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Abstract

Building on prior work, the current study evaluated
whether connectionist models can account for the
distance and size effects in adults and the development
of the distance effect in children. A family of models
was constructed by orthogonally varying training
environment (naturalistic versus non-naturalistic) and
number representation (one-to-one versus magnitude).
The ability of the models to account for the adult
distance and size effects depended critically on a
naturalistic training environment but was relatively
independent of number representation. With respect to
the developmental data, the naturalistic/one-to-one
model provided a good account of response times and
errors. The relation between the current models and
prior models and avenues for future exploration are
discussed.
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Introduction

The nature of number representations is an enduring
question in cognitive science. One clue to this representation
is the distance effect: the time it takes to judge the greater
(or lesser) of two numbers decreases with the distance
between the numbers (Moyer & Landauer, 1967). For
example, 1 vs. 9 is judged faster than 1 vs. 3. Another clue
is the size effect: the time to judge the greater (or lesser) of
two numbers that are a fixed distance apart increases with
the absolute magnitude of the numbers (Parkman, 1971).
For example, 7 vs. 9 is judged more slowly than 1 vs. 3. The
distance and size effects conform to psychophysical laws

. _ larger
(i.e., RT—Klog(ilarger_sma”er) ) and are therefore

commonly interpreted as evidence that numbers are
represented as analog representations, perhaps localized to
the intra-parietal sulcus (Dehaene, Piazza, Pinel, & Cohen,
2003). Researchers have proposed various implementations
of these analog representations. The classic ones are as
points on a compressed mental number line (Dehaene &
Mehler, 1992; Rule, 1969) and as points on a linear mental
number line associated with increasing variability (e.g.,
Gallistel & Gelman, 2000). More recently, two
connectionist models of number representation have
appeared. Zorzi and Butterworth (1999) assumed magnitude
representations whereby numbers are represented by banks
of overlapping units. This model was able to account for the
adult distance effect. By contrast, Verguts, Fias, and Steven

(2005) assumed a coarse-coded representation, with each
number corresponding primarily to one unit, but with
graded activation of adjacent units. This model was able to
account for the adult distance and size effects.

The purpose of the current study was to evaluate the
ability of connectionist models to (1) account for the adult
distance and size effects as a function of training
environment and number representation and to (2) account
for the development of the distance effect. In these regards,
the reported simulations are the first of their kind.

With respect to training environment, some connectionist
models (Zorzi & Butterworth, 1999) have employed a non-
naturalistic training environment (i.e., every one-digit
number appears with equal likelihood). However, corpus
studies indicate that the frequency of a number falls off as a
power function of its magnitude (Dehaene & Mehler, 1992),
implying that one-digit numbers are non-uniformly
distributed in a naturalistic environment. Some
connectionist models have employed a naturalistic training
environment (Verguts et al, 2005). We sampled
comparisons (i.e., pairs of one-digit numbers) from these
contrasting training environments to evaluate whether the
distance and size effects were contingent upon naturalistic
input.

With respect to number representation, we considered the
magnitude representation implemented by the Zorzi and
Butterworth (1999) model and a one-to-one variant of the
coarse-coded representation implemented by the Verguts et
al. (2005) model*.

Finally, in the first study to model the development of the
distance effect, we evaluated whether improvements in
model  performance  throughout training  parallel
improvements in children’s response times and error rates
throughout development.

Method

We developed four connectionist models by orthogonally
varying training environment (naturalistic versus non-
naturalistic) and number representation (magnitude versus
one-to-one). The models were implemented within a
common connectionist architecture patterned after Verguts
et al. (2005).

! Both of these codings represent exact numbers. We use the
label “magnitude” to reflect the fact that the number of
representation nodes activated in this coding corresponds to the
number being compared.
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Figure 1: Schematic of models using one-to-one coding (left) and magnitude coding (right).

This architecture consisted of three layers of units (input,
representation, and decision layers) (Figure 1). Each layer
contained left and right fields. On each trial, the input units
corresponding to the numbers being compared were
clamped to an activation level of 1, and activation spread
forward throughout the network. When a decision unit (left
larger or right larger) reached an activation of 0.5 or
greater, the model was considered to have made a decision

Architecture and Number Representation

Each model consisted of three layers of units. The input
layer consisted of two fields of nine units each that
corresponded to the numbers 1-9. The left field
corresponded to the number presented on the left and the
right field to the number on the right. Each number
corresponded to one (and only one) unit in the input layer.
The representation layer consisted of two sets of nine
units. The left field, M, represented the number presented
on the left, and the right field, N, represented the number
presented on the right. The left input field was connected to
the left representation field and the right input field to the
right representation field by connections with weights 0 or
1. The number representation scheme of the model
determined the pattern of connection weights between the
input and representation layers. For magnitude
representations, the number of units activated in a
representation field corresponded to the magnitude of the
number presented (e.g., if the number 5 was presented on
the left, the 5 leftmost units of the left representation field
would be activated). For one-to-one representations®, one
(and only one) unit in a representation corresponded to the
number presented. The weights of the connections between
the input and representation layers were held constant

2 \We employed one-to-one representations instead of coarse-coded
representations (Verguts et al., 2005) to equate the architecture
across models. Coarse-coding would have required adding
additional units to the representation layer of models that
employed magnitude representations, muddying the comparison of
the models.

throughout learning to maintain the type of representation
that the model a priori employed.

The decision layer consisted of two units representing left
larger and right larger decisions. Units in the
representation layer were fully connected with units in the
decision layer. The initial weights of these connections
were randomly sampled from a uniform distribution (0 to 1)
and were adjusted during training by a supervised learning
rule.

Model Dynamics

On each trial, the model compared two numbers, judging
which was greater. (Following prior work, we did not model
both greater and lesser judgments.) The left number was
presented to the left input field by clamping the activation of
the corresponding unit to 1, and the right number was
presented similarly to the right input field. Activation spread
from the input layer to the representation layer according to
the equation®:

(1) Arye(t) = rys(t — 1) + 223 Wiiin [ (£)— 61"

Where Ary,(t) is the change in the activation of the k"
representation unit in the left field (M), in;(t) is the
activation of the i" input unit, Wakin; 1S the weight of the
connection between these two units, and 6 is a firing
threshold (set to .08 for these simulations). This equation
results in the activation of representation units
asymptotically approaching their maximum values.
Activation spread from the representation layer to the left-
larger unit of the output layer according to the equation:

(2) Aopese(t) = OLeft (t—-1D+X=7 Wi Lere| i (1) —01F
+Xi27 Whi Left [rvi () =61

Where Ao (t) is the change in the activation of the left-
larger unit, 7,; (t) is the activation of i™ representation unit

% All equations are for left fields. Equivalent equations governed
model dynamics in the right fields.
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in the left field, wy;0f is the weight of the connection
between these two units, ry;(t) is the activation of the in
representation unit in the right field, and 8 is the firing
threshold. This equation results in the activation of decision
units asymptotically approaching their maximum values
once the representation units have reached the firing
threshold. A decision was considered made once activation
in one of the decision units exceeds a threshold of 0.5.

Supervised Learning

During learning, weights between representation and
decision units were adjusted according to the delta rule:

() Awy, = €(ty — 0 )73

Where Awy, is the change in the weight between the i
representation unit and the k™ decision unit, € is a learning
rate parameter, (t;, —o,) is the difference between the
target decision unit activation t; (1 for larger, O for smaller)
and the actual decision unit activation o, and r; is the
activation of the i™ representation unit.  The delta rule
apportions blame for incorrect decisions and adjusts weights
accordingly. For this study, the learning rate parameter e
was set to 0.02. During learning, activation was allowed to
settle prior to weight adjustment. Each model was trained
for 30,000 trials, and weights were adjusted at the end of
every trial.

Training Environment

Models were trained on one of two training environments.
Naturalistic training environments were constructed by
assuming, following Dehaene and Mehler (1992), that the
frequency of a number in the environment is a decreasing
function of its magnitude. Although Dehaene and Mehler
favored a power function, Verguts et al. (2005) adopted a
closely related exponential function. To facilitate the
comparison of our results, we formed training comparisons
by sampling pairs of numbers from an exponentially
decreasing distribution (where the frequency of number i is
e %20, The distribution of individual numbers and of
comparisons (as a function of distance) is shown in Figure
2.

Non-naturalistic training environments were constructed
by assuming that numbers are distributed uniformly in the
environment. Training comparisons were formed by
sampling from this distribution. The results are also shown
in Figure 2.

It is interesting that naturalistic and non-naturalistic
training environments result in strikingly  similar
distributions of comparisons as a function of distance.
However, as we shall see, these environments have
important differences as indicated by the ability of the
resulting models to account for the adult distance and size
effects.
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Figure 2: Training environments. Dark gray histograms
give the distribution of numbers in the environment, light
gray histograms the distribution of distances between the

resulting comparisons (i.e., number pairs).

Training and Testing

Ten copies of each model (naturalistic versus non-
naturalistic crossed with magnitude versus one-to-one) were
created. Each copy was trained for 30,000 trials (following
Verguts et al.) and tested with all possible pairs of numbers
between 1 and 9 (excluding ties).

Results

Distance Effects
All four models produced distance effects (Figure 3).
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Figure 3: Distance effects for the four models.

1782



Table 1: Model fits for the distance effect.

Representation  Training R p

Magnitude Naturalistic .73 <.001
Magnitude Uniform 43 <.001
One-to-One Naturalistic .78 <.001
One-to-One Uniform 46 <.001

To evaluate the fit of each model to human performance, we
followed Zorzi and Butterworth (1999) in regressing human
performance as captured by the equation:

RT = Klog ( larger )

larger—smaller
against the number of cycles to make a decision. The results
are shown in Table 1.

First, consider the question of training environment. The
results indicate that models trained in naturalistic training
environments provide better accounts of the distance effect
than models trained in non-naturalistic environments.
Although Figure 2 suggests that the difference between the
training environments is negligible with respect to the
amount of experience with different distances, the fit
statistics indicate that differences between uniform and
naturalistic environments are critical to the distance effect .

Next, consider the question of number representation. The
results indicate that a model’s ability to account for the
distance effect is independent of whether it uses magnitude
or one-to-one number representations. Additional work is
necessary to determine how fundamentally different types of
numerical coding can produce such similar results with
respect to the distance effect.

Size Effect

The size effects produced by the four models are shown in
Figure 4. There is a striking qualitative difference in the
performance of models trained with naturalistic versus non-
naturalistic training environments.* The former produce a
generally positive linear relation between number size and
judgment time, with the exception of distances 1-2. By
contrast, the latter shows a size effect only for distances 5-8,
and diverge considerably from a linear relation for distances
1-4. Additional modeling is necessary to determine what
factors contribute to the failure of the uniformly-trained
models to produce size effects for distances 1 and 2.

4 At the time of submission, we did not have access to empirical
data on the size effect to quantify these models fits. We are
working on gaining such access.
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Figure 4: Size effects for the four models. Each line
represents comparisons of the same distance.

By contrast, the ability of a model to account for the size
effect appears to be relatively independent of whether it uses
a magnitude or one-to-one number representation. As with
the distance effect, additional work is necessary to
determine how fundamentally different types of number
representation can produce such similar results with respect
to the size effect.

Development of the Distance Effect

We next turn to the development of the distance effect. The
results thus far indicate that naturalistic training
environments are critical for accounting for adult distance
and size effects. Additionally, pilot simulations indicated
that models that utilize magnitude number representations
do not produce enough errors to account for that dimension
of development. For these reasons, we focused our
developmental efforts on the naturalistic/one-to-one model.

Sekuler and Mierkiewicz (1977) investigated the distance
effect in kindergarten, first grade, fourth grade, seventh
grade and adult subjects. Their results are shown in Figure
5. They reported that Kindergarteners were significantly
slower than other ages, first graders were significantly
slower than all age groups except kindergarteners, and that
the decision times of fourth graders, seventh graders and
adults did not differ significantly. They also reported that
the slope of the distance response curves was steeper for
kindergarteners than other age groups.

Figure 6 presents the distance effect (averaged across 10
simulations) produced by the naturalistic/one-to-one model
after 1200, 1600, 2000, 2400, and 2800 trials®. The model
provides a nice qualitative account of the developmental
data, showing distance effects at all time points as well as a
steady decrease in response time.

® These time points were chosen to align model-produced error
rates with the error rates reported by Sekuler and Mierkiewicz.
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Figure 5: Development of distance effect from
kindergarten to adulthood (adapted from Sekuler &
Mierkiewicz, 1977).
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Figure 6: Development of distance effect for the
naturalistic/one-to-one model from 1200 to 2800 trials)

However, the model fails to capture the interaction
reported by Sekuler and Mierkiewicz : the slope of the 1200
trial line (corresponding to the kindergarten distance effect)
is not qualitatively steeper than the slope of the 2800 trial
line (corresponding to the adult distance effect).

We were unable to evaluate the quantitative fit of the
model to the Sekuler and Mierkiewicz (1977) response time
data because it is no longer available. However, Holloway
and Ansari (2008) recently performed a similar experiment.®
They had six, seven, and eight year old children make
comparisons at distances 1-6. Their results are shown in
Figure 7.

6 We thank Daniel Ansari and lan Holloway for sharing their
data with us.
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Figure 7: Distance effects at age 6, 7, and 8 years old (data
from Holloway &Ansari, 2008).

We linearly regressed the performance of the model at
1200, 1600, and 2000 trials against their six, seven, and
eight year old data, respectively. The model accounted for
44% of the variance in the data (R? = .441, p = .003).

Although we were unable to evaluate the quantitative fit
of the model to Sekuler and Mierkiewicz’s response time
data because it was not available, we were able to evaluate
the fit of the model to their error rate data because it was
reported numerically in the original article. Table 2 presents
their developmental error rate data and the error rates of our
model. The model provides a good quantitative account of
error rate as a function of age. The correlation between the
model and the human data is 0.97 (p = .004).

Table 2: Error rates for the developmental simulations of
the naturalistic/one-to-one model.

Human (Age)  Errors (%) Model (Trials) Errors (%)
Kindergarten 18.4 1200 18.3

First Grade 16.7 1600 15.1
Fourth Grade  11.8 2000 12.8
Seventh Grade 12.5 2400 12.1
Adult 7.9 2800 8.3
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Discussion

The current study extends prior connectionist efforts to
understand the distance and size effects. We systematically
varied training environment and number representation and
examined the effects on the adult distance and size effects.
Models trained in naturalistic training environments, where
the frequency of numbers falls off as a function of their
absolute magnitude, provide better quantitative accounts of
the distance effect and better qualitative accounts of the size
effect. By contrast, the choice of number representation had
little effect on these models’ ability to account for the adult
distance and size effects.

The current study is the first to address the development
of the distance effect. The naturalistic/one-to-one model
provided a good qualitative account of distance effects at
different ages. It also provided a good account of decreasing
error rates with development.

One limitation of the development simulation was that it
did not account for the interaction observed by Sekuler and
Mierkiewicz (1977), whereby the distance effect is most
pronounced for kindergarteners and decreases throughout
development. Further research is necessary to understand
this limitation of the model.

Another limitation, one shared with the pioneering Zorzi
and Butterworth (1999) model, is that the models
considered here only perform the comparison task. By
contrast, the Verguts et al. (2005) model also performs
naming and parity judgment tasks and can thus be evaluated
against a broader range of data. Future research is required
to extend the range of the models considered here to new
tasks.

Although the developmental model produced changes in
error rates and comparison speed that parallel human data,
further work is necessary to more completely model the
development of number comparison. In particular, the
model needs to account for the more pronounced distance
effect of younger participants reported by Sekuler and
Mierkiewicz.  One reason our model may have failed to
capture this trend is that we trained the model using
distributions based on the occurrence of numbers in adult
language. One approach to improving the developmental
simulations may be to use training data that parallel the
distributions of numbers in children’s and child-directed
speech.
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