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Abstract

The Raven’s Progressive Matrices intelligence test is widely
used as a measure of Spearman’s general intelligence factor g.
Although Raven’s problems resemble geometric analogies,
prior computational accounts of solving the test have been
propositional. Studies of both typical and atypical human
behavior suggest the possible existence of visual strategies;
for example, neuroimaging data indicates that individuals
with autism may preferentially recruit visual processing brain
regions when solving the test. We present two different
algorithms that use visual representations to solve Raven’s
problems. These algorithms yield performances on the
Standard Progressive Matrices test at levels equivalent to
typically developing 9.5- and 10.5- year-olds. We find that
these algorithms perform most strongly on problems
identified from factor-analytic human studies as requiring
gestalt or visuospatial operations, and less so on problems
requiring verbal reasoning. We discuss implications of this
work for understanding the computational nature of Raven’s
and visual analogy in problem solving.

Keywords:  Analogy; intelligence tests; knowledge
representations; mental imagery; Raven’s Progressive
Matrices; visual reasoning.

Introduction

The Raven’s Progressive Matrices tests (Raven, Raven, &
Court, 1998) are a collection of standardized intelligence
tests that consist of geometric analogy problems in which a
matrix of geometric figures is presented with one entry
missing, and the correct missing entry must be selected from
a set of answer choices. Figure 1 shows an example of a 2x2
matrix problem that is similar to one in the Standard
Progressive Matrices (SPM); other problems contain 3x3
matrices. The entire SPM consists of 60 problems divided
into five sets of 12 problems each (sets A, B, C, D & E),
roughly increasing in difficulty both within and across sets.

Although the Raven’s tests are supposed to measure only
eductive ability, or the ability to extract and understand
information from a complex situation (Raven, Raven, &
Court 1998), their high level of correlation with other multi-
domain intelligence tests have given them a position of
centrality in the space of psychometric measures (e.g. Snow,
Kyllonen, & Marshalek 1984), and as a result, they are often
used as tests of general intelligence in clinical, educational,
vocational, and scientific settings.

Computational accounts of problem solving on the
Raven’s tests have, with the exception of Hunt (1974),
assumed that visual inputs are translated into propositions,

over which various kinds of reasoning then take place. In
this paper, we provide evidence from two different methods
that Raven’s problems can be solved visually, without first
converting problem inputs into propositional descriptions.

Existing Computational Accounts

Carpenter, Just, and Shell (1990) used a production system
that took hand-coded symbolic descriptions of problems
from the Advanced Progressive Matrices (APM) test and
then selected an appropriate rule to solve each problem. The
rules were generated by the authors from a priori inspection
of the APM and were validated in experimental studies of
subjects taking the test with verbal reporting protocols.
Bringsjord and Schimanski (2003) used a theorem-prover to
solve selected Raven's problems stated in first-order logic.

Lovett, Forbus, and Usher (2007) combined automated
sketch understanding with the structure-mapping analogy
technique to solve problems from the Standard Progressive
Matrices (SPM) test. Their system took as inputs problem
entries sketched in Powerpoint as segmented shape objects
and then automatically translated these shapes into
propositional descriptions. A two-stage structure-mapping
process was then used to select the answer that most closely
fulfilled inferred analogical relations from the matrix.

In contrast to these propositional approaches, Hunt (1974)
proposed the existence of two qualitatively different
strategies: “Gestalt,” which used visual representations and
perceptual operations like continuation and superposition,
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Figure 1: Example problem similar to one from the
Standard Progressive Matrices (SPM) test.
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and “Analytic,” which used propositional representations
and logical operations. The Analytic algorithm is similar to
that of Carpenter, Just, and Shell (1990) in that it applied
rules to lists of features representing each matrix entry. The
Gestalt algorithm is similar to our methods in that it used
visual operations over imagistic problem inputs, but it
differs in that it operated on the entire problem matrix as a
single image, whereas our methods treat each matrix entry
as a separate image. While Hunt’s algorithms provide an
intuitively appealing account of solving Raven’s problems,
neither algorithm was actually implemented.

Behavioral Evidence for Multiple Strategies

Studies of human behavior suggest that qualitatively distinct
problem solving strategies can be used to solve Raven’s
problems. Factor analyses of both the SPM (Lynn, Allik, &
Irving, 2004; van der Ven & Ellis, 2000) and the APM
(Dillon, Pohlmann, & Lohman, 1981; Mackintosh &
Bennett, 2005; Vigneau & Bors, 2005) have identified
multiple factors underlying these tests, which often divide
test problems into two categories: those solvable using
visuospatial or gestalt operations and those solvable using
verbal reasoning. In support of this dichotomy, DeShon,
Chan, and Weissbein (1995) found that simultaneously
performing a verbal overshadowing protocol differentially
impaired accuracy on about half of APM problems.

These studies of typically developing individuals have
generally focused on within-individuals differences in
solution strategies, i.e. a particular individual using different
strategies on different portions of the test in a single sitting.
Recent evidence from autism offers evidence of between-
individuals strategy differences as well: individuals with
autism do not show the same correlations between Raven’s
scores and other cognitive measures that are robustly
demonstrated by typically developing individuals (Dawson,
Souliéres, Gernsbacher, & Mottron, 2007).

Even more striking are recent neuroimaging data that
show increased brain activation in visual regions for
individuals with autism solving the SPM than controls
(Soulicres et al., 2009). This study also found significant
differences in reaction time as a function of problem type,
with problems classified as “figural” or “analytic” based on
previously published factor-analytic studies. The results
from this study are highly suggestive of individuals with
autism using a visual strategy that contrasts with the
strategy used by controls. Evidence for a visual strategy
preference in autism is found across several other cognitive
task domains as well (Kunda & Goel, 2008).

Our approach

We hypothesize that Raven’s problems can be solved
computationally using purely visual representations. To test
this hypothesis, we have developed two different algorithms
that in this paper we will call the “affine” method and the
“fractal” method. Both methods use image transformations
to solve Raven’s problems without converting the input
images into any kinds of propositions. Below, we describe

each of these algorithms, followed by an analysis of their
performance on all 60 problems from the Raven’s Standard
Progressive Matrices (SPM) test.

Visual Methods for the Raven’s Test

Similitude Transformations

At the core of each of our algorithms are image operations
that fall under the category of affine transformations, and in
particular similarity-preserving or “similitude” transforms.
Similitude transforms can be represented as compositions of
dilation (i.e. scaling), orthonormal transformation, and
translation. Our implementations presently examine the
identity transform, horizontal and vertical reflections, and
90°, 180°, and 270° orthonormal rotations, composed with
various translations. The affine method restricts dilation to
a value of one, i.e. no scaling, whereas the fractal method
uses a short sequence of progressively smaller dilation
values, i.e. its similitude transformations are contractive.

There is evidence that human visual processing can apply
some of these types of transformations to mental images, or
at least operations that are computationally isomorphic in
some sense. In the theory of mental imagery proposed by
Kosslyn, Thompson, and Ganis (2006), transformations of
mental images include scanning (i.e. translation), zooming
(i.e. scaling), and rotation, among others.

A Model of Similarity

Similarity lies at the core of both of our accounts of visual
problem solving on the Raven’s test. We calculate visual
similarity using the ratio model (Tversky, 1977):

f(ANB)
f(ANB) + af(A—B) + Bf(B — A)

similarity(A,B) = (D
In this equation, f represents some function over features in
each of the specified sets; for instance, f might simply be a
count of features. The constants o and f are used as weights
for the non-intersecting portions of the sets 4 and B. If a
and P are both set to one, then this equation becomes:

f(ANB)

similarity(A,B) = f(A—UB)

2

Equation (2) is used in both the affine and fractal
methods, and it yields maximal similarity for sets in which
A is equal to B. In contrast, if a is set to one and f is set to
zero, it yields maximal similarity for sets in which A is a
proper subset of B. If a is set to zero and f is set to one,
then the opposite holds, and maximal similarity is found for
sets in which B is a proper subset of A. These two variants
are used in the affine method to capture notions of image
composition, i.e. image addition and subtraction.

In the affine method, each feature is defined as a pixel,
and intersection, union, and subtraction operations are
defined as the product, maximum, and difference of RGB
pixel values, respectively. The fractal method uses features
derived from different combinations of elements from the
fractal encoding (McGreggor, Kunda, & Goel, 2010).
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The Affine Method

The affine method assumes that elements within a row or
column in a Raven’s problem matrix are related by
similitude transformations. It tries to discover which
similitude transformation best fits any of the complete rows
or columns in the matrix, and then applies this transform to
the last row/column to generate a guess for the answer.
Then, it compares this guess to each of the answer choices,
and chooses the answer that is most similar.

Each similitude transformation is represented as the
combination of three image operations: a base transform, a
translation, and a composition. Algorithm 1 shows how, for
a pair of images A and B, these three components of the
“best-fit” similitude transformation are found. Given a
Raven’s problem, then, the affine method seeks to discover
the best-fit similitude transform over various combinations
of the matrix entries. In particular, the algorithm assumes
that certain analogical relationships exist based on the
spatial arrangement of the entries. Similitude transforms are
calculated for those combinations of entries that would yield
an analogical mapping to solve for the missing entry. The
specific base transforms and analogical relationships used
by the affine algorithm are shown in Table 1, divided into
those used for 2x2 and for 3x3 matrix problems.

Once the relationship and transformation are found that
maximize similarity, the transformation is applied to the
first entry or entries in the last row or column, as listed in
Table 1. The resulting image represents the algorithm’s best
guess as to the missing entry. This image is compared to
the answer choices, using Equation (2), and the best match
is chosen as the final answer.

For each base transform T:
Apply T to Image A.
Find translation (tx, ty) which yields best
match between T(A) and B, using Eq. (2).
Find image composition operand X as follows:
Calculate similarity using Eqg. (1) with:

Da=1,p=1
2)a=1,=0
3)a=0,B=1

Choose maximum similarity value.
If maximum is (1), then X = 0.
If maximum is (2), then X =B - A,
and @ refers to image addition.
If maximum is (3), then X = A-B,
and @ refers to image subtraction.

The best-fit similitude transformation can
then be specified as:

[Tmax+(txl ty)](A) ®X=B

Algorithm 1. Affine method for calculating best-fit
similitude transformation for a pair of images A and B.
For three-element transforms, T is applied to images A

and B, and the result is compared, as above, to image C.

Table 1: Base transforms and matrix relationships used

by the affine algorithm.
2x2: 3x3:
Transforms A B ABC
cC DEF
GH?
Twor | entity BC—H? DG—F?
wo Irror AC—G? AG—C?
element Flip AB—C?
EF—-H? EH-F?
transforms Rotate90 AC— B?
f DF—G? BH-—-C?
& relations Rotate180 GHoH? CF_F?
Rotate270 ’ ’
Three- . ABC—GH?
element Intgrr;fcntion n/a DEF—-GH?
transforms XOR ADG—CF?
& relations BEH—CF?

For example, take the problem given in Figure 1. The
similarity scores calculated for the various transforms and
relationships are shown in Table 2. The best-fit similitude
transformation is found to be a mirror (or reflection about
the vertical axis) for the relationship AB, using an addition
image composition (i.e. maximal similarity found using o =
1, B=0). Therefore, the answer image “?” is obtained using
the analogous relationship of A:B :: C?. C is mirrored,
translated by the (tx, ty) that was found in the search, and
the composition operand of B — A (which in this case is
mostly a blank image) is added on to the result. Finally, this
“guess” image is compared to each of the six answer
choices using Equation (2), and the best match is chosen as
the final answer, which in this case is answer #5.

Table 2: Calculation of best-fit similitude transform and
resulting answer guess for the problem shown in Figure 1.

Relation Transform g : :‘_ g : :') g : 2
Identity 0.475 0.644 0.644
Mirror 0.963 0.981 0.981
AB Flip 0.337 0.504 0.504
Rotate90 0.341 0.508 0.508
Rotate180 0.453 0.624 0.624
Rotate270 0.947 0.973 0.973
Identity 0.256 0.764 0.277
Mirror 0.252 0.759 0.274
AC Flip 0.335 0.951 0.341
Rotate90 0.331 0.941 0.338
Rotate180 0.257 0.771 0.279
Rotate270 0.250 0.752 0.273

Generated ’

guess:
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The Fractal Method

The fractal method proceeds in a manner which at once
resembles and yet differs from the affine method. Like the
affine method, the fractal method seeks to find a re-
representation of the images within a Raven’s problem as a
set of similitude transformations. Unlike the affine method,
the fractal method seeks these representations at a
significantly finer partitioning of the images, and uses these
representations (and more precisely, features derived from
these representations) to determine similarity for each
possible answer, simultaneously, across the bulk of
relationships present in the problem.

The mathematical derivation for the process of fractal
image representation expressly depends upon the notion of
real world images, i.e. images that are two dimensional and
continuous (Barnsley & Hurd, 1992). Two key observations
are that all naturally occurring images we perceive appear to
have similar, repeating patterns, and, no matter how closely
we examine the real world, we find instances of similar
structures and repeating patterns. These observations
suggest that it is possible to describe the real world in terms
other than those of shapes or traditional graphical elements
—in particular, terms that capture the observed similarity
and repetition alone. Computationally, determining the
fractal representation of an image requires the use of the
fractal encoding algorithm, which, given an image D, seeks
to discover the set of transformations T that can transform
any source image into D.

Decompose D into a set of N smaller images
{d;, d, ds, ..., d,}. These individual images
are sets of points.

For each image d;:

Examine the entire source image S for an
equivalent image s; such that a similitude
transformation of s; will result in d. This
transformation will be a 3x3 matrix, as the
points within s; and d; under consideration
can be represented as the 3D vector <x, v,
c> where c is the (grayscale) color of the 2D
point <x,y>.

Collect all such transforms into a set of

candidates C.

Select from C the transform which most
minimally achieves its work, according to
some predetermined, consistent metric.

Let T; be the representation of the chosen
affine transformation of s; into d..

The set T = {Ty, Ty, T3, ..., Tn} is the fractal
encoding of the image D.

Algorithm 1. Fractal encoding algorithm for
determining the fractal representation of an image D.

This algorithm, shown in Algorithm 2, is considered
“fractal” for two reasons: first, the transformations chosen
are generally contractive, which leads to convergence, and
second, the convergence of S into D can be shown to be the
mathematical equivalent of considering D to be an attractor
(Barnsley & Hurd, 1992).

Once fractal representations have been calculated for each
pair of images in a Raven’s problem, the metric shown in
Equation (2) is used to calculate similarity between all of
the pairwise relationships present in the matrix and those
calculated with the given answer choices, using features
derived from the fractal encodings. Whichever answer
choice yields the most similar fractal representations across
all pairwise relationships is chosen as the final answer. The
fractal method is described in more detail in McGreggor,
Kunda, and Goel (2010).

Results

We tested both the affine and fractal algorithms on all 60
problems from the Raven’s Standard Progressive Matrices
(SPM) test. To obtain visual inputs for the algorithms, we
first scanned a paper copy of the SPM, aligned each page to
lie squarely along horizontal and vertical axes, and then
divided each problem into separate image files representing
each of the matrix entries and answer choices. No further
image processing was performed on these input images. As
a result, these images were fairly noisy; they contained
numerous misalignments and pixel-level artifacts from the
scanning and subdividing processes.

Then, after answers for all 60 SPM problems were
obtained from each algorithm, we scored each method
according to standard protocols for the SPM. In particular,
we looked at three different measures of performance:

1) The total score from the SPM summarizes the test-

taker’s overall level of performance.

2) This total score can be compared to national age-

group norms to determine a percentile ranking.

3) A “consistency” measure is obtained by comparing

performance on each of the five sets within the SPM,
A through E, with the expected scores for each set
given the same total score, which are obtained from
normative data (Raven, Raven, & Court, 1998).

In addition, we conducted a separate analysis of results
according to problem type, looking at accuracy as a function
of three problems classifications: “gestalt continuation,”
“visuospatial,” and “verbal-analytic,” which we obtained
from a published factor analytic study of the SPM (Lynn,
Allik, & Irving, 2004).

Affine Results

The affine algorithm correctly solved 35 of the 60 problems
on the SPM. For children in the U.S., this total score
corresponds to the 75th percentile for 9-year-olds, the 50th
percentile for 10%5-year-olds, and the 25th percentile for 13-
year-olds (Raven, Raven, & Court 1998).

The breakdown of this total score across sets is shown in
Figure 2, along with the expected score composition for this
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Figure 2: Breakdown of affine (left) and fractal (right) results across sets in the SPM. Also shown is the expected
score breakdown for total scores of 35 and 32, from normative human data (Raven, Raven, & Court, 1998).

same total score. Scoring instructions for the SPM indicate
that, if the score for any set deviates from the expected score
for that set by more than two, the overall test results cannot
necessarily be interpreted as a measure of general cognitive
function (Raven, Raven, & Court, 1998). This check is
intended to detect scores affected by a poor understanding
of test instructions, random guessing strategies, or other
departures from the intended test-taking framework. As
shown in Figure 2, the affine scores deviate by more than +2
from the expected scores on sets B and D. In particular, the
affine algorithm does too well on Set B and not well enough
on Set D to match typical human norms.

Fractal Results

The fractal algorithm correctly solved 32 of the 60 problems
on the SPM. For children in the U.S., this total score

corresponds to the 75th percentile for 8-year-olds, the 50th
percentile for 9%s-year-olds, and the 25th percentile for 11%-
year-olds (Raven, Raven, & Court 1998).

The breakdown of this total score across sets is shown in
Figure 2, along with the expected score composition for this
same total score. The fractal scores fall within +2 of the
expected scores for each set, indicating that the fractal
results are “consistent” with normative SPM scores.

Results by Problem Type

The final analysis we performed looked at the performance
of both algorithms as a function of problem type on the
SPM. Factor-analytic studies have often found evidence for
multiple factors underlying problem solving on the SPM
(e.g. van Der Ven & Ellis, 2000); we used the breakdown
obtained by one such study to divide problems into those

90% h J

Percentcorrect
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O Affine method B Fractalmethod
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Visuospatial ability

Gestalt
continuation

Visuospatial ability Visuospatial ability  Verbal-analytic

Problem types according to factor loadings

+ Verbal-analytic
reasoning
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Figure 3: Breakdown of affine and fractal algorithm results on the SPM by problem type. Problem breakdowns were
obtained from a factor-analytic study of human performance (Lynn, Allik, & Irving, 2004).

1695



” G

that loaded on “gestalt continuation,” ‘“visuospatial,” or
“verbal-analytic” factors (Lynn, Allik, & Irving, 2004).

Figure 3 shows the performance of both the affine and
fractal algorithms on problems from the SPM which load on
different combinations of these factors. Both the affine and
fractal methods perform most strongly on gestalt problems,
slightly less so visuospatial problems, and significantly less
so on problems requiring verbal-analytic reasoning, though
the relative difficulties of each of these problem types could
represent a potential confound for these results.

Discussion

We have presented two different algorithms that use purely
visual representations and transformations to solve more
than half of the problems on the Raven’s SPM test. Our
results align strongly with evidence from typical human
behavior suggesting that multiple cognitive factors underlie
problem solving on the SPM, and in particular, that some of
these factors appear based on visual operations. Whether
these algorithms behave on the SPM similarly to individuals
with autism, who may demonstrate a cognitive preference
for solving the test visually, remains to be determined.

That purely visual methods can achieve such significant
results on a standardized intelligence test is a little
surprising to us, especially as the input images for both
algorithms were taken “as is,” from raw scans of a paper
copy of the test. This robust level of performance calls
attention to the visual processing substrate shared by the
affine and fractal algorithms: similitude transforms as a
mechanism for image manipulation, and the ratio model of
similarity as a mechanism for image comparison. Of
course, there are many other types of visual processing that
may or may not be important for accounts of visual analogy,
such as non-similitude shape transformations or image
convolutions, which certainly bear further investigation.

While it has been shown (Davies, Yaner, & Goel, 2008)
that visuospatial knowledge alone may be sufficient for
addressing many analogy problems, the representations used
in that work were still propositional. In contrast, the
methods described here use only visual representations in
the form of image similitude transformations. We believe
the visual methods we have presented for solving the SPM
can be generalized to visual analogy in other domains, such
as other standardized tests (e.g. the Miller’s Geometric
Analogies test). We conjecture that these methods may
provide insight into general visual recognition and recall.
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