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Abstract

Interference between one cognitive behavior or sensory stim-
ulus and subsequent behaviors is a commonly observed effect
in the study of human cognition and Psychology. Traditional
connectionist approaches explain this phenomenon by mutu-
ally inhibiting neural populations underlying those behaviors.
Here, we present an alternative model, relying on a more de-
tailed use of synaptic dynamics, in which populations of purely
excitatory neurons can nonetheless interfere with each other,
causing inhibition of activation for a varying amount of time.
The fundamental, biologically motivated, mechanism in the
model relies on current “spilling over” from an active neu-
ral population into another one, thereby depleting the latter
population’s synaptic resources. The principles underlying the
model may find applications even in the design of problem-
solving artificial neural networks.

Keywords: Neural modeling; Synaptic dynamics; Cognitive
Interference.

Introduction
The effects on cognitive performance ofinterferencein the
process of associating temporally contiguous behaviors or
events is a well studied phenomenon in the research disci-
plines of psychology and animal learning. Simply, it consists
of the effects on working memory or memory recall of the
presence of stimuli (or motor activations) that are non-critical
to the learning of particular response/event associations. In
the case of animal learning, it is best understood as entail-
ing distractorstimuli introduced prior to (proactive) or after
(retroactive) a task stimulus designed to be reliably predic-
tive of another (e.g. rewarding) stimulus. In human learning,
interference can manifest in learning deficits subsequent to
pairing either context relevant (Oliveri et al., 2004) or incon-
gruent (Buccino et al., 2005) motor actions and verbal de-
scriptions. In every day human activities, the interference ef-
fect has implications for recall of important events, e.g. eye
witness testimony (see Bouton, 2007).

Laboratory controlled studies of interference often utilize
the delayed matching-to-sample (DMTS) paradigm whereby
the subject is required to produce the desired behavioral re-
sponse over a pre-determined delay period (or inter-stimulus-
interval). In such cases, interference is a function of the
strength of a ‘distractor’ stimulus and may induce forget-
ting (cf.Roberts & Grant, 1978), impaired learning (Revusky,
1971) or memory retrieval deficits (Gordon et al., 1981).

Some forms of associative learning may be more or less
prone to the interference effect. Recent neuro-scientific evi-

dence has uncovered that areas of motor and premotor cor-
tex that become active during physical movement overlap
with areas activated during the reading of the specific affected
movement, e.g. hand, foot (Hauk et al., 2004). Buccino et al.
(2005) for instance found an interference effect when human
subjects, required to produce hand or foot responses to partic-
ular verb forms, produced physical movements apt to the ac-
tion described in the particular sentence. Latency of response
increasedin this case as compared to when a movement was
required that was inapt to the particular action described (see
Chersi et al., 2010, for a more detailed discussion).

Models exist that attempt to capture empirically demon-
strated features of the interference phenomenon specified at
the level of both connectionist and more neurobiologically
motivated levels of abstraction. A seminal model of Mc-
Geoch (1932) proffered a connectionist account of interfer-
ence whereby responses learned during a given time win-
dow would compete for retrieval by way of mutual inhibi-
tion. Essentially, this offered a classical account of ‘distrac-
tor’ stimuli inhibiting the influence of task-specific stimuli.
The learned associative strengths of the responses determined
the ‘winner’ which was, however, premised on the biologi-
cal implausability of there being independence, as opposed
to overlap, between the available responses.

Mensink & Raaijmakers (1988) provided a stochastic
search model of retrieval that was able to describe behav-
ioral data accounting for many of the effects of interference,
e.g. proactive inhibition, retroactive inhibition, spontaneous
recovery - where previously learned associations become be-
haviorally extinguished but, presumably still reside in mem-
ory.

More recently, neural models have been put forward to ac-
count for the ability of organisms to retain spatial information
about stimuli over delay periods in the face of distracting (in-
terfering) stimuli. Spencer et al. (2009) have described how
the tuning of parameters of an interaction kernel on a dynamic
neural field representing spatial working memory permits the
development of activation peaks. These peaks are sustained
through the use of tuned local excitation and global inhibi-
tion parameters on the kernel that afford more or less robust-
ness to noise and distractor stimuli presented to the spatial
field. Self-sustained activity can be achieved through bistable
unit dynamics (cf. Amari, 1977) such that input or noise in-

1607



duced supra-threshold individual unit activity may be main-
tained even following the withdrawal of the input. Neural
field and bistable dynamics through the effective coupling of
spatially mapped locally excited activation peaks in different
fields provide mechanisms for coping with interference ef-
fects over delays between events of motor sequences to be
associated.

The assumption in the above-mentioned models and the-
ory is that interference (or distracting stimuli) induce in-
hibitory effects on the activity of applicable functional cir-
cuits or psycho-behavioral states whereas chaining of activa-
tions within populations of units entails excitatory activity.
In dynamic field theory, for example, distracting stimuli in-
duce elevated levels of global inhibitory activity servingto
suppress existing continuous attractor states (i.e. activation
peaks) potentially below threshold levels thus serving as a
medium for forgetting.

Connectionist and population coding models seeking to en-
hance comprehension of the interference effect typically do
not concern themselves with the biophysical details of the
neuron units implied in the modeling approach, relying sim-
ply on ‘point-to-point’ synaptic transmission. However, con-
sidering that associations of activation may be somatotopi-
cally realized in the brain, i.e. via neighboring or overlap-
ping populations of neurons (e.g.Chersi et al., 2010), and that
current in a given population typically overlaps with or may
otherwise ‘spill over’ into another population, it may be in-
structive to produce more detailed neural models taking into
account these effects in order to better understand neural sub-
strates of behavior.

A precedent for modelling the effects of a non-synaptic
neuromodulatory process only recently thought to play a sig-
nificant cognitive role exists. Nitric oxide (NO) gas is an
inter-cellular signalling mechanism found in various struc-
tures of the brain.NO emissions affect neighbouring cells
according to a slow diffusive dynamic different to standard
point-to-point synaptic transmission.NO diffusion has been
modelled (Philippides et al., 1998) and an analogue has been
applied in the domain of cognitive robotics (Husbands et al.,
1998). Recent evidence also suggests a functional role in
homeostatic regulation of essential metabolic variables (e.g.
Canabal et al. 2007).

The particular inter-cellular signalling mechanism we are
concerned with here involves current that affects neighbour-
ing regions of cells through non-standard synaptic transmis-
sion. A complete discussion of the different mechanisms
that can cause current from one neural population to leak,
or “spill over” into another population is beyond the scope of
this paper. However, an interesting example of such a cur-
rent spillover can for instance be observed when ionic neu-
rotransmission at the synaptic cleft is not fully absorbed by
the post-synaptic receptors of the receiving cell. Ions spill
over the synaptic cleft and can thereby affect neighboring
neurons, possibly of other populations leading to slow-rising
increases in excitatory post-synaptic currents in the affected
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Figure 1: Schematic of the neural model. Two connected
populations represent the neural substrate of a behavior. The
behavior is triggered if the second population fires after trig-
gering current arrives at the first one (large arrow). Weak
spillover current, by itself insufficient to trigger the behavior,
can also arrive at the first population (small arrow)

cells. Spillover has recently been recognized as a modulatory
effect that may play a significant role in brain functioning,
e.g. in the communication between the brain stem and cere-
bellum (Nishiyama & Linden, 2007), illustrating that neural
communications do not necessarily rely solely on canonical
synaptic transmission.

Here, we propose a neural model of the interference ef-
fect based primarily on synaptic dynamics. We model a se-
quence of two neural connected populations and show that,
if spillover current from neural circuits external to the model
reach the first population, activation of the second popula-
tion may be prevented. Since we are mainly interested in
the possible effects of the spillover current, we do not model
or make assumptions on the precise underlying mechanisms.
Nonetheless, we show that interference effects can be ob-
served even though all currents are excitatory. Our model thus
departs from the classically conceived models focusing on
inhibitory inter-population inducement of interference.Our
aim is to demonstrate that neural or neural network models of
interference may be insufficient when focused solely on inter-
population ‘point-to-point’ synaptic transmission effects. Ac-
counting for biophysical dynamics when designing computa-
tional models or artificial neural networks may provide valu-
able insights to the fields of animal learning and psychology.

Methods

Neural and synaptic dynamics

We model the neural and synaptic dynamics following a stan-
dard model. The synaptic dynamics in particular take into ac-
count the fact that synaptic transmitters (or simply resources)
are finite and both short term facilitation and depression can
result from their dynamics (See Tsodyks et al., 1998, for a
detailed discussion). Briefly, depression is caused by recog-
nizing that synaptic resources may be “active” (in the synaptic
cleft or at the post-synaptic receptors), “inactive” (returning
to the pre-synaptic terminals and thus unavailable) or “recov-
ered” (at the pre-synaptic terminals and available for release
into the synaptic cleft on arrival of pre-synaptic current)and
making the post-synaptic current dependent on the proportion
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of active resources. The corresponding mean field equations
are adapted from Tsodyks et al. (1998) with minor modifica-
tions to make the bounded nature of the resources explicit:

d〈ρ〉
dt
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whereρ andα denote recovered and active resources respec-
tively. Only recovered resources can generate post-synaptic
current (by becoming active) and active resources affect the
amplitude of post-synaptic current (Eqn. 5).The firing rate
E(t) is discussed further below.U1

SE is a time-varying and
firing-rate dependent parameter which models short term
synaptic facilitation believed to be caused by residual cal-
cium in the synaptic cleft. It is governed by the following
equations:
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Population dynamics
To model the effect one population of excitatory neurons may
have on another, we also follow the model by Tsodyks et al.
(1998). The mean firing rate of a given populationr is thus
dependent on the incoming current from other populationsr ′

and external currentIr arriving directly at populationr:

τe
dEr

dt
=−Er +g

(

∑
r ′

Jrr ′αr ′ + Ir

)

(5)

whereJrr ′ denotes the absolute strength of the connections
from r ′ to r multiplied by the average number of such con-
nections andαr ′ is given by Eqn. 2. It can be noted here that
the original model is more complex since it also caters for in-
hibitory populations, but those aspects are not relevant tothe
present work.g, finally, is a transfer function, for which we
use a standard sigmoid with a threshold:

g(x) = max

(

0,
2

1+e(4−x)/3
−1

)

(6)

Two or more populations governed by the above dynam-
ics can then be seen to form the neural substrate of an ob-
servable behavior. In our model, the parameter choices are:
τrec= 1000ms,τin = 100ms,τ f acil = 530ms,USE= 10−6 and
J = 4. These parameters have been chosen to produce bell-
shaped activation curves in the neural populations (ratherthan
undesired firing patterns). They mostly (except where dis-
cussed below) affect the firing rates of the neural populations
but the precise choices are not critical for illustrating the ef-
fect described in the present work.
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Figure 2: The effects of weak, moderate and strong
spillover current. Solid (broken) line represents firing rate
in first (second) population. Spillover current begins at t=0,
behavior triggering at t=1600ms. (A) Spill-over current is in-
sufficient to prevent activation of second population during
behavior triggering. (B) Spill-over current causes significant
but sub-threshold activation in the first population and pre-
vents triggering of the second population later on. (C) Spill-
over current is sufficient to prematurely trigger the behavior.

Results

We model two connected populations of neurons (Fig. 1)
which are meant to represent the neural substrate (or part
thereof) of an observable cognitive behavior. Such an ar-
rangement is for instance thought to underlie action execu-
tion in the motor cortex (Chersi et al., 2006). The behavior
is “triggered” if external current arriving at the first popula-
tion is of sufficient amplitude to cause activation in the sec-
ond population. In other words, a behavior is successfully
triggered if the second population fires after the first one was
stimulated (Fig. 2A, after 1500ms). We calltriggering cur-
rent any current that, in the absence of spillover current ef-
fects, is sufficient to trigger the behavior.

Conversely, we model spillover current as a type of exter-
nal current arriving at the first population but of insufficient
amplitude to cause the activation of the second population
(Figs. 2A and B, the first 1000ms). For the present illus-
trative purposes, the spillover current is modeled as lasting
100ms and increasing linearly by a small amountIspill dur-
ing that time. After 100ms, the current dies away instanta-
neously. Ispill has a range of possible values, with the exact
choice affecting overall behavior, which is explored below. It
should be noted that the observation of the reported interfer-
ence effect does not critically depend on this particular choice
for modeling the spillover current. Of importance is merely
the fact that supra-threshold activation is generated in the first
population in some way.

To illustrate the effect spillover current can have (Fig. 2),
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we first determine a sufficient triggering current for the be-
havior in a control case with no spillover current. We then
measure the post-triggering firing rate of the second popula-
tion in situations where the triggering current was preceded
by a spillover currentδt ms earlier. Any change in firing rate
compared to the control case is of interest.
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Figure 3:Interference effect. Y-axes indicate spill-over cur-
rent strengthIspill , normalised so that values of interest fall
between 0 and 1. Rectangle indicates this region of interest
(bounds ofIspill). X-axes indicate values forδt. the waiting
time between end of spillover and start of behavior-triggering
current. Figures are grayscale ranging from black (0) to white
(maximal values of the plotted parameters). (A) Firing rate of
the second population determined by chosen values ofIspill

andδt. Black region indicates no firing (and therefore inter-
ference). Other regions show firing rates all at similar, close
to maximal levels. The interference effect thus either causes a
strong suppression of firing rate or no significant effect at all.
Further, theδt values for which the interference effect is ob-
served depend on the value ofIspill (see text). (B) Time delay
between peak of activation in first population and correspond-
ing peak in second population. If the second peak was inhib-
ited, this information does not exist (solid gray area). Region
with Ispill > 1 shows premature activation (little to no time de-
lay, dark colors) of second population due to excessively high
values ofIspill (see Fig. 2C). Region withIspill < 0 shows nor-
mal separation between peaks (see Fig. 2A). Region within
rectangle (0≤ Ispill ≤ 1) shows separation similar to the nor-
mal case withIspill < 0 but not to the premature activations
observed whenIspill > 1. Thus, if both populations fire,Ispill

does not significantly affect the timing between peaks in the
region of interest (rectangle).

Since spillover current that is too low (Fig. 2A) or too high
Fig. (2C) is not going to cause any interesting effects, we de-
fine lower and upper bounds ofIspill as follows: the spillover
current should be strong enough to cause some measurable

effect during an attempt at triggering the behavior but weak
enough not to cause this triggering by itself (e.g. Fig. 2B).
We define “measurable effect” simply as a difference in time-
course and/or peak values in the firing rate of the second pop-
ulation, thus not excluding the possibility of a facilitation ef-
fect.

We find, however, that any spillover current sufficient to
cause a measurable effect prevents activation of the second
population (Fig. 3). The duration of this interference can
vary and depends on the strength of the spillover current (Fig.
3A). For values near the lower boundary, the effect disappears
if the behavior is triggered around 460ms or later after termi-
nation of the spillover current. Near the upper boundary, the
interference window can last up to about 2800ms. For very
small values of the spillover current, it is possible to avoid
the interference effect if the behavior is triggered very shortly
after the end of the spillover current (up to 340ms in the best
case), since synaptic resources are depleting more slowly.

The maximal duration of the interference window is mostly
affected by the choice ofτrec. Interestingly, however, it is not
reached monotonically. Rather, as can be seen in Fig. 3A, a
threshold value for spillover current exists below which the
interference effect disappears after a fraction of its maximal
effect. Above the threshold, the interference effect lastsfor
its entire possible duration.

It would theoretically be possible for the spillover current
to cause a delayed activation in the second population, rather
than complete inhibition. This would be apparent if the time
between the peak activation of both populations was a func-
tion of the strength of the spillover current. However, at least
within the context of the work presented here, no such ef-
fect was found. Fig. 3B shows that, if the spillover current
is within its bounds, it will either cause complete interfer-
ence or, with a sufficient waiting period between spillover
and behavior-triggering current, no effect at all. It should
be noted however, that on a behavioral level, delays can still
be observed. This would correspond to a control mechanism
which re-triggers the behavior after noticing that the initial at-
tempt was not succesful. Modeling these control mechanisms
in detail is, however, beyond the scope of this work.

Fundamental cause
Since the behavior of the system described here is modulated
only by synaptic dynamics, the cause for the observed inter-
ference effect is also found therein and illustrated in Fig.4.
Any activity within the first population will cause a reduc-
tion of recovered synaptic resources (as they become active).
Since the amount of synaptic resources activated by incom-
ing current is proportional to the recovered resources, fewer
recovered resources mean smaller increase in current. IfIspill

is very small, recovered resources do not deplete drastically
during spillover current (Fig. 4A) and a following triggering
current can have normal effects. IfIspill is larger, the recov-
ered resources do deplete drastically but over a relativelylong
time-course (Fig. 4B). This slow depletion allows active re-
sources to inactivate quickly enough to keep the proportion
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Figure 4:Synaptic resources. Solid (broken) line represents
recovered (active) synaptic resources from the first popula-
tion corresponding to the firing rates seen in Fig. 2. Spillover
current begins at t=0, behavior triggering at t=1600ms. (A)
Spill-over current causes a small decrease in recovered synap-
tic resources but the triggering current can activate sufficient
amounts to cause firing in the second population. (B) Spill-
over current causes complete but slow depletion of recovered
resources. Not enough resources can recover and the fraction
activated by the triggering current is insufficient to causefir-
ing in the second population. (C) Spill-over current causes
complete and fast depletion of recovered resources. Con-
sequently, the proportion of active resources becomes suffi-
ciently high to trigger the behavior prematurely.

of active resources below the necessary threshold for trigger-
ing the second population. At the same time, the depletion is
significant enough that a later triggering current cannot acti-
vate a sufficient proportion of resources either - we observe
interference. Finally, a very large value ofIspill works just
like a triggering current: recovered resources activate quickly
enough to push the proportion of active resources over the
triggering threshold before it can decrease again due to inac-
tivation.

Thus, the interference effect described here relies on a slow
but significant depletion of synaptic resources. In theory,the
effect of reduced available resources could be offset by the
synaptic facilitation mechanism implemented here. However,
sinceτ f acil is usually shorter thanτrec, this is not observed in
the present model.

Effects of parameter choices
Naturally, the exact values, most notably for the lower and up-
per boundaries of the spillover current, depend on the values
chosen for the synaptic parameters in the model. The most
important ones are the synaptic strength and the proportion
of synaptic resources liberated. We do not address these ef-
fects in detail here but did find in a brief exploration that, as
long as parameters are kept within ranges that allow a bell-
shaped activation of both populations as seen in Fig. 2A after

the 1500ms mark (as opposed to, e.g. self-sustaining, chaotic
or oscillatory behavior), spillover current always appears to
cause interference effect.

Discussion

The model presented in this paper departs from the more clas-
sical artificial neural network models in its use of more de-
tailed biophysical dynamics. By taking into account the fact
that synaptic resources are finite, we have been able to inhibit
the execution of a behavior even though all currents within
the model are excitatory. While our model merely provides
an alternative account compared to those relying on inhibitory
dynamics, it does not necessarily replace them. However, it
does illustrate the power of more detailed biophysical dynam-
ics in a model. There is therefore a necessity to move beyond
simple point-to-point artificial neural networks if the purpose
of such a network is to explain cognitive phenomena.

Although we do not provide an extensive parameter explo-
ration here, the findings are rather robust. The parameters of
the synaptic model affect the firing behavior of the popula-
tions more than the effect of the spillover current (the main
exceptions to this are of courseτrec andτ f acil). Likewise, we
do not need to formulate any strong assumptions on the pre-
cise nature of the spillover current because the critical aspect
is merely the activation generated within the first population.
The effect is thus general but further work would be needed
to explore the effects of different values forτrec andτ f acil re-
spectively. For instance, one could discover values for which
the spillover current causes both facilitation and interference
(or only facilitation). However, it should be noted that this
would mainly be interesting from a theoretical perspective,
since typical short term facilitation time-courses tend tobe
faster than depletion ones (Tsodyks et al., 1998). In fact, re-
lated work (Chersi et al., 2010) which is concerned with mod-
eling both interference and facilitation effects simultaneously
has found that in such cases, neural dynamics including in-
hibitory currents may provide a better explanation.

Besides their role as explanatory tools for cognitive phe-
nomena, neural networks also find applications as compu-
tational problem-solving tools. By illustrating the effects
synaptic dynamics can have on the overall output of our
model, we show that moving beyond the traditional connec-
tionist models of nodes simply connected by a signed weight
can be worth considering. While this will not extend the set of
computations that a neural network can perform, it may sim-
plify the topology or facilitate training. Such benefits have
for instance been previously found in GasNets (Husbands et
al., 1998). These networks have proven particularly amenable
to efficient search of task solution space as cognitive robotics
controllers situated according to spatial and temporal envi-
ronmental constraints. This adaptive potential is tapped us-
ing a diffusive, non-purely point-to-point synaptic modula-
tory network. Exploration of the interaction of classically
conceived synaptic transmission and less orthodox means of
inter-cellular communication may provide scope to investi-
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gate spatial and temporal interactions relevant to the study of
cognitive phenomena particularly in an embodied context (cf
Parisi, 2004). Again, these are possibilities that need to be
explored further in future work.

Conclusions

We have presented a model that can explain temporal inter-
ference effects without relying on inhibitory dynamics in the
underlying neural circuitry. Rather, the behavior is explained
solely by synaptic dynamics which are modeled in a simple
yet biologically plausible way. The contributions of this work
are twofold: (1) We provide an alternative explanation for a
range of interference effects which does not rely on explicit
inhibitory dynamics. (2) We highlight the benefits of mod-
eling synaptic and biophysical dynamics in more detail, both
as a computational tool which may find applications even in
artificial neural networks and as an explanatory mechanism
as illustrated in the present paper.
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