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Abstract

The ‘wisdom of the crowds’ effect describes the finding that
combining responses across a number of individuals in a
group leads to aggregate performance that is as good as or
better than the performance of the best individuals in the
group. Here, we look at the wisdom of the crowds effect in
the Minimum Spanning Tree Problem (MSTP). The MSTP is
an optimization problem where observers must connect a set
of nodes into a network with the shortest path length possible.
A method is developed that creates aggregate solutions based
only on the nodes connected in individuals’ solutions, without
access to spatial information about the nodes. Across the three
problems analyzed, the solutions produced by the aggregation
method perform better than even the best individual, leading
to a strong wisdom of the crowds effect. We show this effect
can be observed even with sample sizes as small as 6
individuals.
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Introduction

When a problem is posed to a group of individuals, a
variety of answers or solutions may be returned. If the
accuracy of the individual solutions is unknown, it would be
useful to have the ability to extract the collective wisdom
contained in the collection of individual responses by
aggregating their solutions. The idea that an aggregate
solution will perform better than the majority of individuals
in the group is referred to as the ‘wisdom of the crowds’
effect (Surowiecki, 2004). Unlike most research in the topic
of distributed cognition and collective intelligence (see
Goldstone & Gureckis, 2009 for an overview), where
individuals are able to interact in some fashion, individuals
in a wisdom of the crowds environment tend to operate
independently of one another. Despite this independence
and the fact that group members may have widely varying
levels of proficiency, aggregation can be found to be
effectual in a number of scenarios.

The wisdom of the crowds effect has traditionally been
demonstrated for simple questions for which there is a
single answer. For example, Galton (1907) asked a large
number of individuals to estimate the weight of an ox. He

found that the median estimate for the weight of the ox was
within 1% of the ox’s actual weight. Similarly, Surowiecki
(2004) reports that, when polled, the modal answer given by
the audience in the US version of the game show “Who
Wants To Be A Millionaire” for multiple choice questions is
correct more than 90% of the time.

Recently, the wisdom of the crowds idea has also been
applied to more complex problems. Steyvers, Lee, Miller,
and Hemmer (2009) demonstrated the wisdom of the
crowds effect for ordering problems, such as ordering a list
of ten states from east to west, ordering the first ten
amendments to the U.S. Constitution, or remembering the
order of U.S. Presidents. For ordering data, simply taking
the mode of individual answers can be problematic because,
in many cases, all of the individual orderings are unique.
Instead, Steyvers et al. (2009) developed several Bayesian
aggregation models that looked at the underlying
consistencies in the individuals' orderings to produce an
aggregated solution.

A wisdom of the crowds effect has also been observed
recently by Yi, Steyvers, Lee, and Dry (submitted), for a
difficult combinational optimization problem known as the
Traveling Salesman Problem (TSP: see Applegate, Bixby,
Chvatal, & Cook, 2006 for a review). In the TSP, the goal is
to connect a set of nodes to make the shortest path possible,
with the constraints that each node can be visited only once,
and the path must end at the same node as it started. The
aggregation method developed by Yi et al. (submitted) did
not require any spatial information about the locations of the
nodes. Instead, the method took advantage of the knowledge
of which nodes are connected in individual solutions and
selected a solution that maximized the agreement across
individuals as to the sequence of nodes visited.

Generating a wisdom of the crowds effect for TSP
problems in this way provides an example of a potentially
powerful and general approach to aggregating individual
knowledge and abilities. The key feature is that all of the
aggregation is based on the observed ordering of individuals
and their patterns of agreement. No representation was
needed of the complex multidimensional TSP stimuli, nor
were evaluation measures for individual performance used.
For these reasons, the results of Yi et al. (submitted) suggest
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Figure 1: An example MSTP solution (a) and its optimal
solution (b).

an approach to finding the wisdom of the crowd in
challenging real-world situations where the problem space
is too large or complicated to represent formally, and there
is no clear way to quantify the merits of proposed solutions.

Of course, however, it may be that the TSP result is
simply a special or isolated case. Accordingly, in this paper,
we explore the possibility of a wisdom of the crowds effect
for another complex problem solving task, known as the
Minimum Spanning Tree Problem (MSTP). First, as for
TSPs, we develop an aggregation method that is based on
easily observed features of individual solutions. Then, we
apply the method to previously collected data for several
MSTPs. We observe a strong wisdom of the crowds effect,
in which the aggregate solution is closer to optimal than any
individual solution. Finally, we examine how many
individual solutions are needed for good aggregation, and
discuss how our approach could be extended, modified, and
applied to more general problems.

Minimum Spanning Tree Problems

In MSTPs, participants are required to find the shortest
possible network that links together a set of nodes in some
spatial configuration. An example stimulus and optimal
solution for an MSTP is shown in Figure 1. In contrast to
the TSP, there is no constraint on the paths that can be
formed. Each node can be connected to multiple nodes. The
optimal solution is an open, branching path system or tree,
in which nodes can be linked to one or more other stimulus
nodes.

Finding the optimal solution to MSTPs has an obvious
real-world engineering application in regards to finding the
minimal length network of cables or pipes needed to join
discrete geographical locations (e.g., Borivka, 1926).
However, MSTPs are also of interest from a psychological
perspective, providing insight into human decision-making,
individual differences in cognitive abilities, and visuo-
perceptual organization (e.g., Burns, Lee & Vickers, 2006;
Vickers, Mayo, Heiman, Lee & Hughes, 2004).
Specifically, the MSTP belongs to a class of difficult visual
optimization problems such as the TSP and the Generalized
Steiner Tree Problem (GSTP). Despite the apparent
difficulty (and in some cases intractability) of these
optimization problems, human observers are often able to
find optimal or close-to-optimal solutions in a time frame

that increases as a linear function of problem size (e.g., Dry,
Lee, Vickers & Hughes, 2006; Graham, Joshi, & Pizlo,
2000).

An important finding from the literature on human
solutions to MTSPs is that there are meaningful individual
differences (e.g., Burns et al., 2006). As Surowiecki (2004)
and others have emphasized, a precondition for the wisdom
of the crowds effect is that there is variation between
individuals. Intuitively, the hope is that some individuals
complete some parts of an MSTP optimally or near-
optimally, while other individuals complete different parts
well. In this scenario, the aggregation of the individual
solutions could potentially improve on both.

Dataset

The data were taken from Burns et al (2006). In that study,
as part of a larger battery of optimization tasks and
cognitive abilities tests, 101 participants completed 3
MSTPs, with 30, 60 and 90 nodes. The problems were
comprised of black nodes on a uniform white background
and were presented on color computer monitors.

The participants generated spanning trees by pointing and
clicking with the mouse cursor, and were allowed to add or
remove links as they saw fit. They were instructed to
connect the nodes by making a system of links, using as
many links as they felt necessary, under the condition that
the resulting system had the minimum overall possible
length. The participants worked without time limits and
were asked to be as accurate as possible. The results of the
empirical solutions are displayed in Figure 2, expressed as
the percentage above optimal solution length (PAO =
100*[empirical length/optimal length - 1]). Participants
provided solutions that were on average around 6% longer
than the optimal solution. Importantly however, there were
significant individual differences with some individuals
providing solutions that were much closer to the optimal
solution. Despite the large number of participant solutions
available, there was no case in any problem where any
participant’s solution exactly matched that of another
participant.
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Figure 2. Mean empirical PAO for MSTP with 30, 60
and 90 nodes; error bars indicate standard deviation of
individual performance.
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Figure 3. a) Representative subject solutions for the 30-node MSTP, the best subject solution in the upper left with
decreasing performance across rows and the worst subject in the lower right. b) Visualization of agreement matrix on
problem nodes. Vertices selected by at least one subject are drawn; thicker lines indicate higher agreement.

Aggregation Method

The data for the aggregation method were restricted to the
information of which nodes each participant connected in
their solutions. In particular, the method was not given any
spatial information about the node locations, and so relied
solely on the information contained in the participant
solutions to create a proposed network. The aggregation
method operates under the assumption that vertices between
nodes that are better for inclusion in a MSTP solution tend
to be selected by more participants. An aggregate solution
that maximizes the degree of agreement with participant
solutions can therefore be expected to have good
performance.

In order to obtain an aggregate solution, we first arranged
the solutions of all individuals in an n x n agreement matrix,
where n is the number of nodes in the problem. Every cell
a;j in the matrix records the number of participants that
connected nodes i and j in their solutions. A visualization of
the agreement matrix is depicted in Figure 3b. We then

derived a cost matrix of the same size with cell values
Cij = k—a;j, where k was the total number of participants;
connections with higher agreement would thus have lower
costs. This cost matrix is then used as the input to a standard
MSTP algorithm to obtain a proposal solution for the
aggregate.

The MSTP can be solved optimally in polynomial time
through the use of simple greedy algorithms such as Prim’s
algorithm (Jarnik, 1930; Prim, 1957). In Prim’s algorithm, a
starting node is randomly selected from all nodes. At each
step in the algorithm, the vertex with the smallest cost that
connects an unconnected node to the already-connected
nodes (or starting node, in the first step) is added to the
network, until all nodes are connected. Despite the fact that
the algorithm is greedy in nature, it is always guaranteed to
output the minimum spanning tree depending on the cost
metric being used. When the vertex costs are equal to the
distances between nodes, Prim’s algorithm is guaranteed to
produce a spanning tree with the shortest total length. In our
research, the vertex costs upon which Prim’s algorithm is

Figure 4. Example demonstration of Prim’s algorithm on the 30-node MSTP. A random node is selected, shown in white
(a.). At each step of the algorithm, vertices with the smallest cost (i.e., highest agreement) that connect an unconnected
node (black) to those already connected (white) are added to the network until all nodes are connected (b-d.)
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Figure 5. Solution paths for the aggregate method (thin black) and the optimal minimum spanning tree (thick gray) for the
a) 30-node, b) 60-node, and c) 90-node MSTPs.

applied are set using the cost matrix based on subject
agreement above. The algorithm will still produce a network
with minimum total cost, but in this case, the network
represents the spanning tree that has the highest agreement
with the participant solutions. It is this solution that is
selected by the aggregation method. A demonstration of the
algorithm is shown in Figure 4.

Optimality of Prim’s algorithm can be verified by
considering the necessary conditions for a minimum
spanning tree. For a solitary node, it is necessary for it to
connect to its nearest neighbor using the vertex with the
lowest cost. If a spanning tree is created without using such
a vertex, and that node is connected to the others via some
other vertex, it does not change the connectedness of the
network by deleting that other vertex and instead connecting
to the nearest neighbor, but it does reduce the total path
length. This makes the first step of Prim’s algorithm,
connecting a random node to its nearest neighbor, a sensible
action. The logic can be followed by induction to the sub-
networks drawn by Prim’s algorithm by treating each sub-
network as if it were a single node, thus showing optimality.
In cases where multiple potential vertices with the same cost
may be selected for addition to the spanning tree, then any
of the candidates may be chosen without affecting the
solution’s optimality.
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Figure 6: Ranked performance of subjects and the
aggregation method averaged over all problems. Dashed
horizontal line indicates mean subject performance.

Results

Figure 5 shows the optimal minimum spanning trees in
thick gray lines and solutions selected by the aggregation
method in thin black lines while participant and aggregate
solution performance is provided in Table 1. Additional
performance statistics are noted for the aggregate solutions:
the amount of agreement the aggregate solutions had with
subject solutions and a count of the number of participants
whose performance is better than, worse than, or same as
the aggregate. Subject agreement values were calculated as
the proportion of subject vertices coinciding with vertices
present in the aggregate solution; these can be obtained by
noting the value of the aggregate path as measured on the
agreement matrix, then dividing by (n-1)k, the number of
vertices multiplied by the number of subjects. The aggregate
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Figure 7: Performance averaged over all problems
against mean solution agreement with subject solutions.
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Table 1: Subject and Aggregate Method Performance on MSTPs (% network length over optimal)

subject performance

aggregate method performance

Problem subj. best subj. path subj. #subj. #subj. #subj.
mean length agreement  better same  worse
30 nodes +0.000% +5.672% +0.059% .7856 1 0 100
60 nodes +0.037% +6.010% +1.410% .8263 21 0 80
90 nodes +0.235% +6.533% +0.310% .8392 1 0 100
Overall +0.644% +6.072% +0.593% 8171 0 0 101

method solutions perform quite well, beating the average
participant by a large margin. In the 30- and 90-node
problems, the performance of the aggregate is bested only
by a single participant out of the full set of 101. The
aggregate performs relatively worse in the 60-node problem,
but still better than most individuals. When performance is
averaged over all problems, the aggregate performs better
than any individual (Figure 6). Interestingly, the proportion
of vertex agreement with participants increased with
problem size, and solutions selected by the aggregate did
not completely match any single individual on any problem.
Figure 7 contains a plot of solution performance against the
proportion of agreement with participant solutions averaged
equally over all problems for all subjects, the optimal
solution, and the aggregate solution. There is a clear
correlation between individual performance and the amount
of agreement their solutions had with other participants (r =
-.9602). The optimal solution also has a high rate of
coincidence with participant solutions, more than any
individual.

Performance of the aggregation method under smaller
sample sizes was also investigated. For each sample taken,
subjects were selected randomly from the full dataset and
aggregate solutions were created for all problems, their
performances compared to the subjects in the sample that
generated them. 1In cases where Prim’s algorithm
encountered a choice between vertices of the same cost, one
was chosen at random to create the proposal solution.
Solution performance for selected sample sizes is noted in
Figure 8, averaged over 1000 random draws at each sample
size. We find that for samples of as small as size 6, the
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aggregate is able to obtain performance that is, on average,
significantly better than the mean subject and close to that
of the best subject in the sample. Averaged over all
problems, the aggregate was outperformed by about one
participant at all sample sizes investigated. In certain cases
for individual problems, the aggregate solution
outperformed all participants in the sample; this was much
more common for the 30-node and 90-node problems than
the 60-node problem.

Conclusions

We have demonstrated a strong wisdom of the crowds effect
for the MSTP using a simple aggregation method on
participant solutions. The aggregation method was reliant
only on the knowledge of which nodes were connected by
each participant, requiring no information regarding the
spatial characteristics of the problems themselves. In
addition, the simple greedy algorithm used to generate
solutions required no input parameters to run. The
aggregation method solutions generally have performances
ranking among the best participants on individual problems,
and perform better than any individual when averaged over
all problems. Even when the number of available
participants was reduced down to as low as 6, the
aggregation method was still able to extract enough
information to  propose solutions that produced
performances significantly better than the mean subject and
exceeding most or all participants in the sample.

While performance of the aggregation method is quite
good, there are potential areas for expanding on the method.
It was noted that there was a clear correlation between a
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Figure 8. Performance of the aggregate method for selected sample sizes, taken across problems. a) Mean PAQ for
aggregate and best subject in each sample, error bars indicate standard deviation of individual samples. b) Proportion of
subjects with better, same, or worse performance than the aggregate.
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participant’s performance and the amount of agreement they
had with other participants. It may be useful if it were
possible to identify ‘experts’ in the data and weight their
responses over that of others. This approach of amplifying
expertise may be most useful for when sample sizes are
small. Due to the fact that there are so few participant
solutions to draw from, there may be many networks that
can potentially be chosen by the algorithm that share the
same agreement with participant solutions, but carry very
different performances in terms of actual distance. If
participants can be weighted differently, then there will be
less ambiguity. However, with the complexity of the
problem structure, it is a difficult problem to create a formal
system in which this can be done.

More generally, the results presented here, when coupled
with those presented by Yi et al. (submitted) for the TSP,
suggests that it may be possible to achieve wisdom of the
crowds effects for complicated and only partly defined
problems. While the MSTP does have a simple solution
algorithm, and the TSP has good approximate solution
algorithms for small numbers of nodes, our results show that
near-optimal performance can be obtained from simple
properties of the sub-optimal sets of solutions produced by a
group of people.

In other words, our results show that there is an
alternative route to solving these problems, not based on
complicated algorithms, detailed stimulus information, and
precise performance metrics. Instead, we have shown that
the orders people produce can be combined to achieve near-
optimality. Of course, for TSPs and MSTPs, there is not
much reason to go to the effort of collecting human
solutions when good algorithms are available. But our
approach will continue to apply for different sorts of
difficult problems where, for example, the stimuli or
problem space is hard to represent in a formal way. This
representational burden is borne by the individual providing
solutions, and there is no need for any formal attempt to
characterize the problem space. Even more intriguingly, our
approach will apply in situations, such as some types of
aesthetic judgment, where people agree on what constitutes
a good answer once it is produced, but cannot define exactly
what metric they are using. Since our aggregation approach
just uses the patterns of relationships between individual
judgments, and does not need a performance measure, it is
equally applicable to these poorly defined problems.

We are currently investigating the use of the wisdom of
the crowds approach described in this paper to the “wisdom
of the crowds within”, the idea that one can aggregate over
multiple judgments from a single individual to obtain
performance better than the individual judgments alone (Vul
& Pashler, 2008). By applying transformations to MSTPs,
we can easily test an individual on multiple repetitions of
the same problem while minimizing bias from their
responses on previous trials. We are also looking at
applying the aggregation approach to a less-well defined
aesthetic judgment task. Participants were asked in Dry,
Navarro, Preiss, and Lee (2009) to connect point stimuli

based off of constellations into perceived structures. It is
possible that a structure created by aggregating over
individuals is perceived as more aesthetically pleasing than
individual patterns. The application of our approach to
aggregation to these sorts of challenging problems seems a
promising direction for further wisdom of the crowds
research.

References
Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J.
(2006). The Traveling salesman problem: A

computational study. Princeton, NJ: Princeton University
Press.

Bortvka, O (1926). O jistém problému minimalnim. Préce
Moravské Prirodovédecké Spolecnosti, 3, 37-58.

Burns, N. R., Lee, M. D., & Vickers, D (2006). Are
Individual Differences in Performance on Perceptual and
Cognitive Optimization Problems Determined by General
Intelligence? Journal of Problem Solving, 1(1), 5-19.

Dry, M. J., Lee, M. D., Vickers, D., & Hughes, P. (2006).
Human Performance on visually presented traveling
salesperson problems with varying numbers of nodes.
Journal of Problem Solving, 1, 20-32.

Dry, M.J., Navarro, D.J., Preiss, K., Lee, M.D. (2009) The
Perceptual Organization of Point Constellations. In N.
Taatgen, H. van Rijn, J. Nerbonne, & L. Shonmaker
(Eds.), Proceedings of the 31st Annual Conference of the
Cognitive Science Society, 1151-1156. Austin, TX:
Cognitive Science Society.

Galton, F. (1907). Vox Populi. Nature, 75, 450-451.

Goldstone, R. L., Gureckis, T. M. (2009) Collective
Behavior. Topics in Cognitive Science, 1, 412-438.

Graham, S. M., Joshi, A., & Pizlo, Z. (2000). The Traveling
Salesman Problem: A hierarchical model. Memory &
Cognition, 28(7), 1191-1204.

Jarnik,V (1930). O jistém problému minimalnim. Prace
Moravské Prirodovedecké Spolecnosti, 6, 57-63.

Prim, R. C. (1957). Shortest connection networks and some
generalizations. Bell System Technical Journal, 36, 1389-
1401.

Steyvers, M., Lee, M.D., Miller, B., & Hemmer, P. (2009).
The Wisdom of Crowds in the Recollection of Order
Information. In J. Lafferty, C. Williams (Eds.), Advances
in Neural Information Processing Systems, 23. MIT Press.

Surowiecki, J. (2004). The Wisdom of Crowds. New York,
NY: W. W. Norton & Company, Inc.

Vickers, D., Mayo, T., Heitmann, M, Lee, M. D., &
Hughes, P. (2004). Intelligence and individual differences
in performance on three types of visually presented
optimization problems. Personality and Individual
Differences, 36, 1059-1071.

Vul, E. & Pashler, H. (2008). Measuring the Crowd Within:
Probabilistic ~ Representations ~ Within  Individuals.
Psychological Science, 19(7), 645-647.

Yi, S. K. M., Steyvers, M., Lee, M. D., & Dry, M. J.
(submitted). Wisdom of the Crowds in Traveling
Salesman Problems.

1845



