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Abstract 

Building on prior work, the current study evaluated 
whether connectionist models can account for the 
distance and size effects in adults and the development 
of the distance effect in children.  A family of models 
was constructed by orthogonally varying training 
environment (naturalistic versus non-naturalistic) and 
number representation (one-to-one versus magnitude). 
The ability of the models to account for the adult 
distance and size effects depended critically on a 
naturalistic training environment but was relatively 
independent of number representation. With respect to 
the developmental data, the naturalistic/one-to-one 
model provided a good account of response times and 
errors. The relation between the current models and 
prior models and avenues for future exploration are 
discussed. 
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Introduction 

The nature of number representations is an enduring 

question in cognitive science. One clue to this representation 

is the distance effect: the time it takes to judge the greater 

(or lesser) of two numbers decreases with the distance 

between the numbers (Moyer & Landauer, 1967). For 

example, 1 vs. 9 is judged faster than 1 vs. 3. Another clue 

is the size effect: the time to judge the greater (or lesser) of 

two numbers that are a fixed distance apart increases with 

the absolute magnitude of the numbers (Parkman, 1971). 

For example, 7 vs. 9 is judged more slowly than 1 vs. 3. The 

distance and size effects conform to psychophysical laws 

(i.e.,  ) and are therefore 

commonly interpreted as evidence that numbers are 

represented as analog representations, perhaps localized to 

the intra-parietal sulcus (Dehaene, Piazza, Pinel, & Cohen, 

2003). Researchers have proposed various implementations 

of these analog representations. The classic ones are as 

points on a compressed mental number line (Dehaene & 

Mehler, 1992; Rule, 1969) and as points on a linear mental 

number line associated with increasing variability (e.g., 

Gallistel & Gelman, 2000). More recently, two 

connectionist models of number representation have 

appeared. Zorzi and Butterworth (1999) assumed magnitude 

representations whereby numbers are represented by banks 

of overlapping units. This model was able to account for the 

adult distance effect. By contrast, Verguts, Fias, and Steven 

(2005) assumed a coarse-coded representation, with each 

number corresponding primarily to one unit, but with 

graded activation of adjacent units. This model was able to 

account for the adult distance and size effects. 

The purpose of the current study was to evaluate the 

ability of connectionist models to (1) account for the adult 

distance and size effects as a function of training 

environment and number representation and to (2) account 

for the development of the distance effect. In these regards, 

the reported simulations are the first of their kind.  

With respect to training environment, some connectionist 

models (Zorzi & Butterworth, 1999) have employed a non-

naturalistic training environment (i.e., every one-digit 

number appears with equal likelihood). However, corpus 

studies indicate that the frequency of a number falls off as a 

power function of its magnitude (Dehaene & Mehler, 1992), 

implying that one-digit numbers are non-uniformly 

distributed in a naturalistic environment. Some 

connectionist models have employed a naturalistic training 

environment (Verguts et al., 2005). We sampled 

comparisons (i.e., pairs of one-digit numbers) from these 

contrasting training environments to evaluate whether the 

distance and size effects were contingent upon naturalistic 

input.   

With respect to number representation, we considered the 

magnitude representation implemented by the Zorzi and 

Butterworth (1999) model and a one-to-one variant of the 

coarse-coded representation implemented by the Verguts et 

al. (2005) model
1
.  

Finally, in the first study to model the development of the 

distance effect, we evaluated whether improvements in 

model performance throughout training parallel 

improvements in children’s response times and error rates 

throughout development. 

Method 

We developed four connectionist models by orthogonally 

varying training environment (naturalistic versus non-

naturalistic) and number representation (magnitude versus 

one-to-one). The models were implemented within a 

common connectionist architecture patterned after Verguts 

et al. (2005). 

                                                      
1 Both of these codings represent exact numbers.  We use the 

label “magnitude” to reflect the fact that the number of 

representation nodes activated in this coding corresponds to the  

number being compared. 
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This architecture consisted of three layers of units (input, 

representation, and decision layers) (Figure 1). Each layer 

contained left and right fields.  On each trial, the input units 

corresponding to the numbers being compared were 

clamped to an activation level of 1, and activation spread 

forward throughout the network.  When a decision unit (left 

larger or right larger) reached an activation of 0.5 or 

greater, the model was considered to have made a decision 

Architecture and Number Representation 

Each model consisted of three layers of units. The input 

layer consisted of two fields of nine units each that 

corresponded to the numbers 1-9. The left field 

corresponded to the number presented on the left and the 

right field to the number on the right.  Each number 

corresponded to one (and only one) unit in the input layer. 

The representation layer consisted of two sets of nine 

units.  The left field, M, represented the number presented 

on the left, and the right field, N, represented the number 

presented on the right.  The left input field was connected to 

the left representation field and the right input field to the 

right representation field by connections with weights 0 or 

1. The number representation scheme of the model 

determined the pattern of connection weights between the 

input and representation layers. For magnitude 

representations, the number of units activated in a 

representation field corresponded to the magnitude of the 

number presented (e.g., if the number 5 was presented on 

the left, the 5 leftmost units of the left representation field 

would be activated).  For one-to-one representations
2
, one 

(and only one) unit in a representation corresponded to the 

number presented.  The weights of the connections between 

the input and representation layers were held constant 

                                                      
2 We employed one-to-one representations instead of coarse-coded  

representations (Verguts et al., 2005) to equate the architecture 

across models.   Coarse-coding would have required adding 

additional units to the representation layer of models that 

employed magnitude representations, muddying the comparison of 

the models. 

throughout learning to maintain the type of representation 

that the model a priori employed.  

The decision layer consisted of two units representing left 

larger and right larger decisions.  Units in the 

representation layer were fully connected with units in the 

decision layer.  The initial weights of these connections 

were randomly sampled from a uniform distribution (0 to 1) 

and were adjusted during training by a supervised learning 

rule. 

Model Dynamics 

On each trial, the model compared two numbers, judging 

which was greater. (Following prior work, we did not model 

both greater and lesser judgments.) The left number was 

presented to the left input field by clamping the activation of 

the corresponding unit to 1, and the right number was 

presented similarly to the right input field. Activation spread 

from the input layer to the representation layer according to 

the equation
3
: 

 

    

Where  is the change in the activation of the k
th

 

representation unit in the left field (M),  is the 

activation of the i
th 

 input unit,   is the weight of the 

connection between these two units, and  is a firing 

threshold (set to .08 for these simulations).  This equation 

results in the activation of representation units 

asymptotically approaching their maximum values. 

Activation spread from the representation layer to the left-

larger unit of the output layer according to the equation: 

 

(2)    

                  

 

Where   is the change in the activation of the left-

larger unit,  is the activation of 
th

 representation unit 

                                                      
3 All equations are for left fields.  Equivalent equations governed 

model dynamics in the right fields. 

Figure 1: Schematic of models using one-to-one coding (left) and magnitude coding (right). 
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in the left field,  is the weight of the connection 

between these two units,  is the activation of the i
th

  

representation unit in the right field,  and  is the firing 

threshold.  This equation results in the activation of decision 

units asymptotically approaching their maximum values 

once the representation units have reached the firing 

threshold.  A decision was considered made once activation 

in one of the decision units exceeds a threshold of 0.5. 

Supervised Learning 

During learning, weights between representation and 

decision units were adjusted according to the delta rule: 

  

(3)   

 

Where  is the change in the weight between the i
th

 

representation unit and the k
th

 decision unit,  is a learning 

rate parameter,  is the difference between the 

target decision unit activation  (1 for larger, 0 for smaller) 

and the actual decision unit activation , and   is the 

activation of the i
th

 representation unit.   The delta rule 

apportions blame for incorrect decisions and adjusts weights 

accordingly.   For this study, the learning rate parameter  

was set to 0.02.  During learning, activation was allowed to 

settle prior to weight adjustment.  Each model was trained 

for 30,000 trials, and weights were adjusted at the end of 

every trial.  

Training Environment 

Models were trained on one of two training environments. 

Naturalistic training environments were constructed by 

assuming, following Dehaene and Mehler (1992), that the 

frequency of a number in the environment is a decreasing 

function of its magnitude. Although Dehaene and Mehler 

favored a power function, Verguts et al. (2005) adopted a 

closely related exponential function. To facilitate the 

comparison of our results, we formed training comparisons 

by sampling pairs of numbers from an exponentially 

decreasing distribution (where the frequency of number i is 

). The distribution of individual numbers and of 

comparisons (as a function of distance) is shown in Figure 

2. 

Non-naturalistic training environments were constructed 

by assuming that numbers are distributed uniformly in the 

environment. Training comparisons were formed by 

sampling from this distribution. The results are also shown 

in Figure 2.  

It is interesting that naturalistic and non-naturalistic 

training environments result in strikingly similar 

distributions of comparisons as a function of distance. 

However, as we shall see, these environments have 

important differences as indicated by the ability of the 

resulting models to account for the adult distance and size 

effects. 

 

 
Figure 2: Training environments. Dark gray histograms 

give the distribution of numbers in the environment, light 

gray histograms the distribution of distances between the 

resulting comparisons (i.e., number pairs). 

Training and Testing 

Ten copies of each model (naturalistic versus non-

naturalistic crossed with magnitude versus one-to-one) were 

created.  Each copy was trained for 30,000 trials (following 

Verguts et al.) and tested with all possible pairs of numbers 

between 1 and 9 (excluding ties). 

Results 

Distance Effects 

All four models produced distance effects (Figure 3).   

 

  
Figure 3: Distance effects for the four models. 
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Table 1: Model fits for the distance effect. 

 

Representation Training R
2 

p 

Magnitude Naturalistic .73 < .001 

Magnitude Uniform .43 < .001 

One-to-One Naturalistic .78 < .001 

One-to-One Uniform .46 < .001 

 

To evaluate the fit of each model to human performance, we 

followed Zorzi and Butterworth (1999) in regressing human 

performance as captured by the equation: 

    

against the number of cycles to make a decision. The results 

are shown in Table 1. 

First, consider the question of training environment. The 

results indicate that models trained in naturalistic training 

environments provide better accounts of the distance effect 

than models trained in non-naturalistic environments.  

Although Figure 2 suggests that the difference between the 

training environments is negligible with respect to the 

amount of experience with different distances, the fit 

statistics indicate that differences between uniform and 

naturalistic environments are critical to the distance effect . 

Next, consider the question of number representation. The 

results indicate that a model’s ability to account for the 

distance effect is independent of whether it uses magnitude 

or one-to-one number representations.  Additional work is 

necessary to determine how fundamentally different types of 

numerical coding can produce such similar results with 

respect to the distance effect. 

Size Effect 

The size effects produced by the four models are shown in 

Figure 4. There is a striking qualitative difference in the 

performance of models trained with naturalistic versus non-

naturalistic training environments.
4
 The former produce a 

generally positive linear relation between number size and 

judgment time, with the exception of distances 1-2. By 

contrast, the latter shows a size effect only for distances 5-8, 

and diverge considerably from a linear relation for distances 

1-4. Additional modeling is necessary to determine what 

factors contribute to the failure of the uniformly-trained 

models to produce size effects for distances 1 and 2. 

                                                      
4 At the time of submission, we did not have access to empirical 

data on the size effect to quantify these models fits. We are 

working on gaining such access. 

 
Figure 4: Size effects for the four models. Each line 

represents comparisons of the same distance. 

 

By contrast, the ability of a model to account for the size 

effect appears to be relatively independent of whether it uses 

a magnitude or one-to-one number representation.  As with 

the distance effect, additional work is necessary to 

determine how fundamentally different types of number 

representation can produce such similar results with respect 

to the size effect. 

Development of the Distance Effect 

We next turn to the development of the distance effect. The 

results thus far indicate that naturalistic training 

environments are critical for accounting for adult distance 

and size effects.  Additionally, pilot simulations indicated 

that models that utilize magnitude number representations 

do not produce enough errors to account for that dimension 

of development. For these reasons, we focused our 

developmental efforts on the naturalistic/one-to-one model.  

Sekuler and Mierkiewicz  (1977) investigated the distance 

effect in kindergarten, first grade, fourth grade, seventh 

grade and adult subjects. Their results are shown in Figure 

5. They reported that kindergarteners were significantly 

slower than other ages, first graders were significantly 

slower than all age groups except kindergarteners, and that 

the decision times of fourth graders, seventh graders and 

adults did not differ significantly. They also reported that 

the slope of the distance response curves was steeper for 

kindergarteners than other age groups. 

Figure 6 presents the distance effect (averaged across 10 

simulations) produced by the naturalistic/one-to-one model 

after 1200, 1600, 2000, 2400, and 2800 trials
5
. The model 

provides a nice qualitative account of the developmental 

data, showing distance effects at all time points as well as a 

steady decrease in response time.  

                                                      
5 These time points were chosen to align model-produced error 

rates with the error rates reported by Sekuler and Mierkiewicz. 
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Figure 5: Development of distance effect from 

kindergarten to adulthood (adapted from Sekuler & 

Mierkiewicz, 1977). 

 

 
Figure 6: Development of distance effect for the 

naturalistic/one-to-one model from 1200 to  2800 trials) 

 

However, the model fails to capture the interaction 

reported by Sekuler and Mierkiewicz : the slope of the 1200 

trial line (corresponding to the kindergarten distance effect) 

is not qualitatively steeper than the slope of the 2800 trial 

line (corresponding to the adult distance effect). 

We were unable to evaluate the quantitative fit of the 

model to the Sekuler and Mierkiewicz  (1977) response time 

data because it is no longer available. However, Holloway 

and Ansari (2008) recently performed a similar experiment.
6
 

They had six, seven, and eight year old children make 

comparisons at distances 1-6. Their results are shown in 

Figure 7.  

                                                      
6 We thank Daniel Ansari and Ian Holloway for sharing their 

data with us. 

Figure 7: Distance effects at age 6, 7, and 8 years old (data 

from Holloway &Ansari, 2008). 

 

We linearly regressed the performance of the model at 

1200, 1600, and 2000 trials against their six, seven, and 

eight year old data, respectively.  The model accounted for 

44% of the variance in the data (  

Although we were unable to evaluate the quantitative fit 

of the model to Sekuler and Mierkiewicz’s response time 

data because it was not available, we were able to evaluate 

the fit of the model to their error rate data because it was 

reported numerically in the original article.  Table 2 presents 

their developmental error rate data and the error rates of our 

model.  The model provides a good quantitative account of 

error rate as a function of age.  The correlation between the 

model and the human data is 0.97 (p = .004). 

 

Table 2: Error rates for the developmental simulations of 

the naturalistic/one-to-one model. 

 

Human (Age) Errors (%) Model (Trials)
 

Errors (%) 

Kindergarten 18.4 1200 18.3 

First Grade 16.7 1600 15.1 

Fourth Grade 11.8 2000 12.8 

Seventh Grade 12.5 2400 12.1 

Adult 7.9 2800 8.3 
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Discussion 

The current study extends prior connectionist efforts to 

understand the distance and size effects. We systematically 

varied training environment and number representation and 

examined the effects on the adult distance and size effects. 

Models trained in naturalistic training environments, where 

the frequency of numbers falls off as a function of their 

absolute magnitude, provide better quantitative accounts of 

the distance effect and better qualitative accounts of the size 

effect. By contrast, the choice of number representation had 

little effect on these models’ ability to account for the adult 

distance and size effects.  

The current study is the first to address the development 

of the distance effect. The naturalistic/one-to-one model 

provided a good qualitative account of distance effects at 

different ages. It also provided a good account of decreasing 

error rates with development.  

One limitation of the development simulation was that it 

did not account for the interaction observed by Sekuler and 

Mierkiewicz  (1977), whereby the distance effect is most 

pronounced for kindergarteners and decreases throughout 

development. Further research is necessary to understand 

this limitation of the model. 

Another limitation, one shared with the pioneering Zorzi 

and Butterworth (1999) model, is that the models 

considered here only perform the comparison task. By 

contrast, the Verguts et al. (2005) model also performs 

naming and parity judgment tasks and can thus be evaluated 

against a broader range of data. Future research is required 

to extend the range of the models considered here to new 

tasks. 

Although the developmental model produced changes in 

error rates and comparison speed that parallel human data, 

further work is necessary to more completely model the 

development of number comparison.  In particular, the 

model needs to account for the more pronounced distance 

effect of younger participants reported by Sekuler and 

Mierkiewicz.   One reason our model may have failed to 

capture this trend is that we trained the model using 

distributions based on the occurrence of numbers in adult 

language. One approach to improving the developmental 

simulations may be to use training data that parallel the 

distributions of numbers in children’s and child-directed 

speech.   
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