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Abstract 

Many theories in cognitive science assume that people 
possess a repertoire of strategies or a "toolbox" from which 
they choose depending on the situation. This approach suffers 
from the problem that the number of assumed strategies is 
often not constrained and may be extended post-hoc to 
improve the fit to the data. This makes it difficult to 
rigorously test and compare strategy repertoire models. To 
prevent this "strategy sprawl", a criterion is necessary to 
decide how many strategies a toolbox should include. Here, 
Bayesian statistics provide a powerful tool to evaluate 
toolboxes of different sizes based on their marginal 
likelihoods. The present work illustrates how such a Bayesian 
approach can be implemented and demonstrates its 
applicability by means of parameter recovery studies. Our 
approach also makes the novel contribution of showing how 
Bayesian statistics allow testing the strategy repertoire theory 
against alternative decision theories.  
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The problem of strategy sprawl 
A common assumption within many research areas in 

cognitive science is that people possess a repertoire of 
cognitive strategies to solve the problems they face. For 
example, people use different strategies for making 
consumer decisions (Payne, Bettman, and Johnson, 1993), 
for organizational memory tasks (Coyle, Read, Gaultney, & 
Bjorklund, 1998), for estimations of frequencies (Brown, 
1995), for categorization problems (Patalano, Smith, 
Jonides, & Koeppe, 2001), for the development of 
mathematical skills (Siegler, 1991), or for inference 
problems (Gigerenzer, Todd, and the ABC Research Group, 
1999). The strategy repertoire approach provides a fruitful 
way to explain intra- and inter-individual differences in 
cognitive processes. This approach has also been described 
by the metaphor of an adaptive toolbox according to which 
individual decision makers select between different 
cognitive strategies to solve specific tasks just as a 
craftsman selects tools from a toolbox.  

Despite its undisputed success in explaining a wide range 
of human behavior, the idea of a toolbox raises the question 
of how many different strategies the mental toolbox should 
contain in the first place. A larger number of possible 
strategies will always lead to a better description of the data 

but not necessarily to greater insight. For example, by 
assuming a specific tool for each possible task, the toolbox 
should provide a good description of observed behavior due 
to its great flexibility. Along the same lines, Dougherty, 
Thomas, and Franco-Watkins (2008) criticized that in a 
situation in which no strategy out of a set is able to describe 
a person’s choices, an unconstrained toolbox could be 
enlarged by a new strategy to describe the data. On the other 
hand, if the toolbox is restricted to only a few or to a single 
strategy it would lose its ability to describe different 
cognitive processes.  

In the following, we outline a possible solution to the 
question of how many tools a toolbox should contain based 
on a Bayesian approach. Having a criterion for determining 
how many strategies to include keeps strategy sprawl at bay 
and is also a necessary pre-condition for rigorously 
comparing different toolbox models with competing 
cognitive theories that do not assume different strategies but 
rely on the idea of an "all-purpose" process (Newell, 2005). 

Example of a cognitive toolbox 
As an illustrative example of a cognitive toolbox, imagine a 
situation in which a person tries to determine which of two 
used cars is a better deal. To make this decision, a person 
could use different pieces of information (i.e., cues) such as 
mileage, number of previous owners, or accident history of 
the cars. In such a situation, each single cue provides a hint 
of which car might be better, but none of the cues provide 
an indisputable prediction, because it could be that a car 
with many previous owners still turns out to be superior 
overall. In other words, the cues are probabilistically related 
to the criterion, so that even an object with positive cue 
values for all cues could sometimes be inferior compared to 
an object with negative cue values. Probabilistic inferences 
can be complicated because it is not always clear which 
information is relevant and how and whether the different 
pieces of information should be combined.  

To make probabilistic inferences, such as choosing the 
better of two cars, people may choose from a variety of 
cognitive strategies, that is, from their adaptive toolbox 
(Gigerenzer, Todd & the ABC Research Group, 1999). For 
instance, when choosing between two options, people could 
use a simple non-compensatory decision strategy called take 
the best (TTB) that only focuses on the single most 
important or valid cue that discriminates between the two 
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options. If the most valid cue discriminates between the 
alternatives, TTB chooses the object with the positive cue 
value. Only in cases where the most valid cue does not 
discriminate does TTB then consider the second most valid 
cue, and so on. An alternative strategy in the toolbox could 
be a weighted additive (WADD) rule. This model adds up 
all available cue values weighted by their respective 
validities and then selects the alternative with the largest 
score. The WADD rule is compensatory because a highly 
valid cue may be compensated for by a number of other 
cues that point to the opposite choice.  

This example illustrates that different decision strategies 
can be applied to make a choice between two options that 
are described by several attributes. Here, proponents of a 
toolbox approach could argue that people use either TTB or 
WADD depending on the decision situation and the 
characteristics of the decision maker. 

Preventing strategy sprawl 
When examining how people solve an inference problem 
researchers aim to identify the model that best describes the 
cognitive processes, that is, the one that most likely 
generated the observed data. Under the assumption that 
people have a repertoire of strategies, the goal is to identify 
the strategy that a person has selected. Possible strategies 
are not known a priori. Therefore, a researcher may add 
more and more strategies to the toolbox to increase chances 
that one strategy provides a good fit to the data. From a 
model comparison perspective, a given toolbox becomes 
more flexible and complex when more strategies are added. 
Accordingly, it is not surprising when it provides a better 
description of the observed data. Therefore, the question of 
how many strategies to include in the toolbox essentially 
becomes a trade-off between the complexity of the toolbox 
and its fit in describing observed data. Adding another 
strategy is only justified if it increases the fit substantially. 
Bayesian techniques offer a valuable theoretical framework 
to make this trade-off and to identify a toolbox that fits the 
data well. More precisely, the probability of a specific 
dataset given a specific toolbox model (referred to as the 
evidence or marginal likelihood of that model) can be used 
as a criterion of how many tools to include.  

Bayes’ theorem 
In a Bayesian framework, the marginal likelihood p(D) is a 
measure of how well a given model M describes the 
observed data D across all possible parameter values of that 
model (Kass & Raftery, 1995; Shiffrin, Lee, Kim, & 
Wagenmakers, 2008):  

 
p(D) = ∫ p(D|M) × p(M) | dM (1) 
 
where p(D|M) is the likelihood of the observed data given 
the model and p(M) is the prior probability of the model. 
The evidence provides a viable metric to compare different 
models against each other. However, to eventually apply 
this criterion the possible toolbox models and the strategies 

within each toolbox need to be specified in a Bayesian 
framework. In particular, this requires the specification of 
prior distributions and likelihood functions.  

In the following, we lay out the necessary specifications 
in detail. To illustrate the basic principle behind this 
approach, we start with the simple example of comparing 
two toolboxes consisting of only one strategy each, before 
proceeding to the more complex case of comparing 
toolboxes of different sizes. 

Model specification for a simple toolbox 
As a first step, we compare two toolboxes that only consist 
of one single strategy each. For illustrative purposes, we 
assume that the first toolbox consists of TTB, described 
above. In its basic form, TTB is a deterministic strategy that 
assumes people make no errors. This is a rather unrealistic 
assumption because if someone uses TTB but occasionally 
makes an error, strictly speaking the resulting choice data 
would contraindicate the application of the strategy. 
Therefore we allow for the possibility of inconsistent 
choices due to application errors or “unsystematic noise”. 
We extended the deterministic model with a simple error 
theory, so that a parameter αTTB indicates the probability that 
a decision maker will chose the alternative that was not 
predicted by TTB in a pairwise choice. In the following, we 
refer to this probabilistic version of TTB as TTBα. Other 
deterministic choice strategies such as WADD can be 
extended by similar error terms, in an analogous manner.  

Specifying the prior distribution  
In the case of a toolbox that only consists of TTBα as a 
single strategy, the only free model parameter is the 
application error α'TTB. A reasonable prior on α'TTB may be 
to assume an average application error of about 10%. Of 
course, other values are also possible. In any case, the 
application error will probably vary depending on the 
situation and the type of experiment. Therefore, a moderate 
degree of uncertainty concerning the prior distribution 
seems justified. As α'TTB may fall within a range from 0 (no 
implementation error) to 1 (100% implementation error), we 
choose the prior to be beta distributed. For illustrative 
purposes, we set the rate and shape parameters of this beta 
distribution to 1 and 9, resulting in a mean of 0.1 and a 
standard deviation of 0.09.  

 
α'TTB ~ beta(1, 9) (2) 

Specifying the likelihood function 
Next, a likelihood function needs to be defined that 
indicates the probability of the observed data given the 
model. The predictions of a deterministic choice model like 
TTB are readily available as long as the attributes of options 
in the experiment are known. In this case, the likelihood is 
just a function of the implementation error α. If a single 
choice between a pair of options is in line with the 
deterministic predictions of the model for that pair, then 
likelihood of that choice equals 1 − α, otherwise, the 
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likelihood equals α. Hence, the likelihood of a series of N 
choices in an experiment is the product of likelihood values 
for all pairwise choices:  

 
p(D|M) = П [dn × (1− α) + (1 − dn) × α]  (3) 

 
where dn is 1 if the decision for the nth pair of options is in 
line with the deterministic prediction of the model for that 
pair and 0 otherwise.  

For illustrative purposes, suppose a participant in an 
experiment made z pairwise choices that were inconsistent 
with TTB’s deterministic prediction and N − z choices that 
were consistent with it. Following Equation 3, the likelihood 
of this data can be expressed as a Bernoulli function: 

 
p(D|TTBα) = α'TTB (z) × (1 − α'TTB)(N − z) (4) 

 

Deriving p(D) for a single strategy 
Once the prior and the likelihood function of a model are 
specified, the evidence for the observed data p(D) can be 
estimated. In the present case of a single strategy with one 
free parameter α, a closed-form solution exists:  
 
p(D) = B(a + z, b + N – z) / B(a,b) (5) 
 
where B is the beta function, a and b are the rate and shape 
parameter of the beta distribution that defines the prior, and 
z quantifies how many out of a total of N choices are in line 
with the prediction of the deterministic model.  

Specification for WADD 
The outlined approach for TTBα can be conveyed to other 
deterministic strategies like WADD. Like TTB, WADD can 
be extended with a similar beta-distributed error term 
leading to WADDα. The prior distribution and likelihood 
function for WADDα can be specified analogously to TTBα 
with the only difference being different deterministic 
predictions of WADD. 

Comparison between two simple toolboxes 
Now that two toolboxes are specified, they can be compared 
with regard to a given set of data. This case is analogous to 
a model selection task in which an individual decision 
maker can be classified as a TTBα or WADDα user.  

To lay out the approach in a concrete way, we assume a 
hypothetical decision experiment in which a single 
participant made 40 choices among pairs of options 
described on a number of attributes, as in the used-car 
example outlined in the introduction. We further assume 
that the options were chosen to differentiate TTB from 
WADD, such that both strategies would make opposing 
predictions. In this example, a decision maker chooses 
option A 30 times and B 10 times. If we set the prior as 
beta(1,9) for both models, we can calculate the respective 
marginal likelihoods according to Equation 2. For TTBα, 
this yields p(D) = 2.8 × 10-11 for TTBα as compared to 

p(D) = 2.5 × 10-14 for WADDα. The ratio of the marginal 
likelihoods, also known as the Bayes factor (Kass & 
Raftery, 1995), is 1118:1 in favor of TTBα. Therefore, 
Bayes’ rule clearly indicates that the decision maker should 
be classified as a TTBα user.  

Next, we outline how this procedure can be extended to 
toolbox comparisons that include more than one decision 
strategy.  

Specifying toolboxes with more than one 
strategy 

The concept of a cognitive toolbox relies on the idea that 
decision makers have several decision strategies available to 
them. To account for this assumption, we extend the 
Bayesian approach to toolboxes that contain more than one 
strategy. Again, precise model specifications are required so 
that Bayesian techniques can be applied.  

Model specification  
For illustrative purposes, we assume toolbox TBTTB,WADD 
contains two strategies, TTBα and WADDα. We further 
assume that an individual decision maker who uses this 
toolbox will choose according to TTBα with probability β 
and according to WADDα with the complementary 
probability (1 − β). Thus, TBTTB,WADD has three free 
parameters: The implementation error for TTB in the 
toolbox (αTTB), the implementation error for WADD in the 
toolbox (αWADD), and the probability of selecting TTBα (β). 
The likelihood function of this toolbox is simply a function 
of the likelihood for each single strategy weighted by the 
probability of selecting it: 
 
p(D|TBTTB,WADD) = β×p(D|TTBα) + (1−β)×p(D|WADDα)  (6) 
 
Next, a prior distribution for each of the three parameters 
needs to be specified. Without any prior knowledge about 
the probability of selecting TTBα over WADDα all possible 
values between 0 and 1 seem equally likely a priori. 
Accordingly, we assume that the prior on β is uniformly 
distributed:  
 
β ~ uniform(min = 0, max = 1) (7) 
 
Likewise, in this example we do not make any a priori 
assumptions about the probability of particular 
implementation errors.Thus, we assume priors for αTTB and 
αWADD are uniformly distributed. Based on these 
specifications, the marginal likelihood of TBTTB,WADD can be 
estimated by integrating out all three parameters in the 
model analogous to Equation 1:  
 
p(D) = ∫∫∫ p(D| αTTB, αWADD,, ß) × p(αTTB, αWADD,, ß) 
          | dαTTB, dαWADD,, dß (8) 
 
While this approach is conceptually similar to the case with 
only one free parameter, it becomes more elaborate to 
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estimate the integral of Equation 1 as the number of free 
parameters increases.  

MCMC methods to estimate the evidence 
Fortunately, a closed-form mathematical solution, is not 
mandatory to estimate marginal likelihood because all that 
is needed is a representative sample from the integral of 
Equation 1 that is large enough to draw reliable conclusions 
on the shape of the distribution. Such a sample may be 
obtained by means of Monte Carlo Markov Chain (MCMC) 
methods for which statistical packages are readily available 
(Gilks, Richardson, & Spiegelhalter, 1996). For the present 
analysis, we utilized utilized the OpenBugs software 
implemented in the BRugs package, version 0.51, that can 
be integrated into the statistics software R.  

Similar to the mathematical solution outlined above, the 
implementation in BRugs requires the specification of prior 
distributions and likelihood functions. Provided it is 
properly implemented, the software returns the evidence as 
well as a representative sample of the full posterior 
distribution across all parameters.  

Comparison between a small and a large 
toolbox  

To illustrate the principle of comparing toolboxes that differ 
in the number of cognitive strategies they contain, we will 
compare a simple toolbox TBTTB that only consists of TTBα 
as a single strategy to a more complex toolbox TBTTB,WADD 
that contains both TTBα and WADDα. Thus, TBTTB is nested 
within TBTTB,WADD.  

Transdimensional prior 
Instead of calculating the evidence for both toolboxes 
separately, we directly compared the two models by means 
of a transdimensional prior θ. This prior acts like a model 
indicator, controlling which of two models most likely 
generated the observed data. Thus, θ immediately informs 
us which of the two toolboxes best describes the choices of 
an individual decision maker. The parameter θ is Bernoulli-
distributed with a prior that assigns equal probabilities to 
both models (Han & Carlin, 2001; Shiffrin, et al., 2008). 
Like any other estimated parameter in the model, θ is 
updated during the course of MCMC simulation. The Bayes 
factor (BF) is simply the odds ratio of this probability, that 
is, BF = θ/(1 − θ). Figure 1 graphically depicts the model’s 
implementation in OpenBugs. The graph follows the 
notation used by Lee and Wagenmakers (2009) and Shiffrin 
et al. (2008).  

 
 

 
 

Figure 1: Graphical representation of the model 
comparison. TTBi and WADDi depict the deterministic 

predictions for each choice i out of N choices. The notation 
c indicates the actual choice (A or B) and π depicts the 
probability of choosing A over B as predicted by the 

particular model. 
 

Model recovery 
To test this approach, we set up a model recovery simulation 
based on 1,000 pairs of options described on 30 attributes to 
ensure that the results would not be influenced by an 
extreme constellation of binary attribute values that were 
randomly drawn from a Bernoulli distribution with p = .5. 
The importance weights for each attribute were set to 
increase linearly from the least to the most important 
attribute. Next, we simulated hypothetical decision makers 
who repeatedly chose among the pairs of options according 
to either TTBα or WADDα (i.e., ß was set to either 1 or 0). 
The implementation error α for both decision strategies 
varied from 0 to 0.5 in steps of 0.1 across decision makers. 
For each value of α in the simulation, we estimated θ by 
sampling from three separate MCMC chains in OpenBugs 
that were run for 2,000 steps each with a thinning of 10. 

For TBTTB,WADD the priors were set to uniform 
distributions ranging from 0 to 0.5 for αTTB and αWADD and 
from 0 to 1 for β. For TBTTB, the prior on α'TTB was set to a 
uniform distribution ranging from 0 to 0.5. 

Predictions 
If a comparison based on Bayesian evidence is a feasible 
way to solve the problem of strategy sprawl, the method 
should assign more evidence to the model that generated the 
data. Thus, if the data was generated by choices according 
to TTBα, the evidence for a simple toolbox TBTTB should be 
higher than that of a toolbox TBTTB,WADD even though the 
latter one contains TTBα as a special case.  
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Results 
The samples from the three estimated chains in OpenBugs 
provided representative samples as indicated by a visual 
inspection of the trace plot, the autocorrelation and the 
Gelman−Rubin statistic. The results clearly indicate that the 
marginal likelihood for a smaller toolbox can indeed be 
higher than that for a larger toolbox. Figure 2 plots the 
actual implementation error αTTB for choices based on TTBα 
(Figure 2a) and the actual implementation error αWADD for 
choices based on WADDα (Figure 2b) against the estimated 
θ. Here, θ indicates the probability of the more complex 
TBTTB,WADD over TBTTB. As can be seen from Figure 2a, θ 
increases as αTTB increases. This indicates that a decision 
maker who uses TTBα with a small implementation error is 
better described by TTBα as compared to TBTTB,WADD. 
Likewise, a decision maker who chooses according to 
WADDα is clearly better described by TBTTB,WADD even if 
the implementation error αWADD is large. This relationship 
seems plausible because the larger toolbox contains 
WADDα whereas the smaller toolbox does not.  

For an α of 0.5, which indicates random choice, Bayes’ 
rule tells us to favor TTBα, because in the case of very noisy 
data a simpler model is favored over a more complex one. 
Together, the results show that a small toolbox with only 
one strategy should be preferred over a more complex one 
provided that the small toolbox contains the appropriate tool 
to describe the initial decision-making process.  

 
 

Figure 2: Plot of θ against the implementation error αTTB 
(Figure 2a) and αWADD (Figure 2b) used in the simulation. θ 

indicates the evidence in favor of TBTTB,WADD relative to 
TBTTB. 

Parameter recovery 
The results so far show that Bayesian methods can be 
fruitfully applied to solve the question of how many 
strategies a toolbox should contain. However, we have 
implicitly assumed that the estimation methods accurately 
estimate the free parameters of the choice models within the 
toolboxes. To test if this condition really holds, the actual 
parameters used in the choice simulation can be compared 
with their respective posterior estimates. Figure 3a shows 
the marginal of the posterior distribution for αTTB in the 
toolbox plotted against the actual parameters used in the 
simulation. As can be inferred from Figure 3, the posterior 
distributions of αTTB match the actual values of αTTB used in 
the simulation quite well. The parameter recovery for the 
αTTB parameter of the simple TTBα model appears similar. 

Figure 3b shows the estimated β values plotted against 
αTTB parameters used in the simulation. For low values of 
αTTB,  estimated β values are high. As β indicates the 
probability of using TTBα over WADDα within the toolbox, 
this relationship also seems plausible.  

Figure 3 also shows the actual values for αWADD from the 
choice simulation plotted against the posterior of αWADD 
(Figure 3c) and β (Figure 3d) in the toolbox. Again, the 
estimated values match up with the actual values, indicating 
that the parameters were recovered across the whole 
parameter space. For high values of αWADD the Bayesian 
model slightly underestimates the implementation error. 
Presumably this is the case because the prior distribution 
constrains the parameter space between 0 and 0.5. If the 
prior distribution is extended to range from 0 to 1, the 
estimated parameters match more closely. 

 

 
 

Figure 3: Parameter recovery TBTTB,WADD for choices 
according to TTBα (Figure 3, a & b) and WADDα (Figure 3, 

c & d). Error bars indicate the 95% highest probability 
density region of the posterior distribution. 

a 

b 

a 

b 

c d 
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Discussion 
Due to higher degrees of freedom, a cognitive toolbox that 
includes many strategies will always provide a better fit to 
the data, but it will not necessarily provide the highest 
evidence or marginal likelihood. The results of our analyses 
indicate that the marginal likelihood within a Bayesian 
framework can be fruitfully used to determine the number of 
tools to include in a toolbox. Thus, Bayesian statistics are 
well suited to prevent strategy sprawl. 

As outlined above, the marginal likelihood can only be 
estimated with regard to a specific set of choice data and to 
precisely defined cognitive strategies. Thus, the number of 
tools to include may vary depending on cognitive strategies 
included in the toolbox. Yet, within these boundaries, the 
approach indicates that a small toolbox may be preferred 
over a large toolbox if the small toolbox contains a tool that 
describes the data well—even if the small toolbox is nested 
within the larger one.  

The reason why the marginal likelihood provides a 
common comparison metric is because it implicitly accounts 
for differences in model complexity. This happens because 
the prior probability of each possible combination of 
parameters decreases with an increase in parameters. This 
carries over to the marginal likelihood that weights the 
likelihood of the data by the probability of each combination 
of possible parameter values. Thus, even though the 
likelihood of the data can be expected to increase with more 
free parameters, this increase is counteracted by a lower 
prior probability for each possible combination of 
parameters.  

A comparison of the prior distributions of TBTTB and 
TBTTB,WADD illustrates this mechanism. The prior probability 
of TBTTB follows a beta-distribution around a single 
parameter α. On the other hand, the prior probability of the 
parameters in TBTTB,WADD embrace a total of three 
parameters. As prior distributions are probability 
distributions, they must integrate to 1. With more 
parameters in the model, the probability of each specific 
combination of parameter values should decrease because 
parameter space is more spread out.  

Limitations and future research 
Here we demonstrated that the Bayesian approach provides 
a powerful statistical tool for comparing and evaluating 
cognitive toolboxes that contain rather few strategies. In 
principle, the same approach can also be used for more 
complex scenarios. The only constraint of this methodology 
lies in the potential difficulties of implementing efficient 
MCMC sampling for vastly more complex models. As long 
as these computational challenges are met, the approach is 
not constrained to comparing toolboxes but can also be 
extended to compare different toolboxes against alternative 
cognitive models that do not conform to the notion of a 
repertoire of strategies.  
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