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Abstract

Human sentence processing occurs incrementally. Most mod-
els of human processing rely on parsers that always build con-
nected tree structures. But according to the theory of Good
Enough parsing (Ferreira & Patson, 2007), humans parse sen-
tences using small chunks of local information, not always
forming a globally coherent parse. This difference is appar-
ent in the study of local coherence effects (Tabor, Galantucci,
& Richardson, 2004), wherein a locally plausible interpreta-
tion interferes with the correct global interpretation of a sen-
tence. We present a model that accounts for these effects using
a wide-coverage parser that captures the idea of Good Enough
parsing. Using Combinatory Categorial Grammar, our parser
works bottom-up, enforcing the use of local information only.
We model the difficulty of processing a sentence in terms of the
probability of a locally coherent reading relative to the prob-
ability of the globally coherent reading of the sentence. Our
model successfully predicts psycholinguistic results.
Keywords: sentence processing; parsing complexity; local
coherence; Good Enough parsing; Combinatory Categorial
Grammar

Introduction
A major topic of inquiry in cognitive science is the process
by which people produce and comprehend sentences. Hu-
man sentence processing is known to proceed incrementally:
people construct syntactic and semantic interpretations grad-
ually as a sentence unfolds, rather than waiting until after the
whole sentence has been received. But although we know that
syntactic information becomes available progressively while
comprehending a sentence, it is still an open question to what
extent decisions made early in the parsing process can con-
strain later decisions.

One phenomenon that can shed light on this question is
local coherence effects. Local coherence effects arise when
a sentence includes a substring with a plausible local inter-
pretation that is incompatible with the global interpretation.
(In other words, the interpretation is merely locally coherent,
but not globally coherent.) A typical example (from Tabor,
Galantucci, & Richardson, 2004) is:

(1) A/R: The coach smiled at the player tossed a frisbee.

A typical reader, seeing this sentence for the first time, will
find it difficult to understand and will likely judge it to be
ungrammatical. But this difficulty is unexpected in light of
similar sentences:

(2) U/R: The coach smiled at the player thrown a frisbee.

(3) A/U: The coach smiled at the player who was tossed
a frisbee.

(4) U/U: The coach smiled at the player who was thrown
a frisbee.

These four sentences, all intended to be close paraphrases of
one another, illustrate a puzzle: while the majority of read-
ers reject (1), they accept (3) and (4), with mixed results for
(2). These sentence differ on two dimensions: the past par-
ticiple can be Ambiguous (such as tossed, which can be a
past participle or a past tense form) or Unambiguous (such as
thrown), and the relative clause can be Reduced (without who
was) or Unreduced (with who was). Neither of these alterna-
tions generally changes the grammaticality of a sentence, so
we would naively predict that if (4) is acceptable, then (1) is
as well. Our challenge is to explain why this naive predic-
tion is wrong. Intuitively, it seems that the local coherence
of the substring the player tossed a frisbee in (1) as a plausi-
ble complete sentence is distracting from its globally correct
interpretation as an object with a relative clause.

Tabor, Galantucci, and Richardson demonstrate the exis-
tence of local coherence effects as a psycholinguistic phe-
nomenon in two different studies: in the first, they find in-
creased reading times at the ambiguous past participle in (1).
They present subjects with sentences from 20 sets of sen-
tences like those seen above and measure reading times for
each word using self-paced reading. In this methodology,
longer reading times are taken to indicated increased process-
ing difficulty. As expected based on previous studies (e.g.
Ferreira & Clifton, 1986), they find substantially increased
reading times for the Reduced cases as compared to the Unre-
duced cases, both on the past participle (e.g. tossed) and on
the following word. Moreover, they find an unexpected in-
teraction between Ambiguity and Reducedness: while the
A/U reading times are not significantly different from the
U/U reading times, the A/R reading times are substantially
increased relative to the U/R reading times. This superaddi-
tive difficulty of the A/R condition is the signature of a local
coherence effect.

In the second experiment, Tabor, Galantucci, and Richard-
son replicate the first using a grammaticality judgement task.
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Grammaticality Judgement Data from Tabor, 
Galantucci, and Richardson (2004)
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Figure 1: Grammaticality judgement data from Tabor, Galan-
tucci, and Richardson (2004). The signature of a local coher-
ence effect is the superadditive proportion of ungrammatical
judgements in the Ambiguous/Reduced condition.

They find decreased acceptance of Reduced sentences as
grammatical, with an interaction between Ambiguity and Re-
ducedness such that A/R sentences are judged unacceptable
superadditively often (see Figure 1). Once again, decreased
acceptability judgements are taken to indicate processing dif-
ficulty.

Note that sentences in the A/R condition are not just stan-
dard garden path sentences. In a standard garden path sen-
tence, the disambiguating information comes after the reader
has already been led astray. In contrast, in sentences such
as (1), the disambiguating information comes at the begin-
ning of the sentence. Thus the reader in theory already knows
that tossed cannot be a past tense form and must be a past
participle. Yet despite that, these sentences cause processing
difficulty.

A model of human sentence processing should be able to
predict the difficulty of sentences with local coherence ef-
fects. However, most existing models cannot. In particu-
lar, most standard theories of parsing assume that that all
accrued knowledge from the parsing process is taken into
account at all times. Models following this assumption can
straightforwardly account for standard garden paths because
there is nothing inconsistent about initially misinterpreting a
sentence before having access to the disambiguating informa-
tion. But these models cannot take the same position in ac-
counting for local coherence effects: when the disambiguat-
ing information has already been seen and smiled has already
been recognized as the main verb of the sentence, they can-
not entertain the inconsistent possibility that tossed is also a
main verb. Computational implementations of wide-coverage
parsers generally also make this assumption of global consis-
tency (e.g. Roark, 2001; Sturt, Costa, Lombardo, & Frasconi,
2003; Demberg & Keller, 2008). For many applications, this

assumption may be convenient. But for a parser to be credible
as a model of human sentence processing, it must be able to
predict these psycholinguistic effects, which requires relaxing
this assumption.

An alternate theory of sentence processing is Ferreira and
colleagues’ Good Enough (GE) parsing. Ferreira and Patson
(2007) describe GE parsing:

People compute local interpretations that are sometimes
inconsistent with the overall sentence structure, indi-
cating that the comprehension system tries to construct
interpretations over small numbers of adjacent words
whenever possible and can be lazy about computing a
more global structure and meaning.

The GE theory of parsing asserts that people do not con-
struct full representations for sentences the majority of the
time. Rather, they construct just enough to complete the task
at hand, only constructing a further representation if neces-
sary. Moreover, because people base their first-pass construc-
tions on local information and generally construct only partial
parse trees, these partial parses may contradict one another.
A GE parsing account can thus easily account for local co-
herence effects. We will develop a computational model of
why local coherence effects arise within the framework of
GE parsing.

Previous Models of Local Coherence Effects
Two models have previously attempted to account for local
coherence effects: Levy (2008) uses a noisy-channel model
to argue that because there is uncertainty in linguistic input,
the parse of a sentence should be modeled as a probability
distribution over a set of candidate sentences (including the
intended sentence and its near-neighbors). Given such a prob-
ability distribution, the effect of reading each word can be
modeled and quantified in terms of a belief update. Levy pre-
dicts that a larger change in beliefs will correspond to greater
processing difficulty and longer reading times. This in turn
predicts local coherence effects because the rarer sentences
provoke larger changes in belief.

Levy’s model only considers fully connected and gram-
matical (partial) parses as candidates, thus it does not cap-
ture the intuition of GE parsing. An additional limitation of
the model is that due to the computational load of calculat-
ing near-neighbors, it has only been implemented using a toy
Probabilistic Context Free Grammar (PCFG), rather than a
richer, wide-coverage language model.

The other previously existing model of local coherence
effects comes from Bicknell and Levy (2009). They again
model local coherence effects as arising from belief updates.
Specifically, they model them as the consequences of an up-
date from a bottom-up prior belief to a posterior belief that
takes top-down information into account. They thus pre-
dict processing difficulty in the case of locally coherent sub-
strings because the bottom-up statistics make strong predic-
tions about the category of the substrings, which are then con-
tradicted by top-down information.
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This model begins to capture the idea of GE parsing by
looking at substrings of different lengths. However, it has no
way to integrate the information it receives from these differ-
ent substring lengths because evaluating these substrings is
post hoc, not an actual part of the parsing process. Addition-
ally, like Levy’s (2008) model, it has only been implemented
using a toy PCFG.

Thus there is currently no general, wide-coverage model of
human parsing that implements a GE parsing strategy. Com-
putational models of local coherence effects have instead had
to account for the phenomenon indirectly, either through a
noisy channel model or by predicting the effects without ac-
tually simulating the parsing process, and have been confined
to parsing with small toy grammars. We will develop a model
to address these shortcomings.

A New Model of Local Coherence Effects
Our goal is to model the process by which local coherence ef-
fects emerge as the result of Good Enough parsing, within the
context of a wide-coverage parser. In the example sentence
The coach smiled at the player tossed a frisbee, our intuition
is that processing difficulty arises from the locally coherent
reading of the player tossed a frisbee, which distracts from
the globally coherent reading. Our model will capture this
intuition by using a strictly bottom-up parser to remove the
top-down influence of non-local constraints.

Strictly bottom-up parsing is frequently rejected as a plau-
sible model for human parsing because, it is claimed, it does
not allow for incremental interpretation. The standard argu-
ment says that a clause can only be interpreted when it is
seen in full (i.e., at the end of a constituent). But in a strictly
right-branching language, this means that nothing can be in-
terpreted until the very end of the sentence because only then
is any constituent completed.

To overcome this objection, our parser uses the Combina-
tory Categorial Grammar (CCG) formalism to represent lin-
guistic structures. CCG was specifically designed to allow
for incremental bottom-up parsing by using a more flexible
notion of constituents.

Combinatory Categorial Grammar
Combinatory Categorial Grammar is a grammar formalism
based on Categorial Grammar (CG). We base our description
of it here on Steedman (2000).

CCG revolves around functional categories and rules for
combining them. Categories can be either functions or argu-
ments and are defined recursively: Base categories such as S
and NP represent arguments. Functions are of the form α/β

or α\β, where α and β are categories. To the right of the
slash is the argument of the function, and to the left is its
result. The direction of the slash indicates the directionality
of composition: / means the argument is to the right and \
means the argument is to the left. An English verb phrase,
for example, will have the category S\NP, indicating that it
combines with an NP on its left and results in a sentence. We
also allow a finite set of features on our base categories, such

John eats apples
NP (S\NP)/NP NP

>
S\NP

<
S

(a) Right-branching deriva-
tion

John eats apples
NP (S\NP)/NP NP

>T
S/(S\NP)

>B
S/NP

>
S

(b) Left-branching derivation

Figure 2: Right- and left-branching CCG derivations for the
sentence John eats apples. (S\NP)/NP is the CCG category
for a transitive verb. Without type-raising, eats can only com-
bine with apples, yielding the typical right-branching deriva-
tion in (a). With type-raising, John can combine immediately
with eats, yielding the left-branching derivation in (b).

as person, number, and gender on NPs. These are notated as
e.g. NP[3sf].

A CCG derivation uses rules to combine categories. Pure
CG relies on two rules, named > and <, to combine cate-
gories:

(5) X/Y Y → X (>)

(6) Y X\Y → X (<)

CCG introduces further combinatory rules that allow for
more flexible notions of constituency than other grammar for-
malisms. In particular, it includes two lexical type-raising
rules, named >T and <T:

(7) X → T/(T\X) (>T)

(8) X → T\(T/X) (<T)

In these rules—which are here shown in the derivation, but
in fact operate in the lexicon—T can be any lexical category
taking X as argument. For instance, we could use >T to type-
raise NP to S/(S\NP). Applying this rule limits the other
categories the NP can combine with. Intuitively, we can think
of the output of this rule as similar to an NP with nominative
case-marking. It specifies not just that the word or phrase in
question is a noun, but that it is a subject which must combine
with a predicate.

These type raising rules allow us to parse a sentence in-
crementally by forming nontraditional constituents, leading
to left-branching derivations (see Figure 2). CCG thus allows
each new word of the input to be incorporated into the ex-
isting constituent structure as it is encountered, which makes
incremental bottom-up parsing possible.

The Model
We take a bottom-up CCG parser as the basis of our model
of human sentence processing. In order to predict process-
ing difficulty caused by local coherence effects, we need a
linking hypothesis to specify the relation between the parser
output and psycholinguistic measures such as grammaticality
judgements or reading times. Our linking hypothesis should
embody the theory of Good Enough parsing, focusing on in-
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terpretations of local substrings.
We adapt a model proposed by Jurafsky (1996) to predict

garden path effects. To make graded predictions, rather than
categorical distinctions, we will adopt a probabilistic frame-
work, and consider the probabilities of various substrings
of a sentence. In particular, we could consider either the
inside probability P(S → substring) (alternately written as
P(substring | S)) or the inverse probability P(S | substring).
We do not know of a computationally tractable way to calcu-
late P(S | substring) from our parser. Calculating the inside
probability, on the other hand, is a fundamental part of the
parsing process. It is most parsimonious to base our model
on the inside probabilities that are already being calculated.

Our intuition is that if an incorrect interpretation of a sub-
string is highly plausible relative to the correct interpretation
of the sentence, then it will cause processing difficulty. In
a sentence such as The coach smiled at the player tossed a
frisbee, the substring that we expect to cause difficulty is the
locally coherent substring the player tossed a frisbee. We
thus consider the ratio:

P(S→ the player tossed a frisbee)
P(S→ The coach smiled at the player tossed a frisbee)

In this case, the ratio will be high because The player tossed a
frisbee is a relatively likely sentence. In the other three cases,
the ratio will be low because none of the following are very
plausible sentences:

(9) the player thrown a frisbee

(10) the player who was tossed a frisbee

(11) the player who was thrown a frisbee

Although in theory this ratio could be as low as 0, in prac-
tice this does not occur because there is generally some (low
probability) way to parse each phrase as a sentence. We take
this ratio as a measure of processing difficulty.

Implementation
We implement our model using a Combinatory Categorial
Grammar parser based on the Cocke-Kasami-Younger (CKY)
algorithm. This algorithm was originally developed for Con-
text Free Grammars and uses dynamic programing to parse
from the bottom up: given a sentence, it first calculates the
probabilities of all ways to generate each word using a rule
X → word. For each potential pair of categories X1 and X2
that could have generated adjacent words w1 and w2, it then
calculates the probabilities of all ways to generate that pair
using a rule X3 → X1X2. This allows us to calculate the in-
side probability P(X3 → w1w2). Continuing iteratively, we
can calculate the inside probabilities of all substrings of the
sentence.

We used a modified version of the StatOpenCCG parser,
developed by Christodoulopoulos (2008), which is it-
self an extension of the OpenCCG parser (White, 2008).
StatOpenCCG implements a statistical version of the CKY al-
gorithm which operates using a generative head-dependency

model over CCG categories: From the parent (starting with a
ROOT node), a head is generated with a certain probability.
Then its sisters are generated with probability conditioned on
the head category, the sister’s direction from the head, and
whether it is adjacent to the head. Although the number of
CCG categories is theoretically infinite, our parser is con-
strained to only use categories that have appeared in the train-
ing data set. With this constraint, the runtime of the parser is
bounded by O(n3). The parser has been trained on sections
1 through 22 of the CCGbank (Hockenmaier, 2003), a CCG
version of the Penn treebank.

Our experiments use two different lexicons. The first lexi-
con is that taken from sections 1 through 22 of the CCGbank.
However, this lexicon is too small to parse the majority of
the sentences we wish to consider. To obtain a larger lexicon,
we parsed six months of the New York Times (comprising
approximately 50 million word tokens) taken from the Giga-
word corpus (Graff, 2003). Sentences from the corpus were
passed through the RASP tokenizer (Briscoe, Carroll, & Wat-
son, 2006) and then parsed using the C&C CCG parser (Cur-
ran, Clark, & Bos, 2007). This state-of-the-art parser obtains
labelled precision of 84.8% and labelled recall of 84.5% on
section 23 of the CCGbank. It is extremely fast and provides
the best parse accuracy from a CCG parser, making it conve-
nient for obtaining large amounts of data to construct a larger
lexicon. (However, it is not a cognitively plausible parser, as
it relies on its supertagger and other cognitively implausible
tricks to speed its parsing.) From this parsed sample, we ex-
tracted the lexicon for use in the StatOpenCCG parser (with
the statistical parsing model over categories trained as before
on CCGbank data). Although this lexicon of course contains
quite a few errors, we verify that it nonetheless parses our test
sentences correctly, placing the correct parses among the top
results.

Experiments
We present two sets of experiments in which we test
our model against the results from Tabor, Galantucci, and
Richardson (2004). The first uses a small but high-quality
lexicon to parse two test cases. The second uses a larger,
error-ridden lexicon to parse a larger set of sentences. Recall
that Tabor, Galantucci, and Richardson’s (2004) study used
20 sets of sentences like those in (1)–(4).

Experiment 1: Test Cases using the CCGbank
Lexicon
Because CCGbank is derived from a human-annotated tree-
bank, the quality of the lexicon it yields is high. Nevertheless,
it is small in comparison to human lexicons, and the passive
relative constructions we are investigating are sparsely rep-
resented. In fact, the CCGbank lexicon contains only two
words which are unambiguous ditransitive passive participles
(i.e., (S[pss]\NP)/NP but not (S[dcl]\NP)/NP—where [pss]
indicates a past participle used in a passive construction, and
[dcl] indicates a declarative sentence). These two words are
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Figure 3: Results from Experiment 1, two test cases using the high-quality CCGbank lexicon. In both sets of sentences, the
A/R case displays the correct pattern of superadditive difficulty.

written and given. Using these words, we construct two sen-
tence sets, based on sentences used by Tabor, Galantucci, and
Richardson:

(12) He questioned a congressman (who was)
sent/written a letter.

(13) He addressed the woman (who was) offered/given a
beer.

All words in these sentences are in the CCGbank lexicon. We
parse them using our high-quality lexicon.

Results For these sentences, we obtain the predicted ratios:

P(S→ locally coherent substring)
P(S→ whole sentence)

Results are in Table 1 and Figure 3. We compare our results to
the grammaticality judgements from Tabor, Galantucci, and
Richardson (see Figure 1).

As we see in Figure 3(a), the set of sentences (12) dis-
plays the correct pattern of superadditive difficulty in the A/R
case. While there is little difference in difficulty between the
A/U and U/U conditions, there is a marked increase to the
U/R condition, and a superadditive increase to the A/R con-
dition. This mirrors the pattern seen in Tabor, Galantucci, and
Richardson’s grammaticality judgements.

We see the same superadditive pattern of difficulty in our
results for the set of sentences (13), shown in Figure 3(b).
Somewhat surprisingly, the U/R condition is in fact predicted
to be marginally easier than the Unreduced sentences in this
set. This may be because given is an extremely common
word. Although it is unambiguous in that it cannot be a past
tense, it is in fact a highly ambiguous word, with 18 entries in
the CCGbank lexicon. For instance, it can serve as a preposi-
tion, as in Given the weather, I will stay inside today. Regard-

Table 1: Predicted difficulty ratios from all experiments,
alongside grammaticality judgements from Tabor, Galan-
tucci, and Richardson (2004).

Type TG&R Exp1: written Exp1: given Exp2
U/U .28 1.27 5.45 5.74
A/U .28 1.85 5.46 8.46
U/R .61 7.96 5.16 11.60
A/R .78 9.76 8.18 12.34

less of this slight puzzle, the A/R case displays the correct
pattern of superadditive difficulty.

Experiment 2: Using the Gigaword Lexicon
Using the Gigaword lexicon, we are able to parse 13 out of the
20 sentences in the Tabor study. (Sentences were excluded
only if their past participles were not present in the lexicon.
All other vocabulary items are present.) We standardize all
sentences to begin with a pronoun. Additionally, for the sake
of parsing efficiency, we do not include the by phrases that
give the agent of the sentence. We further shorten two sen-
tence sets in ways that do not affect the target part of the sen-
tence.

Results Results from Experiment 2 are shown in Table 1
and Figure 4. We compare our results to the grammaticality
judgements from Tabor, Galantucci, and Richardson (see Fig-
ure 1). We find the correct trend of difficulties, with the A/R
condition most difficult, followed by U/R, followed by the
two Unreduced cases. We do not find the exact pattern of su-
peradditive difficulty in the A/R case, due to the fact that the
A/U case is in fact predicted to be much more difficult than
the U/U case, in contrast to the grammaticality ratings. Be-
cause the Gigaword lexicon is very error-prone, it is difficult
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Figure 4: Experiment 2 results. We find the expected pattern
of difficulty, but, due to the inflated predicted difficulty of the
U/R case, do not see superadditive difficulty in the A/R case.

to draw any firm conclusions from this quirk in our results.
However, we note that the A/R case is correctly predicted to
be substantially more difficult than either of the Unreduced
cases.

Conclusion
We have presented a model of local coherence effects using a
wide-coverage bottom-up Combinatory Categorial Grammar
parser. Our model can accurately predict which sentences
humans will have difficulty in processing; specifically, it pre-
dicts the local coherence effects found by Tabor, Galantucci,
and Richardson (2004). Our results support the psycholin-
guistic plausibility of CCG and the Good Enough theory of
parsing by demonstrating that a parser that uses bottom-up
local information can both perform well as a wide-coverage
parser and predict specific psycholinguistic results.

Interestingly, the architecture of our version of the GE
parser differs from Ferreira’s original proposal. Ferreira
(2003) proposes that GE parsing occurs via two separate
strategies: one “algorithmic” and one “heuristic”. In con-
trast, our parser does not include this separation: all analyses,
both local and global, are produced by a uniform algorithm,
and all are heuristically evaluated using the parsing model.
This integration of strategies is a strength of our model, as it
demonstrates how local coherence effects could emerge nat-
urally as an inherent part of the parsing process.

In future work, we would like to make not just sentence-
level predictions but word-by-word reading time predictions.
Given that we have an entire parse chart, such predictions
should be possible. We are currently choosing inside prob-
abilities from two cells in the parse chart to compare, based
on outside knowledge of where processing difficulty is likely
to arise. We could do something similar for every cell in the
chart, considering the inside probability of the substring it

spans relative to the probability of the sentence as a whole.
With word by word predictions, we could model reading time
data as well as grammaticality judgement data. Such a model
would be applicable to a wide range of psycholinguistic data
beyond local coherence effects.
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