing individual variables and variables for operations. For
example, the predicate putTogether of the Object Collection
domain is identified with combine of Object Construction and
generalised to a variable P. The substitutions p; and A1 can be
used to reconstruct the original expressions. Note that aligning
corresponding clauses in formalisations is only done for the
convenience of the reader; HD TP does not rely on such an
ordering to find the best possible analogical mapping.

1995

Table 4: Formalisation of the Object Collection domain

Sorts
coll
Entities
singleton : coll
Predicates
smallestCollection : coll
bigger : coll x coll
smaller : coll x coll
equal : coll x coll
putTogether : coll x coll x coll
takeAway : coll x coll x coll
Laws
a1 : VCp:coll,Cy:coll:
bigger(C1,Cz) — smaller(C;,C1)
0y : VCj :coll,Cy:coll,C3: coll:
putTogether(Cy,C,,C3) — takeAway(C3,C2,C1)
a3 : VCy:coll,Cy:coll,C3:coll,Cy: coll:
align(Cyq,C;,) A putTogether(Cy,C3,C4) — bigger(C4,C1)
Oy : VCyp:coll,Cy:coll:
smallestCollection(C;) — not(bigger(Cy,C>))
Os: VCj :coll,Cy :coll:
equal(Cy,Cy) — (—bigger(Cy,Co) A ~smaller(Cy,C3))
Og: VCi:coll,Cy:coll,C3:coll:
(bigger(Cq,Cz) Abigger(Cz,Cs)) — bigger(Cy,Cs)

Facts
a7 : smallestCollection(singleton)

Refining the generalisation

The formulae computed above by generalising Object Collec-
tion and Object Construction serve as a first formalisation of
elementary arithmetic (labelled Arithmetic-1 in figure 2). The
variables introduced by anti-unification are regarded as enti-
ties and predicates of this new domain. Because the grounded
domains chosen were very similar, and in particular because
the grounded domains neither have the concept EMPTY COL-
LECTION nor EMPTY CONSTRUCTION, the system com-
putes only a subtheory of arithmetic that lacks a neutral el-
ement with respect to the operation P (representing ADDI -
TION). A second step of creating analogical mappings is
needed to transfer the concept zErRO from a differently struc-
tured domain into our Arithmetic-1. This is achieved by the
second generalisation between the formalisation of Motion
Along a Path and Arithmetic-1 resulting in Arithmetic-2 de-
picted in figure 2.

The formalisation we chose for Motion Along a Path is dif-
ferent from the other domains in that the predicates take an
extra argument, path, to indicate the path along which the mo-
tion occurs. As a consequence, higher-order anti-unification
is applied which leads to the slightly more complex substi-
tutions T4 to 17 and Kj to K4. As before, these substitutions
can be used to reconstruct the source and target domains from
the generalisation. A further point to note is that y; contains
an additional condition in comparison to p4. This mismatch
is handled by introducing a generalised predicate Q, which
is mapped to false by k4 and therefore can be neglected in
Arithmetic-1. However, this dummy predicate is used as a hint

for refinement. It indicates that an elaborated version of ps
might be used to describe Arithmetic-1, namely

pﬁt : Wl,Vz . S(Vl) — (—|Q(V2) — —|bigger(V1,V2))

which mainly states that if V; is the smallest number, then
either V is ZERO or V; is not bigger than V. This new predi-
cate Q can also be used for the transfer of additional formulae,
e.g. Y5 can be introduced into Arithmetic-1 resulting in

ps: Wi,0:M(V1,V1,0) = Q(O)

basically saying Vi minus V; equals ZERO. Thereby, the basic
ideas on ZERO are incorporated into Arithmetic-1 by refine-
ment and transfer from the Motion Along a Path domain.

Goguen’s notion of concept blending

Another important means to create new mathematical con-
cepts is concept blending, in particular in the form presented
by Goguen (2006). His figure 3, reproduced below, gives
an overview. Each node in this graph corresponds to a con-
ceptual space in the sense of Gardenfors (2000), which,
roughly speaking, is a subset of the system’s knowledge.
The arrows preserve the infer-

ential structure from space to G

space, and the diagram commutes.
Goguen does not discuss exam- / \
ples from arithmetic, but how from
the concepts HOUSE and BOAT
the concepts HOUSEBOAT and
BOATHOUSE are created by con-
cept blending. The G space con-
tains generic elements, such as
PERSON Or OBJECT; the | spaces represent more specific
conceptual spaces, in his example Iy represents thata HOUSE
ison LAND and that a PERSON LIVES in it and I, that
a PASSENGER RIDES ina BOAT and that the BOAT is
on WATER. Concept blending takes these conceptual spaces
and maps them into another space (the B space) in a way that,
for example, that the BOAT is mapped onto the PERSON
LIVING ina HOUSE, resulting in the concept of a house in
which the boat ‘lives’ —a BOATHOUSE.

Fauconnier and Turner (2002, pp. 242-245) discuss blends
in arithmetic. Their presentation can be formulated in the form
suggested by Goguen (they are a major influence on Goguens
conception in the first place), thus giving an extension to the
work described in this paper. For example, Lakoff and NGfiez’s
extended version of the motion along a path metaphor supports
an analogue of the rational numbers. Taking this as I, and
object collection as 11, a generalisation G can be found as
above, which ignores the division operation of I,. Forming
the blend B then allows the extra operation to be incorporated
into a conceptualisation which respects the generalisation. The
blend can be seen as an updated view of I1:

Once we have the blend, and reify it, we can adopt the
view that the previous conception of number was ‘miss-

1996

ing” several numbers that were ‘there’ but not yet “dis-
covered’. (Fauconnier & Turner, 2002, p. 244)

Conclusions and future work

We examined to which extent the cognitive processes underly-
ing mathematical thinking can be made formally precise and
algorithmically operationalised. For this purpose we took the
mathematical metaphors of Lakoff and Nifiez (2000) and used
the analogy engine HD TP to compute generalisations from
the basic source domains of arithmetic based on higher-order
anti-unification.

For this, we used formalisations similar to the ones in our
earlier approaches using Information Flow theory and created
a first generalisation that contained the fundamental concepts
of arithmetic. We extended the first generalisation produced
by HDTP by incorporating a transfer of concepts, which
added new concepts to the ‘growing’ domain of arithmetic (in
our case the idea of a neutral element). Thus, anti-unification
cannot only serve to find abstractions of two source domains
but also to transfer concepts.

We also briefly described, how Goguen’s concept blending
is a direct extension of the HD TP approach. A paper detailing
the role of concept blending for arithmetic and a treatment
within the HD TP framework is currently submitted.

The demonstrated generalisation examples are still quite
simple. Enriching the domains to get more interesting transfer
candidates is therefore the next step. This notion of ‘interest-
ingness’ is central to a comprehensive treatment of mathemati-
cal discovery, because there is an unlimited number of possible
theorems and theories, but only a fraction of these are deemed
interesting and useful enough for mathematicians to consider.
For automated theorem provers, this is a hard problem; one
on which we expect the heuristic nature of the HD TP engine
will shed more light.

The grounded domains as we used them here are already
generalisations of concrete situations, e.g. for the object collec-
tion domain the person/system must already have abstracted
over concrete instances of the acts of putting collections to-
gether and realised that this is a general law holding in this
domain. HD TP should be suited to create these abstractions
as well. A more pressing and fundamental case seems to be,
however, to create an abstract, generalised number concept
that extends beyond the subitising range, i.e. those cardinal-
ities (ranging from one to three or four) for which humans
don’t need to count but immediately perceive the number of
objects and which seem to be innate.

Some other directions in which to extend our work are: (1)
How are the results influenced by the order of generalisation?
(2) How can the object construction domain be extended such
that fractions (rational numbers) can be introduced into the
domain of arithmetic? (This is Lakoff and NUfiez’s fraction
extension of the basic metaphor.) (3) How can our approach
be extended to include Lakoff and N(fiez’s linking metaphors,
which are used for creating more abstract mathematical con-
cepts.

Acknowledgments

The research reported here was supported by EPSRC grant
EP/F035594/1 for the Wheelbarrow project.

References

Barwise, J., & Seligman, J.(1997). Information flow: The logic
of distributed systems. Cambridge: Cambridge University
Press.

Fauconnier, G., & Turner, M. (2002). The way we think:
Conceptual blending and the mind’s hidden complexities.
New York: Basic Books.

Gérdenfors, P. (2000). Conceptual spaces: The geometry of
thought. Cambridge, MA: MIT Press.

Gentner, D.(1983). Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science, 7(2), 155-170.

Gentner, D., Bowdle, B. F., Wolff, P., & Boronat, C. (2001).
Metaphor is like analogy. In D. Gentner, K. J. Holyoak, &
B. N. Kokinov (Eds.), The analogical mind: Perspectives
from cognitive science (p. 199-253). Cambridge, MA: MIT
Press.

Gentner, D., & Markman, A. B. (1997). Structure mapping
in analogy and similarity. American Psychologist, 52(1),
45-56.

Goguen, J.(2006). Mathematical models of cognitive space
and time. In D. Andler, Y. Ogawa, M. Okada, & S.Watanabe
(Eds.), Reasoning and Cognition: Proceedings of the Inter-
disciplinary Conference on Reasoning and Cognition (pp.
125-128). Keio University Press.

Guhe, M., Pease, A., & Smaill, A.(2009). A cognitive model
of discovering commutativity. In Proceedings of the 31st
Annual Conference of the Cognitive Science Society. Austin,
TX: Cognitive Science Society.

Guhe, M., Smaill, A., & Pease, A.(2009a). A formal cogni-
tive model of mathematical metaphors. In B. Mertsching,
M. Hund, & Z. Aziz (Eds.), K1 2009: Advances in Artificial
Intelligence (pp. 323-330). Berlin: Springer.

Guhe, M., Smaill, A., & Pease, A. (2009b). Using Informa-
tion Flow for modelling mathematical metaphors. In Pro-
ceedings of the 9th International Conference on Cognitive
Modeling.

Krumnack, U., Schwering, A., Gust, H., & Kihnberger, K.-U.
(2007). Restricted higher-order anti-unification for analogy
making. In Al 2007: Advances in Artificial Intelligence (pp.
273-282). Berlin: Springer.

Lakatos, 1.(1976). Proofs and refutations: The logic of mathe-
matical discovery. Cambridge: Cambridge University Press.

Lakoff, G., & Nlfiez, R. E.(2000). Where mathematics comes
from: How the embodied mind brings mathematics into
being. New York: Basic Books.

Plotkin, G. D. (1970). A note on inductive generalization.
Machine Intelligence, 5, 153-163.

Schwering, A., Krumnack, U., Kilhnberger, K.-U., & Gust,
H.(2009). Syntactic principles of Heuristic-Driven Theory
Projection. Journal of Cognitive Systems Research, 10(3),
251-269.

1997

