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Abstract

Typical studies of concept learning in adults address the
learning of novel concepts, but much of learning involves the
updating and restructuring of familiar conceptual domains.
Research on conceptual change explores this issue directly
but differs greatly from the formal approach of the adult
learning studies. This paper bridges these two areas to
advance our knowledge of the mechanisms underlying
concept restructuring. The main idea behind this approach is
that concepts are structured by causal-explanatory knowledge,
and hence, models of causal induction may help to clarify the
mechanisms of the restructuring process. A new learning
paradigm is presented to study the learning and revising of
causal networks. Results show that some behaviors indicative
of conceptual change arise from basic causal learning
mechanisms. Results also support models of causal induction
that assume inhibition between competing causes.

Keywords: knowledge restructuring, conceptual change,
belief revision, causal induction, concept learning.

Concept learning is an incremental process. We learn a
concept for the first time only once, and often our initial
understanding is flawed. The remainder of learning involves
the wupdating, revising, and restructuring of previous
conceptual knowledge. The critical implication—that most
concept learning is actually the refinement of familiar
concepts—runs counter to the traditional approach in the
study of concept learning in adults, which has focused on
the learning of entirely novel concepts (Murphy, 2002).
Many open questions remain on the nature of concept
restructuring.

The goal of this work is to better understand the basic
mechanisms of concept restructuring by forging a
connection between traditional work on concept learning
and the literature on conceptual change. Although these two
areas differ greatly (in everything from goals to dependent
measures), this paper builds on recent work that highlights
their commonalities.

Studies of conceptual change typically outline the process
of knowledge restructuring in broad strokes: e.g., by
showing that it often occurs abruptly (Kuhn, 1962), that
people are highly resistant to giving up their prior beliefs
(Chinn & Brewer, 1993), and that novice concepts appear to
“differentiate” and “coalesce” over the course of
development (Carey, 1985). To support these claims,
authors have focused on specific real world domains and the
shifts in knowledge therein, such as children’s learning of
biological concepts (Carey, 1985) and young adults’
learning of physics (diSessa & Sherin, 1998).

These studies differ dramatically from the traditional
research on concept learning in adults, despite great overlap
in interests. The adult work has primarily used domain-
general laboratory paradigms and formal models to assess
the specific representations and processes underlying basic
conceptual tasks like classification, inference, and category-
based induction (Murphy, 2002).

A complete understanding of concept learning and
restructuring requires explanations from both levels of
analysis. This paper suggests that recent work developing
the theory view of concept representation (Gopnik et al.,
2004; Murphy & Medin, 1985; Wellman & Gelman, 1992)
serves as a linkage between these levels. The theory view
states that concepts are built upon networks of causal-
explanatory  knowledge.  This  knowledge  affects
performance in laboratory-based learning tasks (Murphy,
2002) and plays a role in the learning and development of
real world concepts where conceptual change effects are
typically demonstrated (Vosniadou, 2008). Assuming that
concept learning amounts, in large part, to the learning of
causal relations, then models of causal reasoning (Kim &
Ahn, 2002; Rehder, 2003) provide the requisite theoretical
tools for understanding the basic mechanisms of concept
learning and potentially also conceptual change.

Few previous studies address this linkage to concept
restructuring, however. Murphy’s work (e.g., Kaplan &
Murphy, 2000) has examined cases where prior causal
knowledge is invoked when learning later concepts, but in
these studies the prior concepts are not revised. Work on
order effects in causal induction suggests that what is
learned from the first half of a set of contingency data may
be overwritten by later contingencies (Ahn & Marsh, 2006),
but the initial learning (and hence, what is restructured) is
not typically evaluated. A developmental study by Schulz,
Bonawitz, and Griffiths (2007) showed that 4 to 5-year old
children inferred causal relations from evidence that ran
contrary to their prior beliefs. However, their evidence for
belief revision, as measured by transfer performance, was
mixed. This study is perhaps the strongest empirical
evidence linking studies of causal induction to concept
restructuring.

Other findings bearing directly on concept restructuring
are less tied to the formal approach. Chinn & Brewer (1993)
documented the many ways that people react to anomalous
data, only one of which (the least common) was genuine
concept revision. Chinn & Brewer (2001) also proposed a
set of mental models for interpreting people’s verbal
evaluations of anomalous data and patterns of belief change,
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but these were not formalized at the level specified in the
causal induction models.

To directly address the linkage between concept learning
research in the theory view tradition and studies of concept
restructuring, I developed a task in which individuals would
learn and then revise their hypothesized causal relations for
a novel conceptual domain. The task was inspired by causal
structure learning in real world domains, where one often
develops a naive, incorrect view of the underlying causal
structure, and then with the accumulation of knowledge and
evidence, restructures their original beliefs.

prior concept target concept
®—® ® ®

© \f

Figure 1: Diagrams of a hypothetical learner’s causal
representations en route to learning a common cause
relation. The prior link remains in the target concept, though
reduced, signifying a possible residual belief in that link.

The “common cause” scenario is one of many ways a
learner may develop a prior, naive concept and then need to
restructure that concept based on new knowledge and
evidence. See Figure 1 for an example. In this scenario, two
variables—A and B—will appear correlated, and without
further scrutiny, one may assume these variables share a
direct causal relation. In fact, both A and B are caused by a
third variable, the common cause. When the common cause
becomes known, learners can track the relations it shares
with variables A and B, and rule out the direct causal
relation initially hypothesized.

This paper uses an empirical study based on the common
cause scenario as a starting point to understanding the
mechanisms underlying shifts in causal knowledge. Given
that we currently know much about the initial learning of
causal relations (i.e., the learning of the initial A causes B
link), this study asks how that initial learning affects the
process of concept restructuring. In particular, how does the
belief in the prior concept affect later learning where one
views contingency data in favor of the target explanation?

Consider the possible effects the prior concept may have
on inferring the target structure. First, the prior concept may
serve as an anchor, or bias, such that people show
commitment to the A.B link (A.B means “A causes B”) and
later learning of alternative causes is more difficult.
Previous work shows that prior beliefs are difficult to give
up, especially when they figure centrally in other causal
explanations (Chinn & Brewer, 1993).

Second, the acquisition of the prior belief may actually
benefit later learning. In particular, evidence suggesting the
lack of a correlation between other nodes in the system
(between C&A and C&B) might draw resources away from

those nodes and facilitate later search for the correct causal
mechanism. This is especially true in Figure 1 since an
alternative explanation for the A&B correlation is a
mediating causal pathway, A.C.B. To the extent that one can
rule out this “mediating cause” explanation, they might rule
in the common cause explanation.

Third, both previous effects may occur. That is, learning
the prior might increase one’s belief in the A.B link, and
independently, guide learners away from the wrong links
and toward the right ones. If learners infer both the common
cause and maintain a belief in the direct cause, they will
have “over-explained” the occurrence of event B. Although
previous work shows that people prefer simple explanations
with fewer causal links (Lombrozo, 2007) and that
competing causal hypotheses are considered in opposition
(Lu et al., 2008), none have examined a case where learners
are committed to a prior alternative conceptual structure, as
is typically found in studies of conceptual change. In this
case, people might over-explain to retain both possible
causal pathways.

Experiment

The goal of the experiment was to determine how
previously learned causal relations affect continued learning
and concept revision. I created an experimental paradigm
analogous to Figure 1. One group, the change condition,
was verbally instructed on a prior structure with three nodes
where A directly causes B, then in a second phase, was
shown a fourth node (D) and had to infer the correct causal
structure from contingency data. The control group, the no-
change condition did not learn the prior structure and
immediately attempted to infer the correct structure from
contingency data with nodes A-D. The question is: How
does the learning of the prior concept in the change
condition affect the learning of the target concept, relative to
that of the no-change condition?

Two dependent measures assessed learners’ knowledge of
the causal system. First, after the prior and target learning
phases, participants rated the likelihood of each possible
configuration of the system (e.g., A/~B/C for the prior
phase, A/~B/~C/D for the target phase). These were used to
infer participants “implicit” causal models of the system via
model fitting, with the idea that some predictions offered
above might not hold if participants were asked directly
about their beliefs in the causal links (due to experimenter
demands). Second, participants were asked at regular
intervals during the target learning phase which of a set of
possible links they believed were true. These judgments
correspond to participants “explicit” beliefs about the causal
system, similar to typical causal induction measures.

Method

Participants Forty-eight University of Illinois students
participated in exchange for course credit.
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Materials Participants learned about a fictitious ecosystem
composed of four observable properties. Each property
varied probabilistically during learning, taking one of two
binary values (see Figure 2 for “on” values). The first
property was the population size of a new fish biologists call
“tespula”: above average or normal. The second property
was the color of a new type of algae called “plemocyn”:
very green or normal. The third property was the chemical
composition of barium contained in the ecosystem’s water:
crystallized or not crystallized. The fourth property was
the cloudiness of the water: cloudy or not cloudy. I refer to
the first mentioned values as the “on” values.

plemocyn is VERY GREEN

)

Figure 2. The causal structure of the ecosystem. Darkened
links indicate that properties share a generative causal
relation with causal power 0.85.

barium is CRYSTALLIZED

MORE tespula than avera

During covariation trials, the property values on each trial
were determined by a causal system displayed in Figure 2.
When the tespula population is more than average (base rate
equal to 0.6), this will cause the barium to be crystallized
with probability 0.85, and independently, the plemocyn to
be green with probability 0.85. The water will be cloudy
with probability 0.6. When the tespula population is average
(depicted by a less colorful picture not shown in Figure 2),
all other properties will be “on” with probability 0.6.

Covariation trials appeared like Figure 2, except that the
property values varied probabilistically and all arrows
appeared in grey. During the test phases, participants
viewed all “on/off” combinations of the four properties and
told to rate their likelihood (see Procedure section). In this
phase, the arrows were completely absent.

Design Participants were divided into two groups: change
and no-change, corresponding to those given a prior belief
regarding the properties’ causal relations and those who
were not, respectively. Each group was subdivided into four
counterbalance conditions, controlling for which properties
were assigned to the roles in the causal system.

Procedure Prior to the experiment, participants read and
signed a consent form. Participants then read instructions
and completed all tasks on a computer.

Change condition: The instructions stated that the
purpose of the task was to learn about a new oceanic
ecosystem. Specifically, the task was to help a group of
biologists to understand how the properties of the
ecosystems cause one another. Three properties of that
ecosystem were described—the top two properties from
Figure 2 (A and B) and the bottom left property (C). The
fourth property was absent during this phase. Participants
were told that the biologists’ current understanding was that
property A causes property B (and told nothing else about
C). They were also shown a picture with properties A-C and
a green arrow connecting A to B. To ensure understanding,
participants answered a multiple-choice question asking
which properties were related and in what way. If they
answered incorrectly, they repeated the instructions and re-
took the question until they were correct.

Next, participants entered the prior learning phase where
they viewed a sequence of 30 “snapshots” of the ecosystem.
Each snapshot depicted a particular on/off configuration of
properties A-C. Each snapshot appeared with a frequency
proportional to its likelihood, which was determined using
the probabilities given in the Materials section. To compute
the probability of a particular snapshot, one computes the
probability of each node taking its presented on/off value
(conditional on the parent nodes) and then takes the product.
Rehder (2003) describes this procedure building on Cheng’s
(1997) causal power theory, showing that the probability of
node N being “on” is 1-(1-by)[1(1-mcy) ", where by is the
probability of some unobserved background cause leading
to the presence of node N, mcy is the probability that node C
generates the presence of NV, and Con is an indicator variable
equal to 1 when feature C is “on” and 0 otherwise. The
snapshot frequencies were identical for all participants, but
the order was random and different for each. Note that the
causal system from Figure 2 creates a correlation between
properties A and B, which supports the belief that A causes
B when the status of property D is not visible.

After the 30 snapshots, participants entered the prior
likelihood rating phase where they viewed each possible
snapshot and were told to rate how likely the ecosystem is
to look like the snapshot. They were also told, “when
making the judgments, be sure to keep in mind the fact that
the biologists think that [property A] causes [property B].”
Ratings were given by moving a vertical bar up and down a
scale, where the highest position indicated “VERY likely”
and the lowest indicated “NOT likely.”

Then, participants entered the target learning phase. They
were told that the biologists discovered an important new
aspect of the ecosystem, property D, and now they are
wondering if their previous belief that A causes B was
“wrong or perhaps missing something.” They viewed a
diagram similar to Figure 2 except with no links darkened,
and were told their next task was to help the biologists
figure out which of the shown potential causal relationships
were true. Participants would learn which causes were true
by viewing snapshots like those in the prior learning phase.
The instructions also clarified that each property may occur
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without being caused by another observed property (i.e.,
even if X causes Y, Y may appear in the absence of X) and
that the links were not necessarily deterministic (e.g., if X
causes Y, Y is simply more likely to appear in the presence
of X). Finally, they were told that in addition to viewing the
snapshots, they would sometimes be making predictions
about which of the causes are true. Later during learning,
the computer would give feedback about whether their
hypotheses were close to or far from the true structure.

After every 10 snapshots participants were asked to guess
which of the possible links were true. They were shown the
picture in Figure 2 but with no links darkened, and told to
click on the links to make their guess. Links darkened when
selected. To assist with learning, participants were given
indirect feedback regarding their link choices starting on
their 4™ hypothesis trial (after 40 snapshots)'. They were
never told the status of any particular link choice (e.g., that
the A.B link was right or wrong). Instead, they were told
that the hypothesis was VERY GOOD, GOOD, WEAK, or
VERY WEAK, indicating that 5, 4, [3 or 2], [1 or 0] links
were correct, respectively. Participants were not told the
correspondences between the feedback and number of
accurate links. On the final hypothesis, participants were
told, “This is your LAST PREDICTION. On the next trial,
make your best guess as to what causes what.”

Finally, in the target likelihood rating phase, participants
again rated the likelihood of all possible snapshots of the
ecosystem but this time with nodes A-D.

No-change condition: The no-change condition was
identical to the change condition, but the prior learning
phase and the prior likelihood ratings phase were excluded.
The instructions immediately introduced participants to all
four aspects of the ecosystem and the five possible links.
Participants then began the target learning phase.

Results and Discussion

Hypotheses First, I present the results from the hypotheses
participants made during the target learning phase. Each link
was analyzed separately. Hierarchical logistic regression
was used to evaluate the effects of condition and hypothesis
trial on link choice. The “hierarchical” component refers to
a random intercept term, which was used to model the
between-participant variability in overall response tendency.

Results are plotted in Figure 3. To reduce inter-trial
variability, I blocked the trials, except for the final trial: 1-4
(without feedback), 5-11 (feedback 1% half), 12-17
(feedback 2™ half), and 18 (the final trial). Main effects and
interactions were assessed using Wald tests and likelihood

! Feedback was added to improve learning based on the results of a
pilot study and previous work showing poor learning for 3-4 node
structures given only covariation data (e.g., Lagnado & Sloman,
2004; Steyvers et al., 2003). Feedback is natural in real world
learning and is usually provided by confirming or disconfirming
predictions made on the basis of hypothesized causal relations. The
feedback in this task can be viewed as a proxy for the outcome of
multiple such predictions.

ratio comparisons, but only Wald tests are reported.
Likelihood tests led to similar interpretations.

The main effect of block on choosing the A.B link was
significant, x2(1)210.23, p<0.01, suggesting that learning
did occur, as participants selected this incorrect link less
over time. The main effect of condition was marginally
significant, *(1)=3.44, p=0.06, revealing an early and late
bias in the change condition to select the prior link. The
interaction was marginally significant, xz(l):3.33, p=0.07.
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Figure 3. The probability of a participant including a link in
their hypotheses during the target learning phase. Error bars
are standard errors (binomial variance for final block).

Because the difference in conditions for the A.B link was
non-monotonic over blocks, two separate regressions were
fit to bocks 1-3 and blocks 3-4. The interaction between trial
and condition was significant for blocks 1-3, %*(1)=9.36,
p<0.01, and for blocks 3-4, %*(1)=6.81, p<0.01. Finally, the
difference in conditions on just the final hypothesis was
assessed using Fisher’s exact test, which did not reach
significance, p>0.1.

The interactions between trial and condition for the A.B
link have two implications. First, although the change
condition began selecting A.B more than the no-change
condition, this difference went away by the third block as
both conditions learned to not select A.B. Second, the
difference in conditions increased from blocks 3 to 4.
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Relative to the no-change condition, the change condition
was more likely to retain a belief in the prior concept in
their final judgment, despite both groups having chosen this
link equally often during the final block of feedback.

The incorrect links A.C and C.B were analyzed together.
The interaction between block and condition was not
significant, x*(1)<l. The main effect of block was
significant, %*(1)=23.02, p<0.01. The main effect of
condition was also significant, x2(1)24.49, p<0.05, even
when considering only the final hypothesis (Fisher’s exact
test, both ps<0.01). This advantage for the change condition
is sensible; they are likely attributable to the extra learning
in the change group during the prior learning phase. The
scientists’ tentative theory regarding the ecosystem implied
no causal relation between node C and either A or B.
Further, the 30 covariation trials suggested little correlation
between these nodes, corroborating the scientists’ view.

The correct links D.A and D.B were also analyzed
together. The interaction between block and condition was
not significant, x*(1)=2.63, p=0.10. The main effect of
block was significant, x*(1)=15.74, p<0.01. The main effect
of condition was not significant, xz(l)zl .34, p>0.10, though
there was a tendency for to change condition to choose these
links more often.

Likelihoods judgments Likelihoods judgments were used
to infer participants’ latent causal representations via model
fitting. Causal model theory (CMT; Rehder, 2003) and a
version of causal support (Griffiths & Tenenbaum, 2005)
were fit to each individual’s data. Only the results from
CMT are presented here, since they were very similar to the
results from causal support.

Causal model theory fits were obtained via maximum
likelihood estimation. Each fit yields an estimate of nine
free parameters: the strength of each potential causal
relation in Figure 2, plus an estimate of the probability that
some unobserved background node causes each feature. The
fitting routine worked by assuming that the participants’
likelihood judgments were guesses about the relative
frequency of the snapshots, should they be sampled again.
Thus, 100 new snapshots were created with frequencies
proportional to the normalized likelihood judgments of each
participant. The MLE parameter values were those that
maximized the likelihood of the snapshots.

The fits to CMT are presented in Table 1. Fitted
background probabilities did not differ between the groups,
but estimates of causal strength were different, and in the
same direction as the differences present in the hypotheses
data. First, the difference for link A.B was significant,
1(46)=2.39, p<0.05, reinforcing the non-significant trend in
the hypotheses data. This implies that the change condition
represents the prior link stronger than the no-change
condition, and this difference is robust for the more implicit
measure, the likelihoods, where causal strength is not
queried directly.

The conditions did not differ significantly in their
representation of the incorrect links A.C and C.B, but the

differences in the correct links were marginally significant:
the change condition represented the D.A link more
strongly, #(46)=1.82, p=0.06, as well as the D.B link,
1(46)=1.93, p=0.08. In addition, when averaging the strength
of the correct links, the difference in conditions was reliable,
1(46)=2.32, p<0.05.

Table 1. Average causal strengths (standard deviations).

No change Change p-values
Link A.B 0.06 (0.08) | 0.14 (0.14) 0.02
Link A.C 0.10 (0.11) [ 0.06 (0.08) 0.12
Link C.B 0.07 (0.12) | 0.05 (0.06) 0.50
Link D.A 0.20 (0.15) | 0.28 (0.16) 0.08
Link D.B 0.25 (0.16) | 0.35 (0.20) 0.06
Average of D links 0.22 (0.13) | 0.31 (0.14) 0.02

The latter result is in line with a predictions stated earlier
that the change group may benefit from the prior learning
phase by observing the lack of a correlation between nodes
A&C and between nodes C&B. Recall that links A.C and
C.B constitute an alternative explanation of the A/B
correlation; i.e., that A causes C causes B. Put simply, this
set of links may be considered in opposition to the common
cause links D.A and D.B in order to avoid over-explaining
node B. If so, a reduced belief in the former may increase
one’s belief in the latter.

The idea that alternative causes compete or inhibit one
another has empirical backing (Rehder & Milovanovic,
2007) and is made explicit in recent models of causal
induction (Lu et al., 2008). In the current study, to evaluate
the relation between choices of links involving the two
explanations, I used a hierarchical linear regression with
number of correct links chosen as the dependent variable
and number of incorrect links as the predictor. The predictor
variable was separated into two parts: the participant-level
effect (the average number of A.C and C.B links chosen by
a participant) and the within-participant effect (the number
of links chosen on a given hypothesis minus the
participant’s average). These variables address different
questions: the former asks whether participants who choose
more incorrect links on average tend to choose more correct
links; the latter asks whether on a given trial the number of
incorrect links chosen affects the number of correct links
chosen.

The effects of the two predictors were evaluated via
model comparison. A model excluding the between-
participant effect did not fit worse than a model including
both effects, x*(1)=0.26, p>0.10. However, a model
excluding the within-participants effect did fit worse than
the model with both effects, x*(1)=52.03, p<0.01,
suggesting that causal links involved in competing
explanations inhibit one another on a trial-by-trial basis. To
my knowledge this is the first evidence showing that
competition occurs at the level of entire explanations (i.e.,
sets of causes), beyond simply individual causal relations.
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Conclusion

The goal of this paper was to show that some aspects of
concept restructuring might result from basic causal learning
mechanisms, thus bridging the formal approach to concept
learning with the conceptual change literature. In a novel
learning task, participants first developed a prior conceptual
belief and were then prompted to revise that concept
through contingency learning. Results showed that the prior
learning phase led participants to retain their original belief
despite evidence against it but also led to enhanced learning
of the target causal structure. That is, despite learning of the
target, individuals retained the belief in the prior at the cost
of over-explaining. Further evidence showed that when
revising one’s beliefs, alternative causal explanations are
considered in opposition, building on the predictions of
recent models for simpler causal structures.

Conceptual change surely involves many processes and
representations, only some of which are the learning and
revising of causal structures (and within that, only some of
which are learning from contingency data; Ahn et al., 1995).
For example, people also revise their taxonomic hierarchies
(Thagard, 1992) and accrue domain-specific knowledge
(Carey, 1985). In addition, full-blown conceptual change
presumably requires the restructuring of numerous causal
hypotheses and may result in emergent representations
inherently unalike the prior beliefs. However, current
models incorporate powerful learning mechanisms that are
capable of such large-scale changes (Kemp & Tenenbaum,
2008). The hope is that improved cross-talk between formal,
empirical, and developmental studies will help to build an
integrated view of concept learning and conceptual change.
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