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Abstract

In two simulation studies, we compare the attention
learning predictions of three well-known adaptive
network models of category learning: ALCOVE,
RASHNL, and SUSTAIN. The simulation studies use
novel stimulus structures designed to explore the effects
of predictor diagnosticity and independence, and
differentiate the models regarding their tendencies to

learn  simple  rules  versus  exemplar-based
representations for categories. An interesting
phenomenon is described in which the models

(especially SUSTAIN and RASHNL) learn to attend to
a completely nondiagnostic constant dimension.
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Introduction

A key assumption of many computational models of
categorization is that category learners do not merely
form associations between instances and categories, but
also learn how to allocate attention to each individual
stimulus “dimension” (e.g., color). The present paper
focuses on three such adaptive network models of
classification learning: the ALCOVE model of Kruschke
(1992); RASHNL (Johansen & Kruschke, 1999); and
SUSTAIN (Love & Medin, 1998). These models are
multilayer adaptive network models that accept as input a
stimulus description (in the form of a set of input feature
values), and produce as output category membership
predictions that are based on the activation levels of a set
of output nodes that correspond to the possible category
responses. Over the course of training, these models learn
both what dimensions to attend to, and how to correctly
classify all the stimuli in the training set.

These three adaptive network models differ in several key
aspects. ALCOVE and RASHNL are exemplar models, in
the sense that each stimulus in the training set is allocated a
node in the “hidden” or middle layer of the network. In
contrast, SUSTAIN can form either exemplar-level or
prototype-based representations. Prototypes are handled by
using a reduced number of nodes in the hidden layer,
corresponding to potential generalizations. = SUSTAIN
dynamically allocates new prototypes, allowing it to
possibly use multiple prototype nodes for each category
defined by the training feedback.

Exploring how these models adapt their attention weights
is crucial to understanding their usefulness and validity by
relating their learning accuracy predictions more directly to
learning strategies. In previous studies (e.g., Matsuka &
Corter, & Markman, 2002; Corter, Matsuka, & Markman,
2007), we found that all three models can account for
human classification accuracy learning curves, but show
distinct patterns in their “learning curves” for dimensional
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attention weights. In particular, ALCOVE and RASHNL
seem to pay more attention to relatively independent
predictors, while SUSTAIN shows the reverse pattern. The
present Simulation 1 seeks to confirm this finding with a
novel stimulus structure designed for this purpose, while
Simulation 2 investigates an interesting phenomenon
whereby the models sometimes learn to pay attention to a
completely nondiagnostic feature. First, we briefly describe
the models.

ALCOVE (Kruschke, 1992) is a multi-layer adaptive
network model of categorization based on the Generalized
Context Model (Nosofsky, 1986). The first layer of
ALCOVE is a stimulus input layer. Each node in this layer
represents the value of the presented stimulus on a single
dimension. Importantly, each dimension has an attention
strength (o;) associated with it.  Typically, attention
strengths are initially equal across dimensions. However, the
model learns to reallocate attention as learning proceeds, by
adjusting these weights. The second layer in the network is
the exemplar layer. Each node in this layer corresponds to
an exemplar, described by its position in the
multidimensional stimulus space. The activity of the
exemplar nodes is fed forward to the third layer, the
category layer, whose nodes correspond to the categories
being learned. Separate learning rates are assumed for the
association weights and attention strengths.

RASHNL (Kruschke and Johansen, 1999) is a modified and
extended version of ALCOVE. The modifications
introduced in RASHNL include: limited attention capacity;
a capability for large and rapid shifts of attention; a
gradually decreasing learning rate; and a parameter for
salience of cues or features. RASHNL’s architecture is
similar to that of ALCOVE. However, each dimension has
a dimensional salience parameter, the values of which are
prespecified by the experimenter (i.e., not adjusted by
learning). The dimensional attention strengths, o, are
derived functions of separate underlying parameters, termed
the “gains”, which are adjusted by learning. An additional
parameter P is incorporated, that can be set to vary between
fixed attention capacity (P = 1) or unlimited attention
capacity (P = o).

SUSTAIN (Love & Medin, 1998; Love, Medin & Gureckis,
2004), is comprised of two separate adaptive network
components, a “supervised” network and an “unsupervised”
one. The unsupervised network is a competitive network
that clusters stimuli into prototypes. The term ‘prototype’ is
used broadly, however, because an experimenter-defined
category might be represented by one or many prototypes,
and a prototype might represent only a single stimulus. This
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flexibility also gives SUSTAIN the capability to form
prototype-plus-exception representations or even exemplar-
level representations. This clustering network is dynamic
and incremental in its behavior, in the sense that new
prototypes and/or exceptions are created when current
prototypes are not predictive.

The “supervised” network is a feedforward network that
classifies a stimulus based on similarity between the input
pattern and the prototypes created by the unsupervised
network. The activation of node j in the internal layer
depends on several parameters: A;, which represents the
“tuning” of the receptive field for a given dimension i, the
distance between the centroid of prototype unit j and the
input node on dimension i, and r, an overall attentional
parameter that can be adjusted to create tighter or looser
focus on highly tuned dimensions. The “tuning” (A;)
parameters in SUSTAIN are the primary determinants of
differences in attention among dimensions. When 4; is large,
difference between the input and the prototype node on
dimension i are “stretched” or emphasized. At the output
layer, SUSTAIN allows only the internal-layer unit with the
highest post-transformed activation to determine output
node activations, leading to “winner-take-all” learning.

Comparing the Models’ Accounts of Attention Learning
We are interested in the attention learning behavior of these
models. One clear difference between models is that
RASHNL was designed with multiple attention learning
iterations on each trial, in order to account for rapid shifts in
attention that ALCOVE cannot predict. However, other
differences among the models’ assumed attention
mechanisms have unknown implications. For example, it is
not clear what follows from SUSTAIN’s use of feedback
from only the most-activated prototype to update the
dimensional tuning parameters. Because of the complexity
of these multilayer network models and their dynamic
nonlinear performance, simulation studies are useful to
establish the models' actual attention-learning behavior in
complex learning tasks.

SIMULATION STUDIES

Simulation 1

Our previous findings (e.g., Corter et al., 2008; Matsuka
et al. 2002) suggest that ALCOVE and RASHNL tend to
incorporate dimensions that are relatively independent, even
orthogonal, to the other predictors, compared to SUSTAIN.
As an alternative (but related) hypothesis, it may be that
relatively independent predictors are preferred by ALCOVE
and RASHNL because such dimensions often are more
useful for distinguishing exemplars, especially between
categories.  Simulation 1 explores this hypothesis by
decoupling predictor diagnosticity (correlation with the
criterion), predictor independence (inversely related to
correlation with the other predictors), and “exemplar
separation” (i.e., whether a predictor can be used in
conjunction with other strong predictors in order to
distinguish exemplars from different categories).

Method: Table 1 shows the category structure used in
Simulation 1. In a typical classification learning task the
classes (A and B) might be diseases, the exemplars patients,
and the five “dimensions” might represent five types of test
results or symptoms (each with two possible values).
Correlations with the criterion are equal to .6 for
Dimensions D1 and D2, to .2 for D3 and D4, and zero for
D5. D3 and D4 differ in their configural validities, however:
The variable subset (D1, D2, D3) gives a perfect R-square
(RSQ) of 1.0 when these three dimensions are used in a
linear model predicting the criterion, while the variable
subset (D1, D2, D4) yields an RSQ of only .77. Addition of
the orthogonal variable D5 alone does not increase the RSQ
of the predictor set (D1, D2), which is equal to .60.

The dimensions also differ in their degree of independence
from the other predictors. Dimension D3 is correlated .6
with D1 and with D2, while D4 is correlated -.2 with each
of these two predictors. D5 has a zero correlation with all
the other predictors and the criterion. However, the
predictors D3-D5 are all comparable in one regard: each one
can be used in conjunction with D1 and D2 to distinguish all
category A exemplars from all category B exemplars. Thus,
the simulation results for this structure should shed light on
our hypothesis that this “exemplar separation” measure is
key to predicting ALCOVE’s and RASHNL’s attention
allocation behavior, by holding this factor constant across
the “extra” dimensions D3-D5.

Table 1. Stimulus structure used in Simulation 1.

Class DI D2 D3 D4 D5
A 1 1 1 1 1
A 1 1 1 0 0
A 1 1 1 0 1
A 1 0 0 1 0
A 0 1 0 1 1
B 1 0 1 0 1
B 0 1 1 0 0
B 0 0 0 1 1
B 0 0 0 1 0
B 0 0 0 0 1

Using the three models, we simulated subjects (N=10,000)
who were trained for 20 blocks on the stimulus structure
shown in Table 1. For each individual subject parameter
values were randomly selected from a uniform distribution
within reasonable limits for each parameter. The main
results recorded were the final-block attention weights for
the five dimensions.

Results: Although we cannot identify any of the simulated
subjects as being descriptively more plausible than others
due to the lack of empirical data for this structure, we can
assess the normative success of each simulated subject, by
calculating their predicted final-block classification
accuracy. Table 2 shows the mean final-block attention
parameters for each model, by dimension. The table shows
the final weights only for “successful” simulated learners,
those achieving at least 80% correct classification accuracy
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by the final block. The results do not differ if all simulated
learners are included, however. All three models give
highest attention weight to the two high-diagnostic
dimensions D1 and D2. However, they differ widely in how
they distribute attention to the three remaining dimensions.
In particular, the results for ALCOVE show a surprising
pattern, with nearly as much attention paid to D4 and D5 as
to the two most diagnostic dimensions and with D3
weighted least, even though D3 has the highest configural
validity (RSQ = 1.0) in conjunction with D1 and D2. Thus,
this pattern of weights can be said to be non-optimal; it is a
surprising result in that D5 is completely uncorrelated with
the criterion. This ordering is consistent with the hypothesis
that ALCOVE prefers relatively independent predictors, and
cannot be ascribed to differences in “exemplar separability”,
because this latter factor is held constant for D3, D4 and D5.

Table 2. Simulation 1: Final block relative attention weights for
dimensions for each model, for “successful” simulated learners,
with number (N) of successful learners out of 10,000 total.

N D1 D2 D3 D4 D5

ALCOVE 8480 .248 .247 .098 .199 .209
RASHNL 7463 274 286 .183 .123 .135
SUSTAIN 6855 .240 .248 230 .136 .148

RASHNL and SUSTAIN both predict normatively
satisfactory patterns of attention weights in the sense that
they give highest attention to D1 and D2, with D3 third
highest. This set of predictors is the minimal sufficient set
for perfect prediction, therefore these weights may be
considered to be the monotonically “optimal” weights.
However, both RASHNL and SUSTAIN weight D5 higher
than D4. Again this is surprising, since D5 has zero
correlations with the criterion (but also with the other
predictors).

Discussion: In this simulation RASHNL and SUSTAIN
yielded weights that are normatively justifiable by the
customary criterion of “configural validity”, by giving
highest weighting to the three dimensions yielding a perfect
multiple-R in predicting the criterion. However, they still
gave nontrivial weights to the two remaining dimensions,
D4 and DS5. In this sense their attention allocation patterns
cannot be described as optimal.  Furthermore, most
simulated learners gave attention to more than one of these
“supplementary” dimensions, showing that the network
models do not always learn minimal sufficient rules.
ALCOVE also gave highest weights to D1 and D2, but
gave third highest weight to D5, a dimension that has a
correlation of zero with the criterion and with all the other
predictors. This pattern seems “irrational’ by the usual
criterion of configural validity. However, we note that it is
reasonable from the standpoint of “exemplar separability”:
by this measure, the set (D1, D2, D5) is adequate for the
classification task. ALCOVE also gives non-trivial weights
to the remaining two dimensions, D3 and D4, again
demonstrating that the network models do not tend to learn
minimal representations across a broad range of parameter

values. Finally, ALCOVE weights D5 higher than D4 and
D4 higher than D3, an ordering that is consistent with the
degree of independence of the three dimensions, while
RASHNL weights D5 over D4 (but weights D3 highest, in
line with its configural validity). This result supports the
hypothesis that ALCOVE tends to give higher weight to
more independent dimensions, even at the cost of finding a
non-optimal solution. RASHNL and SUSTAIN both find
the “optimal” configuration of dimensions (D1, D2, D3),
and in fact exhibit the same ordering of weights
(D1=D2>D3>D5>D4). However, given that only
SUSTAIN weights D3 nearly as high as the two diagnostic
dimensions, the results are consistent with the hypothesis
that this model “prefers” dimensions that are correlated with
other important predictors, compared to the other models.

Simulation 2

Simulation 2 explores two issues. The first is the idea that
SUSTAIN favors dimensions that are correlated with other
predictors, at least relative to the other models. The second
issue is the tendencies of the models to utilize exemplar
versus simple rule based strategies when both strategies are
sufficient for perfect performance.

Our previous simulations suggest that ALCOVE and
RASHNL favor relatively independent predictors of the
criterion. A form of independence that can arise with a very
poor predictor of a criterion is the case of a constant
predictor. A constant has a correlation of zero with the
other predictors, and also with the criterion (very bad
diagnosticity indeed). We explore whether ALCOVE and
RASHNL have any attraction to this type or predictor.

There is reason to suspect that SUSTAIN may try to
incorporate such a predictor.  Although a constant
dimension has zero correlation with other predictors, it will
have maximal within-category consistency for any cluster.
Thus, the inclusion of a constant dimension allows us to
unconfound diagnosticity and between-predictor correlation
from within-cluster consistency, possible aspects of the type
of dimensions found to be attractive to SUSTAIN in
previous simulations.

Inclusion of a constant dimension simulates important
aspects of experimental stimuli that are usually ignored.
The stimuli used in studies of category learning typically
have many perceptually or conceptually salient aspects that
are not coded or discussed by the experimenters, being
treated as irrelevant because they are constant for all stimuli.
For example, stimuli that are line drawings of bug-like
creatures may differ in head shape, number of legs, and type
of tail, aspects that are coded and manipulated by the
experimenter to define the diagnostic input features to
categorization models. But the line drawings all share
certain basic characteristics that are constant across stimuli.
Many models of similarity (e.g., Tversky, 1977; Markman
& Gentner, 1993) assume that common features increase the
similarity (and confusability) of stimuli. Thus, it seems
interesting to use a simulation study to investigate what
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predictions the three network models make for use of such
constant or common-feature information.

Method: The category structure used for Simulation 2 is
shown in Table 3. There are four exemplars of each
category, A and B.  Dimension D1 is a binary-valued
variable, with values that are logically necessary-and-
sufficient to identify each category. Dimension D2 is a
constant dimension that has values of 1 for all exemplars in
the population, regardless of category membership.
Dimensions D3, D4, and D5 are binary-valued dimensions
that together uniquely identify all eight exemplars. Note
that this structure ensures that each network model not only
has a relatively easy categorization strategy available (a
unidimensional rule on D1), but can adopt a minimal
attentional strategy that enables unique identification of all
exemplars (attending to D3-D5).

Using the three models, we simulated subjects
(N=100,000) who were trained for 20 blocks on the stimulus
structure shown in Table 3. As in Simulation 1, for each
individual subject parameter values were randomly selected
from a uniform distribution within reasonable limits for
each parameter. The main results recorded were the final-
block attention weights for the five dimensions.

Table 3. Simulation 2: A simple two-category structure with one
necessary-and-sufficient “category” dimension (D1), a constant
dimension (D2), and three dimensions (D3-D5) that uniquely
identify exemplars.

Class DI D2 D3 D4 D5
A 1 1 1 1 0
A 1 1 0 1 1
A 1 1 1 0 1
A 1 1 0 0 0
B 0 1 1 1 1
B 0 1 0 1 0
B 0 1 1 0 0
B 0 1 0 0 1

Results: Table 4 reports the mean pattern of relative
attention in the final block for the successful classification
learners, defined as those who had at least 80%
classification accuracy in the final block.

Table 4. Mean final relative dimensional attention weights, by
model, for the best-fitting simulated subjects of Simulation 2.

Maximal mean attention weight for each model shown in bold type.

Model D1 D2 D3 D4 D5
ALCOVE .338 .097 .188 .188 .188
RASHNL 375 231 132 132 .132
SUSTAIN .389 .389 .074 .075 .075

As can be seen in the table, learners simulated by
ALCOVE gave the highest weight to D1, the dimension
defining the simple rule. However, the total attention
weight allocated by ALCOVE to the three dimensions
uniquely identifying the exemplars (D3-D5) was greater
than that given to the rule dimension D1, a pattern that
could be interpreted as showing predominantly exemplar-

based learning.' ALCOVE was relatively successful at
ignoring the constant dimension D2, giving it about 1/4 the
weight of the “rule” dimension D1. RASHNL showed a
different pattern of final weights, giving the highest weight
to the dimension (D1) defining the unidimensional category
rule, an intermediate level to the constant dimension D2,
and the least attention to the exemplar-identifying
dimensions D3-D5. RASHNL’s capability to emphasize D1,
the rule dimension, is consistent with its capability to model
simple rule-based strategies in other simulations we have
conducted. It is somewhat surprising that this model cannot
learn to ignore the constant dimension D2. SUSTAIN gave
the least weight of any model to the “exemplar” dimensions
D3-DS5, and roughly as much weight as RASHNL to the
perfectly diagnostic D1, but was the worst at ignoring D2,
the constant dimension, giving it equal weight with D1.

Examination of the pattern of attention results across
different regions of the parameter space for each model
revealed that one key parameter affecting the results is the
learning rate for association weights in the network. In order
to display these results, we have created plots of the final
pattern of attention weights for each model, separately for
different ranges of the learning rate parameter.

Figure 1 presents the results for ALCOVE. The left panel
plots the final attention weight for D2 (the constant
dimension) versus that for D1 (the rule dimension). It can
be seen that ALCOVE does not completely ignore D2 at any
value of the learning rate, although D2 is consistently given
lower weight than D1. The right panel plots the summed
final attention weights for D3-D5, the “exemplar”
dimensions, versus the weight for D1. These plots show a
strong and consistent effect of the learning rate for
associations. For higher values of this parameter (the upper
row of the panel), the total attention weight given to the
exemplar dimensions tends to exceed that for D1, meaning
that exemplar learning predominates. For lower values of
the learning rate (the bottom row) the dimension defining
the unidimensional rule (D1) is weighted highly, sometimes
even exclusively, meaning that a rule-based strategy is being
used.

Figure 2 presents the corresponding plots for RASHNL.
The left panel shows that RASHNL has trouble ignoring D2,
the constant dimension, at any value of A,,. However, D1
(the rule dimension) tends to receive more attention than D2
in the majority of solutions. The right panel shows that most
simulated subjects pay more attention to DI, the rule
dimension, than to the exemplar dimensions. This is
especially true when the learning rate is very low (bottom
row). However, the bottom row of the left panel

" Support for this interpretation is given by supplementary
simulations we have conducted, in which various numbers
of dimensions (1, 2 or 3) are used to uniquely code the
exemplars. Across all of these simulations, the total final
weight given to these “exemplar” dimensions is roughly
constant, regardless of the number of dimensions involved.
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underscores that for the low learning rates, considerable
attention is also paid to D2, the constant dimension.

Figure 3 shows that SUSTAIN vyields a very different
pattern of results for this structure. For all values of A,
SUSTAIN predicts that equal attention will be paid to D1
(the rule dimension) and D2 (the constant dimension). Also,
the total amount of attention directed at D3-D35, the
“exemplar” dimensions, is fairly stable across values of the
learning rate, but there is more variability at the higher
learning rates. Interestingly, the apparent constraint that the
weights given to D1 and D2 be equal is so strong that any
increase or decrease in the total weight given to D3-D5
trades off against the summed relative weight given to D1
and D2, creating a line of possible solutions with a slope of
-2 in each plot of the right-hand panel.

05 05 N 05

0 05 1 0 05 10 05 1

Figure 1. Simulation 2: Final relative attention weights for
ALCOVE, separately for different values of A, the learning rate
for network association weights. Left panel: D2 (y-axis) versus
D1 (x-axis) attention weights. Right panel: summed attention
weights for D3, D4 & DS (y-axis) versus D1 (x-axis) attention
weights. In each panel, the nine plots summarize results for
various ranges of the A, parameter. Top row: (>.8; .8-.4; .4-.2).
Middle row: (.2-.15; .15-.10; .10-.05). Bottom row: (.05-
.025; .025-.125; <.125).

1 1 1

Simulation 2:

Figure 2.
RASHNL
1

Figure 3. Simulation 2: Final relative attention weights for
SUSTAIN

Discussion: The results of Simulation 2 are striking. First,
both RASHNL and SUSTAIN pay considerable attention to
a constant dimension (that has zero diagnosticity) under a
wide range of parameter settings. In fact, RASHNL shows
many solutions with relative weight exceeding 50% for D2
(with 5 dimensions). SUSTAIN invariably gives equal
attention weight to D2 and D1, the unidimensional rule
dimension. In this sense it is the least successful of the
three models at ignoring D2. An explanation for this
behavior of SUSTAIN is given below.

Second, the network models also differ in their tendencies
to adopt the rule-based solution (using dimension D1)
versus the exemplar-level representation (using D3-D5).
For ALCOVE, successful learners tend to give high total
attention weight to the “exemplar” dimensions D3-DS.
These exemplar-based attention patterns occur often when
the association learning rate is high, but rule-based attention
patterns predominate when it is very low (Figure 1). For
RASHNL, successful learners tend to weight the simple rule
dimension (D1) more than the exemplar dimensions (D3-
D5), and this tendency increases for low learning rates. Of
the three models, SUSTAIN’s successful learners give the
least attention to the exemplar-identifying dimensions D3-
D5. SUSTAIN pays somewhat more attention to these
exemplar-identifying dimensions when the association
learning rate is very low, the opposite pattern to that shown
by ALCOVE and RASHNL.

Surprisingly, SUSTAIN gave the same amount of
attention to D2 as to DI. Clearly, this tendency of
SUSTAIN must arise from the structure and processing
assumptions of the model. In fact, the reason that
SUSTAIN finds D1 and D2 equally compelling is easy to
identify, and stems from how SUSTAIN utilizes its
reference points (i.e., clusters or prototypes) in
learning. SUSTAIN utilizes only the single most activated
cluster to determine an exemplar’s classification and to
guide learning. In this model, the update in attention
strength for each dimension is inversely proportional to the
distance from the most activated cluster’s mean value and
the value of the current input stimulus on that dimension
(i.e., the smaller the dimensional distance, the more
attention is increased for that dimension). For a constant
dimension, any cluster and any input stimulus will have zero
distance on that dimension, thus attention will be increased
to the maximal degree possible on the constant dimension.
In the present simulation, D1 is a perfect predictor with
constant values within categories, thus any cluster that does
not combine exemplars from across categories will also
have zero distance on that dimension between the cluster
centroid and the input stimulus, leading to an equivalent
increase in attention strength to D2.

The critical aspect of the processing assumptions here is
the winner-take-all nature of the utilization of the clusters,
which means that the diagnosticity of a dimension relative
to contrasting clusters has less effect. The net result in
statistical terms is that the potential increase in attention to a
dimension is a function of the similarity of the input
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stimulus and the cluster centroid on that dimension. This
places greater emphasis on within-category similarity and
less on between-category differentiation, relative to the
processing assumptions of ALCOVE and RASHNL. This
line of analysis suggests that SUSTAIN will tend to select
dimensions whose values have high category validity, P(f|c),
over those with high cue validity, P(c[f), or with the best
information gain (cf. Corter & Gluck, 1992).

Failing to ignore a dimension with zero diagnosticity
seems like a major flaw of the three models, at least from a
normative standpoint, because incorporating a constant
dimension in a category’s representation has cost without
any obvious adaptive value. However, human data is
needed to see if constant dimensions are indeed attended to
and incorporated into a category’s representation. It seems
unlikely that in a category learning experiment human
learners would waste time and effort memorizing or
checking properties of a stimulus if those properties were
seen to be useless for the task at hand.

On the other hand, it might be that such constant properties
are learned implicitly, whether or not they are useful in a
specific experimental task. An example might indicate why
this is a reasonable possibility. A child learning the
category animal might notice that all animals have mass. Is
this fact incorporated into the child’s representation? This
certainly seems reasonable, though some normatively
motivated theories of mental organization (e.g., Collins and
Quillian, 1969) hold that the property of having mass should
be stored at a superordinate level (say, under the category
object) and merely inferred as needed in order to reason
about animals and their properties.

Conclusions

The present analyses and simulation results show that the
models examined here, ALCOVE, RASHNL, and
SUSTAIN, incorporate differing attention learning
mechanisms and processing assumptions that lead to distinct
predictions regarding attention learning in the simulation
studies reported here. The results from Simulation 1
supported the hypothesis that SUSTAIN tends to attend to
dimensions that are correlated with other predictors, while
the other models give relatively greater attention to more
independent predictors, perhaps because they better support
exemplar-level processing. Simulation 2 showed that the
three models differ in their tendencies to use rule-based
versus exemplar-based learning strategies. Another
surprising result from Simulation 2 was that all three models
incorporated a constant (i.e., completely nondiagnostic)
dimension into their representations to some degree.

We believe that simulation studies on attention allocation
in category learning are valuable for two reasons. First,
they help us to better understand the behavior of complex
computational models of category learning. Second, they
can help to guide empirical work on attention by suggesting
new hypotheses about human attention learning, hypotheses
that can be verified using methods for assessing attention
such as eye-tracking (e.g. Rehder & Hoffman, 2005) or

information-board methods (Matsuka & Corter, 2008).
These hypotheses may then be used to design empirical
studies by suggesting stimulus structures and tasks that best
differentiate predictions of the models.
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