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Abstract 

The Raven’s Progressive Matrices intelligence test is widely 
used as a measure of Spearman’s general intelligence factor g. 
Although Raven’s problems resemble geometric analogies, 
prior computational accounts of solving the test have been 
propositional. Studies of both typical and atypical human 
behavior suggest the possible existence of visual strategies; 
for example, neuroimaging data indicates that individuals 
with autism may preferentially recruit visual processing brain 
regions when solving the test. We present two different 
algorithms that use visual representations to solve Raven’s 
problems. These algorithms yield performances on the 
Standard Progressive Matrices test at levels equivalent to 
typically developing 9.5- and 10.5- year-olds.  We find that 
these algorithms perform most strongly on problems 
identified from factor-analytic human studies as requiring 
gestalt or visuospatial operations, and less so on problems 
requiring verbal reasoning. We discuss implications of this 
work for understanding the computational nature of Raven’s 
and visual analogy in problem solving. 

Keywords: Analogy; intelligence tests; knowledge 
representations; mental imagery; Raven’s Progressive 
Matrices; visual reasoning. 

Introduction 

The Raven’s Progressive Matrices tests (Raven, Raven, & 

Court, 1998) are a collection of standardized intelligence 

tests that consist of geometric analogy problems in which a 

matrix of geometric figures is presented with one entry 

missing, and the correct missing entry must be selected from 

a set of answer choices. Figure 1 shows an example of a 2x2 

matrix problem that is similar to one in the Standard 

Progressive Matrices (SPM); other problems contain 3x3 

matrices. The entire SPM consists of 60 problems divided 

into five sets of 12 problems each (sets A, B, C, D & E), 

roughly increasing in difficulty both within and across sets. 

Although the Raven’s tests are supposed to measure only 

eductive ability, or the ability to extract and understand 

information from a complex situation (Raven, Raven, & 

Court 1998), their high level of correlation with other multi-

domain intelligence tests have given them a position of 

centrality in the space of psychometric measures (e.g. Snow, 

Kyllonen, & Marshalek 1984), and as a result, they are often 

used as tests of general intelligence in clinical, educational, 

vocational, and scientific settings. 

Computational accounts of problem solving on the 

Raven’s tests have, with the exception of Hunt (1974), 

assumed that visual inputs are translated into propositions, 

over which various kinds of reasoning then take place. In 

this paper, we provide evidence from two different methods 

that Raven’s problems can be solved visually, without first 

converting problem inputs into propositional descriptions. 

Existing Computational Accounts 

Carpenter, Just, and Shell (1990) used a production system 

that took hand-coded symbolic descriptions of problems 

from the Advanced Progressive Matrices (APM) test and 

then selected an appropriate rule to solve each problem. The 

rules were generated by the authors from a priori inspection 

of the APM and were validated in experimental studies of 

subjects taking the test with verbal reporting protocols. 

Bringsjord and Schimanski (2003) used a theorem-prover to 

solve selected Raven's problems stated in first-order logic. 

Lovett, Forbus, and Usher (2007) combined automated 

sketch understanding with the structure-mapping analogy 

technique to solve problems from the Standard Progressive 

Matrices (SPM) test. Their system took as inputs problem 

entries sketched in Powerpoint as segmented shape objects 

and then automatically translated these shapes into 

propositional descriptions. A two-stage structure-mapping 

process was then used to select the answer that most closely 

fulfilled inferred analogical relations from the matrix. 

In contrast to these propositional approaches, Hunt (1974) 

proposed the existence of two qualitatively different 

strategies: “Gestalt,” which used visual representations and 

perceptual operations like continuation and superposition, 

 
 

Figure 1: Example problem similar to one from the 

Standard Progressive Matrices (SPM) test. 
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and “Analytic,” which used propositional representations 

and logical operations. The Analytic algorithm is similar to 

that of Carpenter, Just, and Shell (1990) in that it applied 

rules to lists of features representing each matrix entry. The 

Gestalt algorithm is similar to our methods in that it used 

visual operations over imagistic problem inputs, but it 

differs in that it operated on the entire problem matrix as a 

single image, whereas our methods treat each matrix entry 

as a separate image. While Hunt’s algorithms provide an 

intuitively appealing account of solving Raven’s problems, 

neither algorithm was actually implemented. 

Behavioral Evidence for Multiple Strategies 

Studies of human behavior suggest that qualitatively distinct 

problem solving strategies can be used to solve Raven’s 

problems.  Factor analyses of both the SPM (Lynn, Allik, & 

Irving, 2004; van der Ven & Ellis, 2000) and the APM 

(Dillon, Pohlmann, & Lohman, 1981; Mackintosh & 

Bennett, 2005; Vigneau & Bors, 2005) have identified 

multiple factors underlying these tests, which often divide 

test problems into two categories: those solvable using 

visuospatial or gestalt operations and those solvable using 

verbal reasoning.  In support of this dichotomy, DeShon, 

Chan, and Weissbein (1995) found that simultaneously 

performing a verbal overshadowing protocol differentially 

impaired accuracy on about half of APM problems. 

These studies of typically developing individuals have 

generally focused on within-individuals differences in 

solution strategies, i.e. a particular individual using different 

strategies on different portions of the test in a single sitting.  

Recent evidence from autism offers evidence of between-

individuals strategy differences as well:  individuals with 

autism do not show the same correlations between Raven’s 

scores and other cognitive measures that are robustly 

demonstrated by typically developing individuals (Dawson, 

Soulières, Gernsbacher, & Mottron, 2007).   

Even more striking are recent neuroimaging data that 

show increased brain activation in visual regions for 

individuals with autism solving the SPM than controls 

(Soulières et al., 2009).  This study also found significant 

differences in reaction time as a function of problem type, 

with problems classified as “figural” or “analytic” based on 

previously published factor-analytic studies.  The results 

from this study are highly suggestive of individuals with 

autism using a visual strategy that contrasts with the 

strategy used by controls.  Evidence for a visual strategy 

preference in autism is found across several other cognitive 

task domains as well (Kunda & Goel, 2008). 

Our approach 

We hypothesize that Raven’s problems can be solved 

computationally using purely visual representations.  To test 

this hypothesis, we have developed two different algorithms 

that in this paper we will call the “affine” method and the 

“fractal” method.  Both methods use image transformations 

to solve Raven’s problems without converting the input 

images into any kinds of propositions.  Below, we describe 

each of these algorithms, followed by an analysis of their 

performance on all 60 problems from the Raven’s Standard 

Progressive Matrices (SPM) test. 

Visual Methods for the Raven’s Test 

Similitude Transformations 

At the core of each of our algorithms are image operations 

that fall under the category of affine transformations, and in 

particular similarity-preserving or “similitude” transforms.  

Similitude transforms can be represented as compositions of 

dilation (i.e. scaling), orthonormal transformation, and 

translation. Our implementations presently examine the 

identity transform, horizontal and vertical reflections, and 

90°, 180°, and 270° orthonormal rotations, composed with 

various translations.  The affine method restricts dilation to 

a value of one, i.e. no scaling, whereas the fractal method 

uses a short sequence of progressively smaller dilation 

values, i.e. its similitude transformations are contractive. 

There is evidence that human visual processing can apply 

some of these types of transformations to mental images, or 

at least operations that are computationally isomorphic in 

some sense.  In the theory of mental imagery proposed by 

Kosslyn, Thompson, and Ganis (2006), transformations of 

mental images include scanning (i.e. translation), zooming 

(i.e. scaling), and rotation, among others. 

A Model of Similarity 

Similarity lies at the core of both of our accounts of visual 

problem solving on the Raven’s test.  We calculate visual 

similarity using the ratio model (Tversky, 1977): 
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In this equation, f represents some function over features in 

each of the specified sets; for instance, f might simply be a 

count of features.  The constants α and β are used as weights 

for the non-intersecting portions of the sets A and B.  If α 

and β are both set to one, then this equation becomes: 
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Equation (2) is used in both the affine and fractal 

methods, and it yields maximal similarity for sets in which 

A is equal to B.  In contrast, if α is set to one and β is set to 

zero, it yields maximal similarity for sets in which A is a 

proper subset of B.  If α is set to zero and β is set to one, 

then the opposite holds, and maximal similarity is found for 

sets in which B is a proper subset of A.  These two variants 

are used in the affine method to capture notions of image 

composition, i.e. image addition and subtraction. 

In the affine method, each feature is defined as a pixel, 

and intersection, union, and subtraction operations are 

defined as the product, maximum, and difference of RGB 

pixel values, respectively.  The fractal method uses features 

derived from different combinations of elements from the 

fractal encoding (McGreggor, Kunda, & Goel, 2010). 
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The Affine Method 

The affine method assumes that elements within a row or 

column in a Raven’s problem matrix are related by 

similitude transformations.  It tries to discover which 

similitude transformation best fits any of the complete rows 

or columns in the matrix, and then applies this transform to 

the last row/column to generate a guess for the answer.  

Then, it compares this guess to each of the answer choices, 

and chooses the answer that is most similar. 

Each similitude transformation is represented as the 

combination of three image operations: a base transform, a 

translation, and a composition.  Algorithm 1 shows how, for 

a pair of images A and B, these three components of the 

“best-fit” similitude transformation are found.  Given a 

Raven’s problem, then, the affine method seeks to discover 

the best-fit similitude transform over various combinations 

of the matrix entries.  In particular, the algorithm assumes 

that certain analogical relationships exist based on the 

spatial arrangement of the entries.  Similitude transforms are 

calculated for those combinations of entries that would yield 

an analogical mapping to solve for the missing entry.  The 

specific base transforms and analogical relationships used 

by the affine algorithm are shown in Table 1, divided into 

those used for 2x2 and for 3x3 matrix problems. 

Once the relationship and transformation are found that 

maximize similarity, the transformation is applied to the 

first entry or entries in the last row or column, as listed in 

Table 1.  The resulting image represents the algorithm’s best 

guess as to the missing entry.  This image is compared to 

the answer choices, using Equation (2), and the best match 

is chosen as the final answer. 

 

For example, take the problem given in Figure 1.  The 

similarity scores calculated for the various transforms and 

relationships are shown in Table 2.  The best-fit similitude 

transformation is found to be a mirror (or reflection about 

the vertical axis) for the relationship AB, using an addition 

image composition (i.e. maximal similarity found using α = 

1, β = 0).  Therefore, the answer image “?” is obtained using 

the analogous relationship of A:B :: C?. C is mirrored, 

translated by the (tx, ty) that was found in the search, and 

the composition operand of B – A (which in this case is 

mostly a blank image) is added on to the result.  Finally, this 

“guess” image is compared to each of the six answer 

choices using Equation (2), and the best match is chosen as 

the final answer, which in this case is answer #5. 

 

 

Table 2:  Calculation of best-fit similitude transform and 

resulting answer guess for the problem shown in Figure 1. 
 

Relation Transform 
α = 1 
β = 1 

α = 1 
β = 0 

α = 0 
β = 1 

AB 

Identity 0.475 0.644 0.644 

Mirror 0.963 0.981 0.981 

Flip 0.337 0.504 0.504 

Rotate90 0.341 0.508 0.508 

Rotate180 0.453 0.624 0.624 

Rotate270 0.947 0.973 0.973 

AC 

Identity 0.256 0.764 0.277 

Mirror 0.252 0.759 0.274 

Flip 0.335 0.951 0.341 

Rotate90 0.331 0.941 0.338 

Rotate180 0.257 0.771 0.279 

Rotate270 0.250 0.752 0.273 

 
Generated 

guess: 

 
 

Table 1:  Base transforms and matrix relationships used 

by the affine algorithm. 

 

 Transforms 

2x2: 

 

3x3: 

 

Two- 
element 

transforms 
& relations 

Identity 

Mirror 

Flip 

Rotate90 

Rotate180 

Rotate270 

AB→C? 

AC→ B? 

BC→H?     

AC→G? 

EF→H? 

DF→G? 

GH→H? 

DG→F? 

AG→C? 

EH→F? 

BH→C? 

CF→F? 

Three- 
element 

transforms 
& relations 

Union 

Intersection 

XOR 

n/a 

ABC→GH? 

DEF→GH? 

ADG→CF? 

BEH→CF? 

 

A B C 

D E F 

G H ? 

A B 

C ? 

For each base transform T: 

 Apply T to Image A. 

 Find translation (tx, ty) which yields best 

match between T(A) and B, using Eq. (2). 

 Find image composition operand X as follows: 

  Calculate similarity using Eq. (1) with: 

    1) α = 1, β = 1 

    2) α = 1, β = 0 

    3) α = 0, β = 1 

  Choose maximum similarity value. 

    If maximum is (1), then X = 0. 

    If maximum is (2), then X = B – A,  

     and ⊕ refers to image addition. 

    If maximum is (3), then X = A – B, 

     and ⊕ refers to image subtraction. 

The best-fit similitude transformation can 

then be specified as: 

[Tmax+(tx, ty)](A) ⊕ X = B 

Algorithm 1. Affine method for calculating best-fit 

similitude transformation for a pair of images A and B.  

For three-element transforms, T is applied to images A 

and B, and the result is compared, as above, to image C. 
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The Fractal Method 

The fractal method proceeds in a manner which at once 

resembles and yet differs from the affine method.  Like the 

affine method, the fractal method seeks to find a re-

representation of the images within a Raven’s problem as a 

set of similitude transformations.  Unlike the affine method, 

the fractal method seeks these representations at a 

significantly finer partitioning of the images, and uses these 

representations (and more precisely, features derived from 

these representations) to determine similarity for each 

possible answer, simultaneously, across the bulk of 

relationships present in the problem.  

The mathematical derivation for the process of fractal 

image representation expressly depends upon the notion of 

real world images, i.e. images that are two dimensional and 

continuous (Barnsley & Hurd, 1992). Two key observations 

are that all naturally occurring images we perceive appear to 

have similar, repeating patterns, and, no matter how closely 

we examine the real world, we find instances of similar 

structures and repeating patterns. These observations 

suggest that it is possible to describe the real world in terms 

other than those of shapes or traditional graphical elements 

—in particular, terms that capture the observed similarity 

and repetition alone. Computationally, determining the 

fractal representation of an image requires the use of the 

fractal encoding algorithm, which, given an image D, seeks 

to discover the set of transformations T that can transform 

any source image into D.  

 

 

This algorithm, shown in Algorithm 2, is considered 

“fractal” for two reasons: first, the transformations chosen 

are generally contractive, which leads to convergence, and 

second, the convergence of S into D can be shown to be the 

mathematical equivalent of considering D to be an attractor 

(Barnsley & Hurd, 1992). 

Once fractal representations have been calculated for each 

pair of images in a Raven’s problem, the metric shown in 

Equation (2) is used to calculate similarity between all of 

the pairwise relationships present in the matrix and those 

calculated with the given answer choices, using features 

derived from the fractal encodings.  Whichever answer 

choice yields the most similar fractal representations across 

all pairwise relationships is chosen as the final answer.  The 

fractal method is described in more detail in McGreggor, 

Kunda, and Goel (2010). 

Results 

We tested both the affine and fractal algorithms on all 60 

problems from the Raven’s Standard Progressive Matrices 

(SPM) test.  To obtain visual inputs for the algorithms, we 

first scanned a paper copy of the SPM, aligned each page to 

lie squarely along horizontal and vertical axes, and then 

divided each problem into separate image files representing 

each of the matrix entries and answer choices.  No further 

image processing was performed on these input images.  As 

a result, these images were fairly noisy; they contained 

numerous misalignments and pixel-level artifacts from the 

scanning and subdividing processes.   

Then, after answers for all 60 SPM problems were 

obtained from each algorithm, we scored each method 

according to standard protocols for the SPM.  In particular, 

we looked at three different measures of performance: 

1) The total score from the SPM summarizes the test-

taker’s overall level of performance. 

2) This total score can be compared to national age-

group norms to determine a percentile ranking. 

3) A “consistency” measure is obtained by comparing 

performance on each of the five sets within the SPM, 

A through E, with the expected scores for each set 

given the same total score, which are obtained from 

normative data (Raven, Raven, & Court, 1998). 

In addition, we conducted a separate analysis of results 

according to problem type, looking at accuracy as a function 

of three problems classifications: “gestalt continuation,” 

“visuospatial,” and “verbal-analytic,” which we obtained 

from a published factor analytic study of the SPM (Lynn, 

Allik, & Irving, 2004). 

Affine Results 

The affine algorithm correctly solved 35 of the 60 problems 

on the SPM.  For children in the U.S., this total score 

corresponds to the 75th percentile for 9-year-olds, the 50th 

percentile for 10½-year-olds, and the 25th percentile for 13-

year-olds (Raven, Raven, & Court 1998). 

The breakdown of this total score across sets is shown in 

Figure 2, along with the expected score composition for this 

Algorithm 1. Fractal encoding algorithm for 

determining the fractal representation of an image D.   

Decompose D into a set of N smaller images 

{d1, d2, d3, ..., dn}. These individual images 

are sets of points. 

For each image di:  

Examine the entire source image S for an 

equivalent image si such that a similitude 

transformation of si will result in di. This 

transformation will be a 3x3 matrix, as the 

points within si and di under consideration 

can be represented as the 3D vector <x, y, 

c> where c is the (grayscale) color of the 2D 

point <x,y>.  

Collect all such transforms into a set of 

candidates C. 

Select from C the transform which most 

minimally achieves its work, according to 

some predetermined, consistent metric. 

Let Ti be the representation of the chosen 

affine transformation of si into di. 

The set T = {T1, T2, T3, ..., Tn} is the fractal 

encoding of the image D. 
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same total score.  Scoring instructions for the SPM indicate 

that, if the score for any set deviates from the expected score 

for that set by more than two, the overall test results cannot 

necessarily be interpreted as a measure of general cognitive 

function (Raven, Raven, & Court, 1998).  This check is 

intended to detect scores affected by a poor understanding 

of test instructions, random guessing strategies, or other 

departures from the intended test-taking framework.  As 

shown in Figure 2, the affine scores deviate by more than ±2 

from the expected scores on sets B and D.  In particular, the 

affine algorithm does too well on Set B and not well enough 

on Set D to match typical human norms. 

Fractal Results 

The fractal algorithm correctly solved 32 of the 60 problems 

on the SPM.  For children in the U.S., this total score 

corresponds to the 75th percentile for 8-year-olds, the 50th 

percentile for 9½-year-olds, and the 25th percentile for 11½-

year-olds (Raven, Raven, & Court 1998). 

The breakdown of this total score across sets is shown in 

Figure 2, along with the expected score composition for this 

same total score.  The fractal scores fall within ±2 of the 

expected scores for each set, indicating that the fractal 

results are “consistent” with normative SPM scores.   

Results by Problem Type 

The final analysis we performed looked at the performance 

of both algorithms as a function of problem type on the 

SPM.  Factor-analytic studies have often found evidence for 

multiple factors underlying problem solving on the SPM 

(e.g. van Der Ven & Ellis, 2000); we used the breakdown 

obtained by one such study to divide problems into those 

    
 

Figure 2: Breakdown of affine (left) and fractal (right) results across sets in the SPM.  Also shown is the expected  

score breakdown for total scores of 35 and 32, from normative human data (Raven, Raven, & Court, 1998). 

 
 

Figure 3: Breakdown of affine and fractal algorithm results on the SPM by problem type.  Problem breakdowns were  

obtained from a factor-analytic study of human performance (Lynn, Allik, & Irving, 2004). 
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that loaded on “gestalt continuation,” “visuospatial,” or 

“verbal-analytic” factors (Lynn, Allik, & Irving, 2004).   

Figure 3 shows the performance of both the affine and 

fractal algorithms on problems from the SPM which load on 

different combinations of these factors.  Both the affine and 

fractal methods perform most strongly on gestalt problems, 

slightly less so visuospatial problems, and significantly less 

so on problems requiring verbal-analytic reasoning, though 

the relative difficulties of each of these problem types could 

represent a potential confound for these results. 

Discussion 

We have presented two different algorithms that use purely 

visual representations and transformations to solve more 

than half of the problems on the Raven’s SPM test.  Our 

results align strongly with evidence from typical human 

behavior suggesting that multiple cognitive factors underlie 

problem solving on the SPM, and in particular, that some of 

these factors appear based on visual operations.  Whether 

these algorithms behave on the SPM similarly to individuals 

with autism, who may demonstrate a cognitive preference 

for solving the test visually, remains to be determined. 

That purely visual methods can achieve such significant 

results on a standardized intelligence test is a little 

surprising to us, especially as the input images for both 

algorithms were taken “as is,” from raw scans of a paper 

copy of the test.  This robust level of performance calls 

attention to the visual processing substrate shared by the 

affine and fractal algorithms: similitude transforms as a 

mechanism for image manipulation, and the ratio model of 

similarity as a mechanism for image comparison.  Of 

course, there are many other types of visual processing that 

may or may not be important for accounts of visual analogy, 

such as non-similitude shape transformations or image 

convolutions, which certainly bear further investigation.   

While it has been shown (Davies, Yaner, & Goel, 2008) 

that visuospatial knowledge alone may be sufficient for 

addressing many analogy problems, the representations used 

in that work were still propositional. In contrast, the 

methods described here use only visual representations in 

the form of image similitude transformations. We believe 

the visual methods we have presented for solving the SPM 

can be generalized to visual analogy in other domains, such 

as other standardized tests (e.g. the Miller’s Geometric 

Analogies test). We conjecture that these methods may 

provide insight into general visual recognition and recall.   
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