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Abstract

Recent research has shown that computer users placed in a de-
ferrable multitasking situation generally postpone secondary-
task interruptions until points of low mental workload in the
primary task. Studies examining this phenomenon have re-
lied on empirical data that explicitly show user switch points
in the course of multitask performance. This paper addresses
a related question: Can these same switch points, found em-
pirically in a multitasking context, be inferred solely from
single-task data? We investigate this question and propose
an approach that analyzes a particular behavioral signature in
single-task data—outliers in the distributions of time between
task actions—to infer multitasking breakpoints. We evaluate
this approach using behavioral data from a user-interface task,
showing how the proposed method’s inferences from single-
task data match well to the real switch points observed during
multitask performance.
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Introduction
Multitasking is a concept that is familar to most computer
users. It is not uncommon for a user to switch computing
tasks every few minutes. In many cases switching is ini-
tiated by an interruption of the current task. For example,
a notification of a newly received email may appear on the
screen prompting a user to stop what he is doing and look at
his email before continuing his previous task. Research has
shown that interruptions can increase the overall time spent
on a single task. One important source of this increase is the
resumption lag, or time required to switch back to the task
and resume after the interruption has been addressed (Trafton,
Altmann, Brock, & Mintz, 2003; Monk, Boehm-Davis, Ma-
son, & Trafton, 2004). Recently it has been shown that it
is more beneficial to interrupt at certain points than at others
(Adamczyk & Bailey, 2004; Bailey & Konstan, 2006; Cutrell,
Czerwinski, & Horvitz, 2000). One particularly strong result
states that the performance loss associated with interruption
is reduced when interruptions occur at points of low mental
workload (Iqbal & Bailey, 2005). This result has obvious im-
portance when consideringforced interruptions in which the
user is required to address the interruption immediately be-
fore moving on with the primary task.

The relationship between mental workload and interrupt-
ibility has been strengthened in further studies ofdeferrable
interruptions (Salvucci & Taatgen, 2010) in which a user is
notified of a secondary task but the user can defer processing
of this task until a later (presumably more comfortable) time.
For example, it has been shown (Salvucci & Bogunovich,

2010) that in this situation users tend to defer switching tasks
until a point where there is a drop in mental workload. As ex-
emplified by these studies, a detailed analysis of when users
switch tasks is critical to a deeper understanding of human
multitasking behavior. A particular goal in this line of re-
search involves the prediction of breakpoints, the points in a
task sequence where the user can most conveniently switch
tasks.

One approach to breakpoint prediction combines expert
coding, feature detection and model prediction (Iqbal & Bai-
ley, 2007). This approach begins by observing users in some
natural multitasking environment. An expert manually exam-
ines user actions and identifies specific features which appear
to signal breakpoints. A statistical model is then developed
based on these features. Promising results have been ob-
tained with his method, however it requires the human coders
to identify the perceived breakpoints and features, and does
not necessarily make use of the relationship between cogni-
tive load and interruptibilty. A successful related approach
that makes use of mental workload is to examine the typi-
cal execution structure of an action in advance and use this
structure to estimate opportune breakpoints (Bailey, Adam-
czyk, Chang, & Chilson, 2006). This method still requires
expert analysis and it may fail when variation in strategy is
introduced.

There exists a well-known relationship between cognitive
load and pupil dilation (Beatty, 1982). Researchers have
made use of this link in another approach to breakpoint detec-
tion (Bailey & Iqbal, 2008). In this approach, pupil dilation
data is recorded as users perform a task, and subtask bound-
aries, where there is an assumed drop in cognitive load, are
estimated by changes in dilation. The result is a more general
and more automatic estimation of good potential breakpoints
that relies less on pre-computed models or experts. Despite
these findings, it may not be possible to obtain pupil-dilation
in practice for many tasks.

In this paper we attempt to infer multitasking breakpoints
in a automatic, data-driven manner. In this respect our ap-
proach is most similar to (Bailey & Iqbal, 2008), but in-
stead of relying on typically inaccessible equipment like eye-
trackers, our goal is to come up with the good estimates us-
ing only data logs of system events generated by users per-
forming a single primary task. Our analysis focuses on the
distributions of elapsed time between recorded event pairs,
using single-task data collected for a customer-support task
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(Salvucci & Bogunovich, 2010). From our analysis of the
recorded data, and particularly the estimation of observed
outliers in distribution tails, we were able to infer breakpoints
that closely mirror actual deferred user breakpoints as they
arose in a multitasking context.

Task and Data

The task that we analyzed is taken from a recent experiment
in which users performed a mail-based customer-support
primary task while occasionally being interrupted by chat
(instant-message) questions. The primary task simulated a
typical customer-service scenario where a user receives email
inquiries for the prices of a variety of products. The sim-
ulation was comprised of a simulated email program and a
browser window used for looking up product prices, shown
in Figure 1. Each email in the inbox contained a request for
the price of a single product. Once the user read the email
and became aware of the request, he or she had to look up
the product in the browser to obtain the correct price. Each
product consisted of a real manufacturer name and a fictitious
model identifier (for example, “Canon H-44”, or “Sony M-
76”). To find the price of a product, the user had to first click
on the proper manufacturer name from the top-level of the
browser, and then click on the proper model identifier from
a secondary browser level. The user could have at any time
returned to the top level of the browser by clicking “home”
button. Once the price of the product in question had been
located, the user sent a reply email containing the requested
information. The users were also asked to manually move the
replied to emails to a “replied” bin by clicking and dragging.

In the multitasking setting a secondary chat task was intro-
duced which simulated a typical instant messenger conversa-
tion. A chat window was included in which the users were
occassionally asked questions about recent films by a simu-
lated interlocutor. The users were notified of a new question
by having the chat window flash, but it was up to the users to
decide when to break from the primary mail task to address
the questions once the notification was received.

It is important to note that in both the single mail task and
dual mail and chat task situations, the simulation windows
were arranged so that only the window that was currently be-
ing focused on could be seen. For example, while looking up
a product price in the browser window, the name of the prod-
uct given in the email window was obscured. This required
the users to commit sub-task relevant information to memory.

For our analysis, we look specifically at single mail task
data collected from six participants in this experiment. This
data was collected in a sesssion where the chat simulation
was not present. In particular, our goal is to analyze the
single-task data, infer and estimate breakpoints from these
data, and then evaluate our estimates by comparing the results
to the also collected multitask data. The data recorded for the
mail task (both single- and dual-task contexts) comprises a
sequence of time-stamped events occurring in the task. Ta-
ble 1 lists and describes these events. The full data recorded

mail-select: Select (click on) an email from a list.
mail-move: Move (drag) an email to the “Replied”

bin.
browser-focus: Change focus to browser window.
browser-home: Press “browser home” button.

mfr-link: Click on “product manufacturer” link.
model-link: Click on “product model” link.

reply-button: Press “Reply” button to open a new win-
dow to compose response.

reply-type: Type characters in a response email.
reply-send: Press the “Send” button to send re-

sponse email.
reply-focus: Change focus to an opened response

window.

Table 1: User events in the mail customer-support task.

for a single event includes the event type, as given in Table
1, the time of the event, and any auxilary information about
the event (for example, which character was typed, or which
product link was clicked); we use only the event type and time
information here.

Analysis of Recorded Event Data
Starting with the recorded single-task data, we tried several
theoretically-motivated approaches for analyzing the data and
inferring multitasking breakpoints. In the following sections
we discuss several of the approaches that we took. Motiva-
tions and limitations associated with each approach are given.

Frequency of Sequences

When relying solely on the frequencies of occurrence of given
event sequences, perhaps the most naive hypothesis is that
good locations for breakpoints are found between pairs of
consecutive events that were observed infrequently. The mo-
tivation is that sequences which appear frequently consistof
events that are strongly linked together, and thus switching
tasks between the events is less desirable or at least less likely.

Problems with this hypothesis arise immediately, how-
ever, in noting that it is extremely unlikely or impossible for
many pairs of events to occur consecutively. For instance,
in the mail task, it is not possible for to observe the event
“model-link” followed immediately by the event “mfr-link”
due to the design of the task interface. Other pairs of consec-
utive events are unlikely due not to the design of the sim-
ulation, but simply because they make little sense for any
user attempting to complete the mail goal. For example, the
sequence “mfr-link→ browser-home” is not useful in look-
ing up a product price, since the price is not obtained un-
til the “model-link” event. Any occurrences of “mfr-link→
browser-home” are likely due to an error by the user and there
is little reason to believe that this is a good place to switch
tasks.

While it is clear that pairs of events with no or few occur-
rences do not necessarily represent good breakpoints, it still
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Figure 1: The customer service mail simulation.

seems possible that pairs of consecutive events with high fre-
quency represent strongly linked events and that task switch-
ing should not occur between them. This argument is sup-
ported when we compile a list of the most frequent consecu-
tive event pairs and observe that one of the highest frequency
consecutive event pairs is “mfr-link→ model-link”. It makes
sense that we should link together these actions as they are
the ordered steps required to look up a product’s price. There
should not be a drop in cognitive load after the “mfr-link”
event since the model number is still required for the follow-
ing “model-link” event and we should not expect task switch-
ing here. On the other hand, another high frequency consec-
utive event pair is “reply-send→ mail-select”. While these
events appear to be strongly linked together, this pair actu-
ally does present a reasonable breakpoint. The “reply-send”
event signals that a response email has been sent and a cus-
tomer inquiry is completed. Handling a new customer inquiry
is always marked by selecting a new mail from the list, or a
“mail-select” event. It follows that the pair “reply-send →
mail-select” is a task boundary and a drop in cognitive load
should accompany it, making this a good breakpoint.

Mean Elapsed Time

A second attempt at identifying breakpoints involves consid-
ering the mean elapsed time between events. The hypothesis
is similar to the frequency hypothesis: A low mean elapsed
time between two events signals a strong link between them
that should not be broken, while a large mean elapsed time be-
tween events indicates a weak link that may be broken when
an interruption occurs.

For a given pair of events such as “A” and “B”, it is not im-

mediately clear how to construct the frequency distribution.
We could look at all occurrences of “A” followed by a “B”
any time thereafter, with the possibility of some events in be-
tween. This approach is appealing since it introduces some
robustness to “noisy” user errors in the recorded events. We
see some positive evidence supporting this choice in the dis-
tributions shown in Figure 2(a) and Figure 2(b). In both of
these distributions, the mean of the histogram is indicatedby
a red (lighter) bar. The distribution shown in Figure 2(a) cor-
responds to the event pair “mfr-link→ model-link”, which as
a sequence makes sense in a goal strategy and does not repre-
sent an expected boundary of cognitive subtasks. The mean
of this distribution is about 1.56 seconds elapsed between
the occurrence of the two events. The distribution shown
in Figure 2(b) corresponds to the event pair “model-link→
reply-button”, which occurs when the user has completed the
task of looking up the price of a product and is about to begin
the process of responding to the inquiry. The mean of this
distribution is 4.29 seconds of elapsed time between events.
The larger mean found here supports the hypothesis, since
this pair of events should straddle a subtask boundary and a
drop in cognitive load should accompany it.

The idea of considering all occurrences of “A” followed
some time later by “B” begins to break down, however, when
we consider the distribution shown in Figure 2(c). This dis-
tribution corresponds to the elapsed time between the events
“mail-select” and “reply-button”. The mean elapsed time is
5.66 seconds, which seems to indicate that the events are
not strongly linked. The problem with this assessment be-
comes clear when we take into consideration the variations
in task strategies taken by different users. The consequence
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(a) “mfr-link→ model-link” elapsed time distribution
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(b) “model-link→ reply-button” elapsed time distribution
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(c) “mail-select→ reply-button” elapsed time distribution

−2 0 2 4 6 8 10 12 14 16
0

20

40

60

80

F
re

qu
en

cy

Elapsed Seconds

(d) “mail-select→ reply-button” distribution for one strategy

Figure 2: Distributions of elapsed time between pairs of events. The locations of the means are indicated by a red (lighter) bar.

of this is that the sequence “mail-select → reply-button” is
strongly linked together in several task strategies, but itis not
found in all of them. This explains the two peaks seen in the
histogram. The first peak (and the surrounding bins) corre-
spond to the instances of the strategies which make use of
the “mail-select→ reply-button” sequence, while the second
peak corresponds to the remaining strategies. Analyzing this
sequence simply based on the mean of all of the possible oc-
currences does not provide a clear understanding of the data.

Addressing Multiple Strategies

Regardless of the usefulness of the mean elapsed time in in-
dicating the breakpoints, the observation concerning the mul-
tiple strategies needs to be addressed in any analysis of dis-
tributions. It seems that our distributions represent a classic
example of a mixture distribution, which should lead us to
consider a method such as expectation maximization (EM)
(Moon, 1996) to fit a mixture model to the histogram. Once
we’ve found a mixture model, we could then perform clus-
tering to obtain only the instances of event sequences which
should correspond to a single strategy. Another approach
would be to use the T-Patterns method for identifying the
critical interval (Magnusson, 2000) of elapsed time that we
should consider acceptable for a given event pair. Both of
these approaches present advantages and disadvantages for
our data, and are likely to prove both useful and necessary in
analyzing tasks containing variation in general.

We decided to use a much simpler approach to identifying
the valid instances of a sequence. Based on the task that was
assigned, we note that each task trial—the processing of a sin-
gle email—must begin with a “mail-select” event to view the
email. Furthermore, that once a new email has been selected,
another “mail-select” event is very unlikely before this first

email has been completely addressed. Following these as-
sumptions, we can segment our raw event data stream into in-
dividual mail task instances by using each “mail-select” event
as a boundary and consider unique sequences separately. This
method is supported by Figure 2(d), where only the instances
of the sequence “mail-select→ reply-button” which are part
of a strategy using those consecutive events are consideredin
the distribution. When compared to Figure 2(c) we now see a
single a peak with a mean of 1.30 seconds versus two peaks
and a mean of 5.66 seconds.

By considering instances of consecutive event pairs which
are part of a particular observed task strategy, a lot of unex-
pected behavior in the elapsed time distributions is removed,
but not enough to make the mean elapsed time a completely
useful indicator of cognitive load or interruptibility. One rea-
son for this lies in the simple nature of the data that was
recorded. By comparing just the elapsed time between events
“A” and “B”, the analysis does not have at its disposal vital
information about possible subtasks being performed. Con-
sider once again the “mfr-link→model-link” sequence. Gen-
erally this sequence is observed when the user is looking up
the price of a product for a customer inquiry. For one strat-
egy which uses this sequence (actually all strategies must use
this), we get a mean of 1.49 and a relatively large st. dev. of
0.59. Based on our hypothesis we should expect both a small
mean and variance for such a strongly linked pair of events,
but in fact we see a relatively large variance. This contra-
diction is explained when we consider that after a “mfr-link”
event, a user completing this action is required to perform
the relatively time-consuming task of reading through the list
of model numbers to find the link for the model in question,
before the “model-link” event can occur. A similar state-
ment could be made about any event preceding the “mfr-link”
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(a) “model-link→ reply-button” distribution for one strategy
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(b) “reply-button→ reply-type” distribution for one strategy

Figure 3: Distributions for instances of pairs found in one
strategy. The histograms are shown with a fitted log-normal
distribution curve. Note that in 3(a) more of the mass falls in
the far right end of its tail than in 3(b).

event. (More detailed data, such as eye-movement record-
ings, would further inform such an analysis—but again, such
detailed data are not available in the general case.)

Tail Mass of Elapsed Time Distributions

Since basic statistics of our elapsed time distributions dopro-
vide an adequate signature with respect to multitasking break-
points, we decided to take a closer look at the form of the
distributions. When we compare the histogram distributions
for different pairs of events, it becomes clear that certainhis-
tograms appear to have longer tails than others. To obtain
a better picture of this, we could look at the amount of the
histogram mass that falls several standard deviations to the
right of the mean. We can also observe modeling the his-
togram with a normal distribution may not be the best choice,
since there can be no negative elapsed times and typically the
distributions exhibit an early peak followed by a right end
tail. The log-normal distribution has these properties andwe
can easily find a maximum likelihood log-normal distribu-
tion to fit to our observations. Figure 3 shows two pair his-
tograms that have been fitted with log-normal distributions.
Figure 3(a) shows the distribution for the pair “model-link→
reply-button”, which corresponds to the boundary between
the price lookup task and the email reply task and is a rea-
sonable breakpoint. Figure 3(b) shows the distribution for
the pair “reply-button → reply-type”, which form consec-
utive events in the mail reply task and probably is not a
good breakpoint. Notice that a significantly larger portion
of the total observed mass in Figure 3(a) appears in the far
right tail of the fitted distribution than does the mass in Fig-

ure 3(b). Another way to put it is that the “model-link→
reply-button” distribution contains significantly more outliers
than the “reply-button→ reply-type” distribution.

The hypothesis resulting from this analysis is that the
amount of observed mass in the far end of the tails (outliers)
of distributions of elapsed time between event pairs is a good
indicator of the interruptibility between the events. We sus-
pect that the underlying reason relates to people taking short
mental breaks between these task steps: by resting for a short
time (up to a few seconds) between actions, a person can men-
tally regroup for the next component of the task. It seems rea-
sonable that such a mental regrouping would occur at higher-
level task boundaries, or equivalently at places of low mental
workload. Whatever the underlying reason, the tails of the
distributions seem to serve as a good signature for multitask-
ing breakpoints, as we detail in the next section.

To identify the outlier observations, we can simply fit the
model to our observations and see how many observations fall
n standard deviations to the right of the mean. Since we are
specifically interested in outliers in the far right end of the tail,
we should setn to be large, possiblyn = 3 or 4. This simple
method will certainly identify some outliers, but we can im-
prove the method by performing it iteratively. In the iterative
approach, we first fit the model, find the estimated std. dev.,
remove outliersn standard deviations from the mean from the
distribution, and repeat. At each iteration the estimated mean
will shift slightly to the left and we will consider more obser-
vations to be outliers. For large fixedn the estimates converge
after a few iterations (i.e., no new outliers are found). At that
point we have a good estimate of the percentage of the total
observations which can be considered outliers.

Results

To evaluate the outlier-based inference of multitasking break-
points, we selected the events corresponding to the most fre-
quently observed mail task strategy that we obtained from our
data segmentation procedure. The complete sequence has the
form: mail-select, browser-focus, browser-home, mfr-link,
model-link, reply-button, reply-type, reply-send, mail-select.
We calculated the outliers for each pair of consecutive events,
and formed a normalized histogram of breakpoint likelihoods
where the frequency of each bin is based on the number of
outliers that were found. Our results were obtained using a
log-normal distribution to fit our elapsed time distributions
and a value ofn = 3.75 standard deviations for the identify-
ing outliers. Using the accompanying multitasking (mail and
chat task) data, we also constructed a similar histogram of
the actual deferred breakpoints that we taken by users while
employing this strategy.

Both of the resulting histograms are shown in Figure 4.
The inferred results match reasonably well to the observed
breakpoints,R = 0.83. We obtained similar but not as good
results using the normal distribution, and for several observed
secondary strategy sequences.
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(a) Observed Proportions of Breakpoints while Multitasking
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Figure 4: Comparison of actual breakpoints taken in
(Salvucci & Bogunovich, 2010) with the outlier inferred
breakpoints for the most frequent strategy: (1)mail-select,
(2) browser-focus, (3) browser-home, (4) mfr-link, (5)
model-link, (6) reply-button, (7) reply-type, (8) reply-send,
(9) mail-select.

Discussion
To summarize, we found that the outliers (tails) of the dis-
tributions of time between task actions in a single task set-
ting served as a good indicator of multitask breakpoints, were
a secondary task to be introduced: The presence (or lack)
of outliers in the tails of the distributions correlated well
with people’s tendency to switch away from a task between
two given actions. These conclusions build on the results of
(Bailey & Iqbal, 2008) which showed that users produce evi-
dence of potential interruptibility in a single-task setting, but
the proposed method was able to identify similar evidence
using solely time and event data (rather than pupil-dilation or
other data that may be more difficult to obtain). Our results
suggest that when performing a task, users may occasionally
take a short breaks (up to a few seconds) when a cognitive
subtask is completed and before beginning a new subtask.
Analysis based on this idea agrees well with multitask data
from (Salvucci & Bogunovich, 2010) and hints at a strong
relationship between distribution outliers and boundaries of
cognitive subtasks.
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