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Abstract 

In two simulation studies, we compare the attention 
learning predictions of three well-known adaptive 
network models of category learning: ALCOVE, 
RASHNL, and SUSTAIN. The simulation studies use 
novel stimulus structures designed to explore the effects 
of predictor diagnosticity and independence, and 
differentiate the models regarding their tendencies to 
learn simple rules versus exemplar-based 
representations for categories.  An interesting 
phenomenon is described in which the models 
(especially SUSTAIN and RASHNL) learn to attend to 
a completely nondiagnostic constant dimension. 
Keywords: category learning; selective attention; 
simulation. 

 
Introduction 

   A key assumption of many computational models of 
categorization is that category learners do not merely 
form associations between instances and categories, but 
also learn how to allocate attention to each individual 
stimulus “dimension” (e.g., color).  The present paper 
focuses on three such adaptive network models of 
classification learning: the ALCOVE model of Kruschke 
(1992); RASHNL (Johansen & Kruschke, 1999); and 
SUSTAIN (Love & Medin, 1998).   These models are 
multilayer adaptive network models that accept as input a 
stimulus description (in the form of a set of input feature 
values), and produce as output category membership 
predictions that are based on the activation levels of a set 
of output nodes that correspond to the possible category 
responses.  Over the course of training, these models learn 
both what dimensions to attend to, and how to correctly 
classify all the stimuli in the training set.   
   These three adaptive network models differ in several key 
aspects.  ALCOVE and RASHNL are exemplar models, in 
the sense that each stimulus in the training set is allocated a 
node in the “hidden” or middle layer of the network.  In 
contrast, SUSTAIN can form either exemplar-level or 
prototype-based representations.  Prototypes are handled by 
using a reduced number of nodes in the hidden layer, 
corresponding to potential generalizations.  SUSTAIN 
dynamically allocates new prototypes, allowing it to 
possibly use multiple prototype nodes for each category 
defined by the training feedback.  
   Exploring how these models adapt their attention weights 
is crucial to understanding their usefulness and validity by 
relating their learning accuracy predictions more directly to 
learning strategies.   In previous studies (e.g., Matsuka & 
Corter, & Markman, 2002; Corter, Matsuka, & Markman, 
2007), we found that all three models can account for 
human classification accuracy learning curves, but show 
distinct patterns in their “learning curves” for dimensional 

attention weights.  In particular, ALCOVE and RASHNL 
seem to pay more attention to relatively independent 
predictors, while SUSTAIN shows the reverse pattern.  The 
present Simulation 1 seeks to confirm this finding with a 
novel stimulus structure designed for this purpose, while 
Simulation 2 investigates an interesting phenomenon 
whereby the models sometimes learn to pay attention to a 
completely nondiagnostic feature.  First, we briefly describe 
the models. 
 
ALCOVE (Kruschke, 1992) is a multi-layer adaptive 
network model of categorization based on the Generalized 
Context Model (Nosofsky, 1986).  The first layer of 
ALCOVE is a stimulus input layer.  Each node in this layer 
represents the value of the presented stimulus on a single 
dimension.   Importantly, each dimension has an attention 
strength (αi) associated with it.  Typically, attention 
strengths are initially equal across dimensions. However, the 
model learns to reallocate attention as learning proceeds, by 
adjusting these weights.  The second layer in the network is 
the exemplar layer.  Each node in this layer corresponds to 
an exemplar, described by its position in the 
multidimensional stimulus space.  The activity of the 
exemplar nodes is fed forward to the third layer, the 
category layer, whose nodes correspond to the categories 
being learned. Separate learning rates are assumed for the 
association weights and attention strengths. 
 
RASHNL (Kruschke and Johansen, 1999) is a modified and 
extended version of ALCOVE. The modifications 
introduced in RASHNL include: limited attention capacity; 
a capability for large and rapid shifts of attention; a 
gradually decreasing learning rate; and a parameter for 
salience of cues or features.  RASHNL’s architecture is 
similar to that of ALCOVE.  However, each dimension has 
a dimensional salience parameter, the values of which are 
prespecified by the experimenter (i.e., not adjusted by 
learning).  The dimensional attention strengths, αi, are 
derived functions of separate underlying parameters, termed 
the “gains”, which are adjusted by learning.  An additional 
parameter P is incorporated, that can be set to vary between 
fixed attention capacity (P = 1) or unlimited attention 
capacity (P = ∞).  
 
SUSTAIN (Love & Medin, 1998; Love, Medin & Gureckis, 
2004), is comprised of two separate adaptive network 
components, a “supervised” network and an “unsupervised” 
one.  The unsupervised network is a competitive network 
that clusters stimuli into prototypes.  The term ‘prototype’ is 
used broadly, however, because an experimenter-defined 
category might be represented by one or many prototypes, 
and a prototype might represent only a single stimulus.  This 
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flexibility also gives SUSTAIN the capability to form 
prototype-plus-exception representations or even exemplar-
level representations.  This clustering network is dynamic 
and incremental in its behavior, in the sense that new 
prototypes and/or exceptions are created when current 
prototypes are not predictive.   
   The “supervised” network is a feedforward network that 
classifies a stimulus based on similarity between the input 
pattern and the prototypes created by the unsupervised 
network. The activation of node j in the internal layer 
depends on several parameters: λi, which represents the 
“tuning” of the receptive field for a given dimension i, the 
distance between the centroid of prototype unit j and the 
input node on dimension i, and r, an overall attentional 
parameter that can be adjusted to create tighter or looser 
focus on highly tuned dimensions.  The “tuning” (λi) 
parameters in SUSTAIN are the primary determinants of 
differences in attention among dimensions.  When λi is large, 
difference between the input and the prototype node on 
dimension i are “stretched” or emphasized.  At the output 
layer, SUSTAIN allows only the internal-layer unit with the 
highest post-transformed activation to determine output 
node activations, leading to “winner-take-all” learning.  
 
Comparing the Models’ Accounts of Attention Learning 
We are interested in the attention learning behavior of these 
models.  One clear difference between models is that 
RASHNL was designed with multiple attention learning 
iterations on each trial, in order to account for rapid shifts in 
attention that ALCOVE cannot predict.  However, other 
differences among the models’ assumed attention 
mechanisms have unknown implications.  For example, it is 
not clear what follows from SUSTAIN’s use of feedback 
from only the most-activated prototype to update the 
dimensional tuning parameters.  Because of the complexity 
of these multilayer network models and their dynamic 
nonlinear performance, simulation studies are useful to 
establish the models' actual attention-learning behavior in 
complex learning tasks.   
 

SIMULATION STUDIES 
Simulation 1 
   Our previous findings (e.g., Corter et al., 2008; Matsuka 
et al. 2002) suggest that ALCOVE and RASHNL tend to 
incorporate dimensions that are relatively independent, even 
orthogonal, to the other predictors, compared to SUSTAIN.  
As an alternative (but related) hypothesis, it may be that 
relatively independent predictors are preferred by ALCOVE 
and RASHNL because such dimensions often are more 
useful for distinguishing exemplars, especially between 
categories.  Simulation 1 explores this hypothesis by 
decoupling predictor diagnosticity (correlation with the 
criterion), predictor independence (inversely related to 
correlation with the other predictors), and “exemplar 
separation” (i.e., whether a predictor can be used in 
conjunction with other strong predictors in order to 
distinguish exemplars from different categories).  

Method: Table 1 shows the category structure used in 
Simulation 1.  In a typical classification learning task the 
classes (A and B) might be diseases, the exemplars patients, 
and the five “dimensions” might represent five types of test 
results or symptoms (each with two possible values). 
Correlations with the criterion are equal to .6 for 
Dimensions D1 and D2, to .2 for D3 and D4, and zero for 
D5. D3 and D4 differ in their configural validities, however:  
The variable subset (D1, D2, D3) gives a perfect R-square 
(RSQ) of 1.0 when these three dimensions are used in a 
linear model predicting the criterion, while the variable 
subset (D1, D2, D4) yields an RSQ of only .77.  Addition of 
the orthogonal variable D5 alone does not increase the RSQ 
of the predictor set (D1, D2), which is equal to .60. 
   The dimensions also differ in their degree of independence 
from the other predictors.  Dimension D3 is correlated .6 
with D1 and with D2, while D4 is correlated -.2 with each 
of these two predictors.  D5 has a zero correlation with all 
the other predictors and the criterion.  However, the 
predictors D3-D5 are all comparable in one regard: each one 
can be used in conjunction with D1 and D2 to distinguish all 
category A exemplars from all category B exemplars.  Thus, 
the simulation results for this structure should shed light on 
our hypothesis that this “exemplar separation” measure is 
key to predicting ALCOVE’s and RASHNL’s attention 
allocation behavior, by holding this factor constant across 
the “extra” dimensions D3-D5. 
 

Table 1.  Stimulus structure used in Simulation 1. 
Class D1 D2 D3 D4 D5 

A 1 1 1 1 1 
A 1 1 1 0 0 
A 1 1 1 0 1 
A 1 0 0 1 0 
A 0 1 0 1 1 
B 1 0 1 0 1 
B 0 1 1 0 0 
B 0 0 0 1 1 
B 0 0 0 1 0 
B 0 0 0 0 1 

 
   Using the three models, we simulated subjects (N=10,000) 
who were trained for 20 blocks on the stimulus structure 
shown in Table 1.  For each individual subject parameter 
values were randomly selected from a uniform distribution 
within reasonable limits for each parameter.  The main 
results recorded were the final-block attention weights for 
the five dimensions.   
 
Results: Although we cannot identify any of the simulated 
subjects as being descriptively more plausible than others 
due to the lack of empirical data for this structure, we can 
assess the normative success of each simulated subject, by 
calculating their predicted final-block classification 
accuracy.  Table 2 shows the mean final-block attention 
parameters for each model, by dimension.  The table shows 
the final weights only for “successful” simulated learners, 
those achieving at least 80% correct classification accuracy 
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by the final block.  The results do not differ if all simulated 
learners are included, however. All three models give 
highest attention weight to the two high-diagnostic 
dimensions D1 and D2.  However, they differ widely in how 
they distribute attention to the three remaining dimensions. 
In particular, the results for ALCOVE show a surprising 
pattern, with nearly as much attention paid to D4 and D5 as 
to the two most diagnostic dimensions and with D3 
weighted least, even though D3 has the highest configural 
validity (RSQ = 1.0) in conjunction with D1 and D2.  Thus, 
this pattern of weights can be said to be non-optimal; it is a 
surprising result in that D5 is completely uncorrelated with 
the criterion.  This ordering is consistent with the hypothesis 
that ALCOVE prefers relatively independent predictors, and 
cannot be ascribed to differences in “exemplar separability”, 
because this latter factor is held constant for D3, D4 and D5.   
 
Table 2.  Simulation 1: Final block relative attention weights for 
dimensions for each model, for “successful” simulated learners, 
with number (N) of successful learners out of 10,000 total. 

 N D1 D2 D3 D4 D5 
ALCOVE 8480 .248 .247 .098 .199 .209 
RASHNL 7463 .274 .286 .183 .123 .135 
SUSTAIN 6855 .240 .248 .230 .136 .148 

 
  RASHNL and SUSTAIN both predict normatively 
satisfactory patterns of attention weights in the sense that 
they give highest attention to D1 and D2, with D3 third 
highest.  This set of predictors is the minimal sufficient set 
for perfect prediction, therefore these weights may be 
considered to be the monotonically “optimal” weights.  
However, both RASHNL and SUSTAIN weight D5 higher 
than D4.  Again this is surprising, since D5 has zero 
correlations with the criterion (but also with the other 
predictors).   
 
Discussion: In this simulation RASHNL and SUSTAIN 
yielded weights that are normatively justifiable by the 
customary criterion of “configural validity”, by giving 
highest weighting to the three dimensions yielding a perfect 
multiple-R in predicting the criterion.  However, they still 
gave nontrivial weights to the two remaining dimensions, 
D4 and D5.  In this sense their attention allocation patterns 
cannot be described as optimal.  Furthermore, most 
simulated learners gave attention to more than one of these 
“supplementary” dimensions, showing that the network 
models do not always learn minimal sufficient rules. 
   ALCOVE also gave highest weights to D1 and D2, but 
gave third highest weight to D5, a dimension that has a 
correlation of zero with the criterion and with all the other 
predictors.  This pattern seems “irrational’ by the usual 
criterion of configural validity. However, we note that it is 
reasonable from the standpoint of “exemplar separability”: 
by this measure, the set (D1, D2, D5) is adequate for the 
classification task.  ALCOVE also gives non-trivial weights 
to the remaining two dimensions, D3 and D4, again 
demonstrating that the network models do not tend to learn 
minimal representations across a broad range of parameter 

values. Finally, ALCOVE weights D5 higher than D4 and 
D4 higher than D3, an ordering that is consistent with the 
degree of independence of the three dimensions, while 
RASHNL weights D5 over D4 (but weights D3 highest, in 
line with its configural validity).  This result supports the 
hypothesis that ALCOVE tends to give higher weight to 
more independent dimensions, even at the cost of finding a 
non-optimal solution. RASHNL and SUSTAIN both find 
the “optimal” configuration of dimensions (D1, D2, D3), 
and in fact exhibit the same ordering of weights 
(D1≈D2>D3>D5>D4).  However, given that only 
SUSTAIN weights D3 nearly as high as the two diagnostic 
dimensions, the results are consistent with the hypothesis 
that this model “prefers” dimensions that are correlated with 
other important predictors, compared to the other models.  
 
Simulation 2 
  Simulation 2 explores two issues.  The first is the idea that 
SUSTAIN favors dimensions that are correlated with other 
predictors, at least relative to the other models.  The second 
issue is the tendencies of the models to utilize exemplar 
versus simple rule based strategies when both strategies are 
sufficient for perfect performance.  
   Our previous simulations suggest that ALCOVE and 
RASHNL favor relatively independent predictors of the 
criterion.  A form of independence that can arise with a very 
poor predictor of a criterion is the case of a constant 
predictor.  A constant has a correlation of zero with the 
other predictors, and also with the criterion (very bad 
diagnosticity indeed). We explore whether ALCOVE and 
RASHNL have any attraction to this type or predictor. 
   There is reason to suspect that SUSTAIN may try to 
incorporate such a predictor.  Although a constant 
dimension has zero correlation with other predictors, it will 
have maximal within-category consistency for any cluster.  
Thus, the inclusion of a constant dimension allows us to 
unconfound diagnosticity and between-predictor correlation 
from within-cluster consistency, possible aspects of the type 
of dimensions found to be attractive to SUSTAIN in 
previous simulations.   
   Inclusion of a constant dimension simulates important 
aspects of experimental stimuli that are usually ignored.  
The stimuli used in studies of category learning typically 
have many perceptually or conceptually salient aspects that 
are not coded or discussed by the experimenters, being 
treated as irrelevant because they are constant for all stimuli.   
For example, stimuli that are line drawings of bug-like 
creatures may differ in head shape, number of legs, and type 
of tail, aspects that are coded and manipulated by the 
experimenter to define the diagnostic input features to 
categorization models.  But the line drawings all share 
certain basic characteristics that are constant across stimuli.  
Many models of similarity (e.g., Tversky, 1977; Markman 
& Gentner, 1993) assume that common features increase the 
similarity (and confusability) of stimuli. Thus, it seems 
interesting to use a simulation study to investigate what 
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predictions the three network models make for use of such 
constant or common-feature information. 
 
Method:  The category structure used for Simulation 2 is 
shown in Table 3.  There are four exemplars of each 
category, A and B.   Dimension D1 is a binary-valued 
variable, with values that are logically necessary-and-
sufficient to identify each category.  Dimension D2 is a 
constant dimension that has values of 1 for all exemplars in 
the population, regardless of category membership.   
Dimensions D3, D4, and D5 are binary-valued dimensions 
that together uniquely identify all eight exemplars.  Note 
that this structure ensures that each network model not only 
has a relatively easy categorization strategy available (a 
unidimensional rule on D1), but can adopt a minimal 
attentional strategy that enables unique identification of all 
exemplars (attending to D3-D5). 

Using the three models, we simulated subjects 
(N=100,000) who were trained for 20 blocks on the stimulus 
structure shown in Table 3.  As in Simulation 1, for each 
individual subject parameter values were randomly selected 
from a uniform distribution within reasonable limits for 
each parameter.  The main results recorded were the final-
block attention weights for the five dimensions.   
 
Table 3.  Simulation 2:  A simple two-category structure with one 
necessary-and-sufficient “category” dimension (D1), a constant 
dimension (D2), and three dimensions (D3-D5) that uniquely 
identify exemplars. 

Class D1 D2 D3 D4 D5 
A 1 1 1 1 0 
A 1 1 0 1 1 
A 1 1 1 0 1 
A 1 1 0 0 0 
B 0 1 1 1 1 
B 0 1 0 1 0 
B 0 1 1 0 0 
B 0 1 0 0 1 

 
Results: Table 4 reports the mean pattern of relative 
attention in the final block for the successful classification 
learners, defined as those who had at least 80% 
classification accuracy in the final block.  
  
Table 4.  Mean final relative dimensional attention weights, by 
model, for the best-fitting simulated subjects of Simulation 2. 
Maximal mean attention weight for each model shown in bold type. 

Model D1 D2 D3 D4 D5 
ALCOVE .338 .097 .188 .188 .188 
RASHNL .375 .231 .132 .132 .132 
SUSTAIN .389 .389 .074 .075 .075 

  
   As can be seen in the table, learners simulated by 
ALCOVE gave the highest weight to D1, the dimension 
defining the simple rule.  However, the total attention 
weight allocated by ALCOVE to the three dimensions 
uniquely identifying the exemplars (D3-D5) was greater 
than that given to the rule dimension D1, a pattern that 
could be interpreted as showing predominantly exemplar-

based learning. 1  ALCOVE was relatively successful at 
ignoring the constant dimension D2, giving it about 1/4 the 
weight of the “rule” dimension D1.  RASHNL showed a 
different pattern of final weights, giving the highest weight 
to the dimension (D1) defining the unidimensional category 
rule, an intermediate level to the constant dimension D2, 
and the least attention to the exemplar-identifying 
dimensions D3-D5. RASHNL’s capability to emphasize D1, 
the rule dimension, is consistent with its capability to model 
simple rule-based strategies in other simulations we have 
conducted.  It is somewhat surprising that this model cannot 
learn to ignore the constant dimension D2.  SUSTAIN gave 
the least weight of any model to the “exemplar” dimensions 
D3-D5, and roughly as much weight as RASHNL to the 
perfectly diagnostic D1, but was the worst at ignoring D2, 
the constant dimension, giving it equal weight with D1.  
   Examination of the pattern of attention results across 
different regions of the parameter space for each model 
revealed that one key parameter affecting the results is the 
learning rate for association weights in the network. In order 
to display these results, we have created plots of the final 
pattern of attention weights for each model, separately for 
different ranges of the learning rate parameter.   
  Figure 1 presents the results for ALCOVE.  The left panel 
plots the final attention weight for D2 (the constant 
dimension) versus that for D1 (the rule dimension).  It can 
be seen that ALCOVE does not completely ignore D2 at any 
value of the learning rate, although D2 is consistently given 
lower weight than D1.  The right panel plots the summed 
final attention weights for D3-D5, the “exemplar” 
dimensions, versus the weight for D1.  These plots show a 
strong and consistent effect of the learning rate for 
associations.  For higher values of this parameter (the upper 
row of the panel), the total attention weight given to the 
exemplar dimensions tends to exceed that for D1, meaning 
that exemplar learning predominates.  For lower values of 
the learning rate (the bottom row) the dimension defining 
the unidimensional rule (D1) is weighted highly, sometimes 
even exclusively, meaning that a rule-based strategy is being 
used.   
  Figure 2 presents the corresponding plots for RASHNL.  
The left panel shows that RASHNL has trouble ignoring D2, 
the constant dimension, at any value of λw.   However, D1 
(the rule dimension) tends to receive more attention than D2 
in the majority of solutions. The right panel shows that most 
simulated subjects pay more attention to D1, the rule 
dimension, than to the exemplar dimensions.  This is 
especially true when the learning rate is very low (bottom 
row).  However, the bottom row of the left panel 

                                                             
1 Support for this interpretation is given by supplementary 

simulations we have conducted, in which various numbers 
of dimensions (1, 2 or 3) are used to uniquely code the 
exemplars.  Across all of these simulations, the total final 
weight given to these “exemplar” dimensions is roughly 
constant, regardless of the number of dimensions involved. 
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underscores that for the low learning rates, considerable 
attention is also paid to D2, the constant dimension. 
  Figure 3 shows that SUSTAIN yields a very different 
pattern of results for this structure.  For all values of λw 
SUSTAIN predicts that equal attention will be paid to D1 
(the rule dimension) and D2 (the constant dimension). Also, 
the total amount of attention directed at D3-D5, the 
“exemplar” dimensions, is fairly stable across values of the 
learning rate, but there is more variability at the higher 
learning rates.  Interestingly, the apparent constraint that the 
weights given to D1 and D2 be equal is so strong that any 
increase or decrease in the total weight given to D3-D5 
trades off against the summed relative weight given to D1 
and D2, creating a line of possible solutions with a slope of  
-2 in each plot of the right-hand panel.  
 

   
Figure 1.  Simulation 2:  Final relative attention weights for 
ALCOVE, separately for different values of λw, the learning rate 
for network association weights.  Left panel:  D2 (y-axis) versus 
D1 (x-axis) attention weights.  Right panel: summed attention 
weights for D3, D4 & D5 (y-axis) versus D1 (x-axis) attention 
weights.  In each panel, the nine plots summarize results for 
various ranges of the λw parameter.  Top row: (>.8; .8-.4; .4-.2).  
Middle row: (.2-.15; .15-.10; .10-.05).  Bottom row: (.05-
.025; .025-.125; <.125). 

   
Figure 2.  Simulation 2:  Final relative attention weights for 
RASHNL  

   
Figure 3. Simulation 2: Final relative attention weights for 
SUSTAIN  

Discussion:  The results of Simulation 2 are striking.  First, 
both RASHNL and SUSTAIN pay considerable attention to 
a constant dimension (that has zero diagnosticity) under a 
wide range of parameter settings.  In fact, RASHNL shows 
many solutions with relative weight exceeding 50% for D2 
(with 5 dimensions).  SUSTAIN invariably gives equal 
attention weight to D2 and D1, the unidimensional rule 
dimension.  In this sense it is the least successful of the 
three models at ignoring D2.  An explanation for this 
behavior of SUSTAIN is given below.   
  Second, the network models also differ in their tendencies 
to adopt the rule-based solution (using dimension D1) 
versus the exemplar-level representation (using D3-D5).  
For ALCOVE, successful learners tend to give high total 
attention weight to the “exemplar” dimensions D3-D5.  
These exemplar-based attention patterns occur often when 
the association learning rate is high, but rule-based attention 
patterns predominate when it is very low (Figure 1).  For 
RASHNL, successful learners tend to weight the simple rule 
dimension (D1) more than the exemplar dimensions (D3-
D5), and this tendency increases for low learning rates.  Of 
the three models, SUSTAIN’s successful learners give the 
least attention to the exemplar-identifying dimensions D3-
D5.  SUSTAIN pays somewhat more attention to these 
exemplar-identifying dimensions when the association 
learning rate is very low, the opposite pattern to that shown 
by ALCOVE and RASHNL.   
   Surprisingly, SUSTAIN gave the same amount of 
attention to D2 as to D1. Clearly, this tendency of 
SUSTAIN must arise from the structure and processing 
assumptions of the model.  In fact, the reason that 
SUSTAIN finds D1 and D2 equally compelling is easy to 
identify, and stems from how SUSTAIN utilizes its 
reference points (i.e., clusters or prototypes) in 
learning.  SUSTAIN utilizes only the single most activated 
cluster to determine an exemplar’s classification and to 
guide learning.  In this model, the update in attention 
strength for each dimension is inversely proportional to the 
distance from the most activated cluster’s mean value and 
the value of the current input stimulus on that dimension 
(i.e., the smaller the dimensional distance, the more 
attention is increased for that dimension).  For a constant 
dimension, any cluster and any input stimulus will have zero 
distance on that dimension, thus attention will be increased 
to the maximal degree possible on the constant dimension.  
In the present simulation, D1 is a perfect predictor with 
constant values within categories, thus any cluster that does 
not combine exemplars from across categories will also 
have zero distance on that dimension between the cluster 
centroid and the input stimulus, leading to an equivalent 
increase in attention strength to D2. 
  The critical aspect of the processing assumptions here is 
the winner-take-all nature of the utilization of the clusters, 
which means that the diagnosticity of a dimension relative 
to contrasting clusters has less effect.  The net result in 
statistical terms is that the potential increase in attention to a 
dimension is a function of the similarity of the input 
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stimulus and the cluster centroid on that dimension.  This 
places greater emphasis on within-category similarity and 
less on between-category differentiation, relative to the 
processing assumptions of ALCOVE and RASHNL.  This 
line of analysis suggests that SUSTAIN will tend to select 
dimensions whose values have high category validity, P(f|c), 
over those with high cue validity, P(c|f), or with the best 
information gain (cf. Corter & Gluck, 1992).  
  Failing to ignore a dimension with zero diagnosticity 
seems like a major flaw of the three models, at least from a 
normative standpoint, because incorporating a constant 
dimension in a category’s representation has cost without 
any obvious adaptive value.  However, human data is 
needed to see if constant dimensions are indeed attended to 
and incorporated into a category’s representation.  It seems 
unlikely that in a category learning experiment human 
learners would waste time and effort memorizing or 
checking properties of a stimulus if those properties were 
seen to be useless for the task at hand.   
  On the other hand, it might be that such constant properties 
are learned implicitly, whether or not they are useful in a 
specific experimental task.  An example might indicate why 
this is a reasonable possibility.  A child learning the 
category animal might notice that all animals have mass. Is 
this fact incorporated into the child’s representation?  This 
certainly seems reasonable, though some normatively 
motivated theories of mental organization (e.g., Collins and 
Quillian, 1969) hold that the property of having mass should 
be stored at a superordinate level (say, under the category 
object) and merely inferred as needed in order to reason 
about animals and their properties. 

 
Conclusions 

  The present analyses and simulation results show that the 
models examined here, ALCOVE, RASHNL, and 
SUSTAIN, incorporate differing attention learning 
mechanisms and processing assumptions that lead to distinct 
predictions regarding attention learning in the simulation 
studies reported here.  The results from Simulation 1 
supported the hypothesis that SUSTAIN tends to attend to 
dimensions that are correlated with other predictors, while 
the other models give relatively greater attention to more 
independent predictors, perhaps because they better support 
exemplar-level processing.  Simulation 2 showed that the 
three models differ in their tendencies to use rule-based 
versus exemplar-based learning strategies.  Another 
surprising result from Simulation 2 was that all three models 
incorporated a constant (i.e., completely nondiagnostic) 
dimension into their representations to some degree.    
  We believe that simulation studies on attention allocation 
in category learning are valuable for two reasons.  First, 
they help us to better understand the behavior of complex 
computational models of category learning.  Second, they 
can help to guide empirical work on attention by suggesting 
new hypotheses about human attention learning, hypotheses 
that can be verified using methods for assessing attention 
such as eye-tracking (e.g. Rehder & Hoffman, 2005) or 

information-board methods (Matsuka & Corter, 2008).  
These hypotheses may then be used to design empirical 
studies by suggesting stimulus structures and tasks that best 
differentiate predictions of the models.  
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