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Abstract
The acquisition of intuition, which guides problaaiving by
pruning unpromising strategies, is essential to the

development of expertise in any domain. Problemisgl
intuition may be viewed as analogous to searchitag in
artificial intelligence. One prediction inspired byis analogy
is that practicing on subproblems and relaxed embl
(versions of a problem with fewer constraints om gloal state
and on the possible moves, respectively) may erghdine
development of intuition for the full problem. Ugirthe n-
puzzle, we found that practice on relaxed probletit
promote intuition compared to practice on the fuibblem,
but impaired performance on solving the full prableMore
detailed analyses suggest that practice on relgxeldlems
may discourage planning and encourage reliancaetoition.
Planning is slower but more likely to produce optim
solutions if given enough time, whereas relyingranition is
faster but may lead to suboptimal solutions.

Keywords: Problem solving; intuition; planning; learning;
heuristic searcm-puzzle.

Introduction

When encountering a problem in an unfamiliar donfain
the first time, the novice may feel lost among wéegms to
be an indefinitely large number of possible actitivet seem

Importantly, the problem solver may search the |enob
space not only by physically manipulating the exdér
representation of the problem statxtérnal search), but
also by mentally transforming an internal repreasgon
(internal search or planning). During internal search, the
problem solver need not always move from the cursete
to an adjacent node.

For most realistic problems, the problem-space teee
enormous, so that it is terribly inefficient eveor fa
computer to solve the problem by using brute-fagearch
algorithms that traverse the entire tree until algate is
found. Heuristic search algorithms, on the othemdhaare
much more efficient because they use domain-specifi
knowledge to prune branches of the tree that nieast to
the goal state or do not do so in an optimal wagy,(in the
minimum number of moves). A search heuristic maiggu
search by estimating thdistance (minimum number of
moves required) from any state to the goal so tfat,
example, a search algorithm can always choose ptomex
next the state that is closest to the goal (e greedy best-
first search algorithm). This form of a search ltia,
commonly used in artificial intelligence, is callatheuristic
function.

In many ways, the formal concept of a search htiis

about equally promising, and end up pursuing somelosely related to the commonsense concept oftiotuin

arbitrary path that leads nowhere. But after sgvaome
number of problems from the same domain, the sokikr
eventually learn to consider only a limited numbr
approaches, those that are likely to prove effectiin
commonsense terms, the learner has acquiteidion about
the problem domain: an implicit sense of what toido
various types of situations that arise during peabkolving
(Gobet & Philippe, 2009). How is such intuition acgd
through practice?

problem solving. Search heuristics prune brancheghé
problem-space tree that are unlikely to lead to goal
efficiently, just as problem-solving intuition foses
attention on just those paths that are likely tadldo a
solution quickly. Search heuristics are usuallyt fas
compute, but may lead to suboptimal solutions. Birlyi,
intuitive judgments arise quickly, but are fallided may
result in diminished accuracy or optimality comghte a
solution strategy based on systematic analysis anefal

The standard account of general problem solving iglanning. Furthermore, just as search heuristidg om

Newell and Simon'’s (1972) proposal that the probsedver
performs search within a problem space. A probleacs
can be visualized as a graph or tree in which thdes
represent possible states in the problem and edge e
represents a legal move transforming one stateaintdher.
The legal moves in a problem are defined byofierators,
or possible types of actions. The problem solver sarch
the problem space by starting at the node repriesgttie
initial state of the problem and moving to adjacendes by
applying operators, until one of the nodes reprasgra
goal state is reached. The solution to the probierthe
successful path that the solver took through theblpm-
space graph.

domain-specific knowledge, problem-solving intuitids
restricted to a particular domain and is acquiredy o
through multiple experiences with solving probleimghat
domain. Nonetheless, certain search heuristics nawee
general than others and apply to several domairth wi
overlapping structure, just as the intuition gainedm
solving problems in one domain may apply to a eslat
domain (see Hatano & Inagaki, 1986, for a discusib
routine vs. adaptive expertise). Finally, and most
importantly for the present study, heuristic fuoo8 yield
estimates analogous to the intuitive sense of nkeseto the
goal available to experienced problem solvers. fBls& we
use to assess intuition will be based on subjegtiggments
of distance to the goal state.
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The analogy between problem-solving intuition andproblems, participants could swap some of the tiléh

search heuristics provides insights into how it imidpe
possible to facilitate the acquisition of intuitiom human
problem solving. Al researchers have discovered tha
solution lengths o$ubproblems andrelaxed problems often
provide good heuristic functions for the originabplem

adjacent tiles, in addition to sliding any tileanthe empty
square. Thesewappable tiles were displayed in a lighter
color than the non-swappable tiles. Defined in thay, a
subproblem that removésgoal constraints requires moving
tiles 1 throughh —k into their correct places, and a relaxed

(Prieditis, 1993). A subproblem removes one or moreroblem that remove& move constraints contains one

constraints on the goal state from the original bfgm,

empty square andk tiles that can be swapped with

whereas a relaxegoroblem removes one or more constraintsneighboring tiles.

on the legal moves (i.e., it adds one or more dpesh
Thus, an instance of the original problem can beesbin
fewer moves when translated
subproblem or relaxed problem.

Generation of Puzzles All puzzles were generated

into a correspondingandomly. The optimal A* search algorithm was uged

ensure that each puzzle had the desired minimunticol

Applying the results from Al to the domain of human length.

problem solving, solving subproblems and relaxeibfams
may facilitate the acquisition of intuition for thariginal
problem. Therefore,

Procedure

learners who practice solvingAll instructions and stimuli were presented on anpater,

subproblems or relaxed problems may acquire bettesind participants responded using a mouse. In each

intuition for the original problem than those whezeive the
same amount of practice on only instances of thginad

condition, the participant was first given instioos on
how to solve the type of puzzles (full, subproblean,

problem. At the same time, planning may seem lesgelaxed problem) in that condition. The participahen

necessary when solving subproblems and relaxedgimsb

attempted to solve an initial 8-puzzle of the appiate

Thus, the kind of learning experience that fostergype, solvable in a minimum of three moves. An
development of intuition the most may also have axperimenter ensured that the participant undedstie

detrimental impact on planning. We will elaboratetbese
points in discussing our experimental findings.

Method

Participants

Seventy-two undergraduates from
California, Los Angeles participated for course dite
Participants were randomly assigned to either thetrol
condition 6 = 24), the subproblem condition € 24), or the
relaxed problem conditiom(= 24).

Materials

The n-puzzle Participants solved a computer version of the

n-puzzle, which is illustrated in Figure 1. Threpuzzle

consists of a square bounded space containing #esma

empty square andn initially misplaced square tiles
numbered 1 to. A legal move consists of sliding any tile
into the empty square, and the goal state contlinthe
tiles in ascending order.

4113 1123
215 4|15|6

718|6 7|8

initial state goal state

Figure 1: An 8-puzzle with a 5-step solution: Maveown,
1 left, 2 up, 5 left, and 6 up.

Subproblems and Relaxed Problems In the subproblems

for the n-puzzle, participants were required to move only

some of the tiles into their correct places. In thiaxed

instructions and could solve the initial puzzle. the
subproblem condition, the initial puzzle requirédst 1-4 to
be moved into place. In the relaxed problem coodjttiles
5-8 were swappable. That is, the number of comgfai
removed, k, was four for the initial puzzle in both the
subproblem and relaxed problem conditions. Aftdviag

the University ofthe initial puzzle, the participant took part intmining

phase, a test phase, and finally an intuition a@ssest
phase.

Training Phase The participant was told that more puzzles
would now be given for practice, with a time linat one
minute and 30 seconds for each. The participanttaldsto
solve each puzzle in as few moves as possible, tlaaid
there would be a penalty for every extra move matese
instructions were designed to discourage extereakch
(the usual strategy for solving-puzzles) and encourage
internal search, which has been shown to enhamcaitey
(O’'Hara & Payne, 1998).

The participant then attempted to solve a sequehd®
8-puzzles. In all conditions, the minimum solutiemgths
(a measure of difficulty) of the puzzles increaden 4 to
10 (i.e., the puzzles in the experimental cond#tiarere not
subproblem or relaxed versions of those in the robnt
condition). In the experimental conditionsalso decreased
from four to zero across the puzzles. During thesentation
of each puzzle, the minimum solution length and the
number of moves the participant had made so farewer
shown above the puzzle. After the participant stleach
puzzle or the time limit expired for that puzzledialog box
informed the participant which event had occurrétg
number of extra moves the participant made (if phezle
was solved), and in the subproblem condition, thes tto
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slide into place for the next puzzle. The partioipaould
then take a break and click on a button to staet naxt
puzzle when ready.

Test Phase After all 12 puzzles in the training phase had
been presented, participants were told that thenddwnow
be a test, with the same instructions as for thectpe
puzzles. In the subproblem condition, participamse told

to slide all tiles into place. Participants in @inditions then
attempted to solve the same sequence of 1hfplizzles.
The first six were 8-puzzles and the last six wéte
puzzles, and all puzzles could be solved in 12 moRdter
each puzzle had been solved or had timed out, &xt n
puzzle was presented without any feedback or tomeest.
During both the training and test phases, the caenpu
recorded for each puzzle whether it was solvedstitation
time, the moves the participant made, the iniaééhcy (the
amount of time the participant took to make thstfinove),
and the inter-move latencies (the time to make eac
subsequent move).

Intuition Assessment Phase After the test phase,
participants made a series of 4fairwise distance

comparisons. In each comparison, they were presented witt

two different puzzle states and had to click ondhe that
they believed was closer to the goal within a shone

limit. No feedback was given. The short time limias

designed to elicit a quick, intuitive judgment aprkvent
participants from solving the puzzles mentally aheén

counting the number of moves used. Because exjreds
domain often have an intuitive sense of how cld&sy tare
to solving a problem, and heuristic functions eatienthe
distance of any given state to the goal, this dista
comparisons task serves to assess participantstiamt on

then-puzzle.

The first 20 pairs to be compared were 8-puzzléth W0
seconds each, and the last 20 pairs were 15-pyzlisl?2
seconds each. The true distances of the puzzlgsdanom
1 to 28, and the ratio of the shorter distanceht longer
distance in each pair was between .2 and .91. Boh e
comparison, which puzzle was chosen and the tikentéo
make that choice were recorded.

Results and Discussion

Dissociation of Performance on Solving Puzzles and
Comparing Distances
The mean percentage of fulpuzzles solved during the test
phase in each condition is shown in Figure 2. Tdlaxed
problem group solved a significantly lower perceetaof
puzzles during the test phadd € 57.99,5D = 23.25) than
the control groupM = 69.79,5D = 14.08),F(1, 69) = 5.18,
p = .026, and also the subproblem grolp= 68.75,5D =
15.20),F(1, 69) = 4.30p = .042. The latter two groups did
not differ reliably.

However, as shown in Figure 3, the relaxed proble
group correctly solved the most problems on theéadise
comparisons task, which assesses intuition. Theepéage
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Rigure 2: Mean percentage ofi-puzzles solved by
participants in each training condition during thet phase.
Error bars in all data figures represent 1 standaral of the
mean.
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Figure 3: Mean percentage of comparisons solveckcty
on the distance comparisons task in each condition.

of comparisons correct was significantly higher fie
relaxed problem groupM = 68.33,9D = 6.94) than for the
control group ¥ = 63.44,SD = 10.47),F(1, 69) = 4.22p =
.044. Performance of the subproblem group on the
comparisons task fell between that of the other gnaups,

but did not differ significantly from either.

To further investigate the difference in performaran
the distance comparisons task, we divided the psgrw
distance comparisons into an “easy”’ set and a "hsed
based on the overall performance of the particgpanteach
comparison. For each comparison problem, we cabkxala

nihe proportiong of participants (over all three conditions)

who solved that problem correctly. We then caladathe
median value of| over all comparisons. A comparison that
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swapping two tiles in the relaxed problem imposegsemter
working memory load, because the participant must n
keep track of the new locations of both tiles, eattihan just
one tile in the sliding move. Manipulating an imak
representation of the puzzle state to reflect gppimg move
might take longer as well. Second, the introductimi
additional legal moves in the relaxed problem atsakes
planning harder because participants have to censmbre
moves at each state (that is, tmanching factor is higher).
In order to plan, participants must also rememb&rem
information about which paths they have already taign
explored to some depth and have determined to be
unpromising.

The hypothesis that the swapping move consumes more
working memory is supported by the finding that the
average length of unbroken sequences of backtrgckin
moves during the training phase was significarhydr in
the relaxed problem groupd(= 1.34,SD = .36) than in the

Figure 4: Mean percentage of hard comparisons dolve.,niro group K1 = 1.88,9D = 1.11),F(1, 61) = 4.66p =
correctly on the distance comparisons task in eachyss and also the sﬁbr;roblem.groiw:(’Z.M D = 82)

condition.

F(1, 61) = 8.93p = .004. In contrast, no reliable differences
among conditions were observed in the test phase.

had ag-value higher/lower than the median was assigned t%acktracking for a number of moves requires rememnbe

the “easy’/*hard” set. All groups performed abol¢ tsame
on the easy comparisons, but as Figure 4 showselteed
problem group performed the best on the hard coisgzs.
In particular, the relaxed problem group correcthved a
significantly higher percentage of the hard congmars U
=57.71,SD = 10.63) than the control group didl & 49.79,
D = 13.47),F(1, 69) = 6.00p = .017. Thus, the relaxed
problem group performed very well on the intuititask,
especially the harder problems, compared to theralon
group.

How could participants in the relaxed problem grbape
apparently acquired such good intuition on theryluzzle,
and yet perform relatively poorly in actually salgiit? A
possible explanation is that because planning r(iate
search) is harder and seemingly less necessary sahgng
the relaxed problems, participants in the relaxeablem
group learned to plan less and rely more on theirition
during the training phase. Thus, even though timéiition
became more developed (as evidenced by their peafoce
on the distance comparisons task), their decreasedof
planning caused them to perform poorly on solvihg t
puzzles in the test phase. Participants in therabgtoup,
on the other hand, learned to rely more on planaimd)less
on their intuition during the training phase, besmuhey
were trying to minimize the number of moves theydma
and it was easier for them to plan. Increased panted
them to perform better on the test puzzles, biit thiiition

all those previous moves, and participants solviglgxed
problems may have backtracked for fewer moves lsecau
they could not remember as many past moves, stoceg

a single move requires more working memory capagity
average.

Planning Seems Unnecessary on Relaxed Problems
Because relaxed problems have a higher branchictgrfa
the problem-space graphs for relaxed problems azee m
connected and so there are more ways to reachdhk g
state. Thus, it may seem unnecessary to plan oneies
before executing them, since no matter how far away
wanders from the goal, there is always some wageb
back onto the right track. In other words, locahimia do
not exist in the problem space, so a greedy (hitHzng)
search algorithm that always chooses the state thi¢h
shortest estimated distance to the goal to explwrt
cannot become trapped, and is thus sufficient. Atingly,
participants in the relaxed problem group probdédrned
to use a greedy search algorithm, which does it &nead
and thus requires little effort. Moreover, a greesbarch
algorithm relies heavily on the heuristic functiao, its use
would foster development of intuition for particiga in this
condition.

One piece of evidence that participants in thexeszla
problem group planned less than those in the other
conditions is that they made extra moves more afiging

was less developed. We will now present evidence téne training phase. The percentage of solved psiZrl¢he

support each of these claims.

The Relaxed Problem Training Condition
Discourages Planning

Planning is Harder on Relaxed Problems This is true for
two reasons. First, internally visualizing the mowoé

training phase that were solved with extra moves wa
significantly higher in the relaxed problem grou &
49.99,9D = 19.76) than in the control groul! = 20.92,SD

= 13.67), F(1, 69) = 34.53,p < .001, and also the
subproblem groupM = 25.97,9D = 17.43),F(1, 69) =
23.58,p < .001. Furthermore, the relaxed problem group
had significantly higher average solution timesimnigirthe

1878



training phaseNl = 35.23sSD = 9.07s) than did the control However, greedy search may get stuck in local manan
group M = 27.68s,SD = 8.29s),F(1, 69) = 9.86p = .002, the full n-puzzle, for which the problem-space graph is not
and also the subproblem groud & 24.64s,SD = 7.53s), as well-connected. Accordingly, if participants ihe
F(1, 69) = 19.41p < .001. Participants in the relaxed relaxed problem group did indeed use a greedy kearc
problem condition may have found planning harder ttaus  algorithm, they would perform poorly during thettphase.
took longer on average to plan a single move (whey did  The control group, on the other hand, may havenéghrto
plan); in addition, their longer, less optimal d@ns took use a more effective search algorithm involving atge
more time to execute. These differences indicat¢ the look-ahead. Such a search algorithm could achieve a
relaxed problem participants did not or could nanpas far acceptable level of performance with a relativelgop
ahead as did the participants in the other conditi@nd heuristic function. Thus, participants in the cohtr
tended to meander around the problem space forile wh condition would not acquire intuition during theaitring
before reaching the goal. phase to the degree that those in the relaxed grogtoup
The average initial latency on a puzzle, or theraye did.
amount of time a participant spent thinking befaraking
the first move on a puzzle, is a clear indicatohafv much ~ Planning and I ntuition are Dissociated

a participant plans voluntarily. (While the averagéer-  For every participant, we calculated a compositereson
move latency is also an indicator of planning, Bigter-  the intuition task by summing the values of Ijor all
move latencies could also indicate that the paaiti was  comparison problems that the participant solvedemty.
stuck in the middle of solving a puzzle and waséorto  Recall that for each comparisam,is the proportion of all
think carefully about what to do next.) The averagéal  participants who solved that comparison correcfiyus, 1
latency was not significantly lower for the relaxgebblem  _ q s the estimated probability of choosing the imeot
group during the training phase, as might be exyiedt  response on a given comparison, an empirical measits
these participants were planning fewer moves aheagjfficulty. Therefore, the composite score on theiition
however, the lack of a difference could reflect dfftsetting 55k gives greater weight to more difficult probtem
effect of planning each move being harder for thlexed We calculated correlations between the composite
problems and thus taking longer. During the tesasph intuition score and measures of planning for eaaming
when all participants were solving the fulipuzzles, the condition separately to test whether planning antdition
average initial latency was indeed significantlyéo for the  gre dissociated within  each group. The following
relaxed problem groupM = 10.37s,SD = 4.46s) than for  correlations appeared for measures of planningnduitie
the control groupNl = 14.75s,3D = 6.02s)F(1, 69) = 7.33,  training phase: The composite intuition score Far tontrol
p = .009, indicating that the relaxed problem groupgroup was negatively correlated with the averagéaln
continued to plan fewer moves ahead during theptesse. latency,r(22) = —.41p = .047, as well as the average inter-
. . . . move latencyr(22) = —.47,p = .021. For the subproblem
Increased Planning is Associated with Better  group, the composite intuition score had a negative
Puzzle-Solving Performance correlation with the average inter-move lateng22) = —
Not surprisingly, increased planning is associateith .50,p =.013, and a near-significant positive correlatizth
better puzzle-solving performance. The averageialnit the percentage of puzzles that were solved witlraext
latency was not correlated with the number of pemzl moves,r(22) = .40,p = .055. Finally, for the relaxed
solved during the training or test phase, perhagsallse problem group, there was a weak negative correlatio
some participants tended to get stuck at the vegniming  between the composite intuition score and the péage of
and could not solve many puzzles, or were justslow in ~ moves that decreased the true distance of the grobtate
general to solve many puzzles. However, averagalini to the goaly(22) = -.35p =.098.
latency was negatively correlated with performance During the test phase, the composite intuition edor
measures such as the average number of extra mmds the control group had a near-significant negativeetation
on solved puzzlesr(70) = —.37,p = .002 for the training With the average initial latency(22) = —.39,p = .061, as
phase and(70) = —.46,p < .001 for the test phase], and the well as a slight positive correlation with the sage number
percentage of backtracking move$7p) = —.26,p = .026  of extra moves;(22) = .36,0 = .082.
for the training phase an@70) = —.31p = .007 for the test ~ These findings indicate that participants in oundgt
phase]; and positively correlated with the percgataf mainly took one of two approaches to solving thezes
moves that decreased the true distance of thegmobtate and comparison problems. One was a more analytic or
to the goal f(70) = .33,p = .005 for the training phase and algorithmic approach based on planning, and theratlas a
r(70) = .47,p < .001 for the test phase]. These resultsnore holistic or heuristic approach based on iictmit
indicate that the more the participant planned teefoaking ~ While the first approach was more effective forvary the
the first move, the better the moves the partidipaade full n-puzzles, the second approach was more effective on
later on. the task requiring speeded comparison of distatzdbe
Recall that on relaxed problems, which do not haasmy  goal state. The control training condition encoeghdghe
local minima, a greedy search algorithm is sufficie more analytic problem-solving style, and particisain this
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condition developed a more effective search algoritin
contrast, the relaxed problem training conditioocamaged
the more intuitive problem-solving style, and papants in
this condition developed a more accurate heuristiction.

Conclusions

The present study demonstrates a dissociation bativeo
core mechanisms on which expertise in problem sglvi
depends: internal search (planning) and use ofuaidtie
function to evaluate locally available moves (ititn).
Training on problems with fewer possible moves athe

contrast, the need for decisions may be so urdeitthe
only possible approach is to rely on intuition ogut
feelings.” An important direction for future resefwill be
to determine whether the present findings using tthe
example of then-puzzle in fact generalize to real-world
problem solving (cf. Gobet & Philippe, 2008).
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mutually exclusive. In fact, true experts in solyiproblems

in complex domains such as chess (Chase & Simof3;19

Gobet & Charness, 2006) appear to rely heavily oth b
intuition and planning, with the relative importanof

intuition increasing when performance is time-coaised

(Gobet & Simon, 1996). The time frame of the préstudy

was far shorter than the years required to devefap

expertise (Ericcson, 1996).
experiment, our participants remained novices am rth

puzzle. An expert solver of thepuzzle would no doubt
plan ahead more as well as make better intuitidgments
relative to a novice. The ability to quickly eval@groblem
states should allow the problem solver to plan nrooves

ahead, just as heuristic functions reduce the iagdactor

and thus allow the search algorithm to search tpeater
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(1981) found that skilled chess players search meeply

than novice players do, indicating that good imbmitaids

planning in problem solving.

Even by the end of the
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