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Abstract

We examine representation assumptions for learning in the
artificial grammar task. Strings of letters can be represented
by first building vectors to represent individual letters and
then concatenating the letter vectors into a vector of larger
dimensionality. Although such a representation works well in
selected examples of artificial-grammar learning, it fails in
examples that depend on left-to-right serial information. We
show that recursive convolution solves the problem by
combining item and serial-order information in a stimulus
item into a distributed data structure. We import the
representations into an established model of human memory.
The new scheme succeeds not only in applications that were
successful using concatenation but also in applications that
depend on left-to-right serial organization.

Keywords: Artificial grammar learning; Holographic
representation; Exemplar model
Introduction

In an artificial-grammar learning (AGL) classification task,
participants study strings of symbols. Following study, the
participants are told that the studied items were constructed
according to the rules of an artificial grammar and are
invited to sort novel rule-based (grammatical) exemplars
from novel rule-violating (ungrammatical) ones. Even
though the participants are unable to describe the rules, they
can discriminate the two classes of stimuli.

Initial accounts proposed that the participants abstracted
the grammar and used that knowledge to judge the status of
the exemplars (e.g., Reber, 1967, 1993). Later investigators
argued that the participants judged grammaticality without
reference to the grammar. To support the latter position,
investigators identified several sources of information that
discriminate the two classes of test strings. Brooks (1978)
suggested that whole-item similarity between training and
test strings is used to infer grammaticality. Perruchet and
Pacteau (1990) argued that bigram overlap is used to infer
grammaticality. Vokey and Brooks (1992) identified edit
distance as a predictor, and Brooks and Vokey (1991)
argued that patterns of repetition within a string are used to
infer grammaticality. Knowlton and Squire (1996) identified
associative chunk strength (ACS), and Johnstone and
Shanks (1999) identified chunk novelty. Finally, Jamieson
and Mewhort (2009a, 2010) showed that global similarity
predicts performance in the task. Regression analyses

designed to sort the various predictors have confirmed a role
for all of them (e.g., Johnstone & Shanks, 1999). Factorial
designs that have pitted predictors against one another have
been unable to identify a single dominant predictor (e.g.,
Kinder & Lotz, 2009; Vokey & Brooks, 1992).

We think that many of the predictors (e.g., ACS, bigram
over, etc) point to a common underlying factor, namely left-
to-right serial structure. If so, the problem is not to
determine which predictor dominates but, rather, to decide
how subjects encode material so that they have access to the
left-to-right serial structure in the exemplars.

In this paper, we explore an encoding mechanism that
folds several orders of left-to-right serial structure in a string
into a coherent and distributed data structure (i.e., single
letters, bi-grams, trigrams, and whole strings). To begin,we
describe the representation scheme. After, we show that the
new representations predict judgement of grammaticality
when used in an established theory of retrieval (Jamieson &
Mewhort, 2009a, 2010).

Holographic representation in memory

Many investigators have proposed that light holography
provides a mathematical basis for memory representation
(Borsellino & Poggio, 1973; Gabor, 1968; Khan, 1998;
Longuet-Higgins, 1968; Poggio, 1973). Murdock’s (1982,
1983, 1997) TODAM is probably the best-known use of the
idea in experimental psychology. In TODAM, stimulus
associations are formed using linear convolution and
associations are unpacked using correlation (deconvolution).

More recently, Jones and Mewhort (2007) used recursive
circular convolution (Plate, 1995) to develop a self-
organizing model of semantic memory (BEAGLE).
BEAGLE captures judgements of semantic typicality,
categorization, priming, and syntax from word order.
BEAGLE’s ability to handle so many phenomena of
semantic memory is in itself impressive. However, from our
perspective, BEAGLE’s strength is that it shows how
holographic representation can account for complex
decision behaviour without adding control structures (e.g.,
learning and the application of rules). BEAGLE’s success
suggests that holographic stimulus representation should be
explored in related models of learning and memory. The
present work adapts BEAGLE’s representation scheme to
represent strings in the artificial grammar classification task.
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Recursive circular convolution

Circular convolution is a mathematical operation that forms
an associative representation, z, for two input vectors, x and

Y,

n-1

Zi= E‘xjmodn X y(i—j)modn ° [1]

j=0

where i indexes the element in z and where n is the
dimensionality of z, x, and y. Briefly, circular convolution
forms the outer-product matrix—long used to represent
associations in neural networks (e.g., Anderson, 1995)—and
then collapses it into a vector (see Figure 1). Circular
convolution is associative, commutative, and distributes
over addition.

Figure 1. Collapsing an outer-product matrix with
circular convolution, where x and y are the
argument vectors and z represents the resulting
compressed vector from collapsing the outer-
product matrix. The values i and j represent the
row and column indices, respectively, for an
element in the outer-product matrix.

In the work that follows, we apply circular convolution
recursively to encode a series, such as a sequence of letters.
Consider the string ABCD. To represent ABCD as a series,
first, generate a unique random vector for each of the
individual letters in the string {a, b, ¢, d}. Next, apply
circular convolution in a recursive fashion to bind the first
letter to the second, the product of that binding to the third,
and so on, until each letter has been folded into the
representation. At this point, using z to represent the string
ABCD, z = ABCD = ((a * b) * ¢) * d, where * denotes
circular convolution. No matter the length of the string, z
has the same dimensionality as the input (i.e., letter) vectors.

Why holographic representation?

In previous studies of AGL, we represented exemplars by
concatenating letters. For example, a string ABCD was
represented by concatenating the vectors for 4, B, C, and D
to form a single vector a//b//¢//d, where // denotes
concatenation. The scheme captured a swath of data from
the artificial grammar task and from serial reaction time
tasks (see Jamieson & Mewhort, 2009a, 2009b, 2010).
Nevertheless, concatenated representations are problematic.

In models using vector representation, it is traditional to
compute the similarity between x and y, using a vector
cosine. Thus, with concatenated strings, similarity is
computed by comparing information in corresponding serial
positions of two strings (i.e., element-for-element). Because
of the serial-position constraint, a model using the
concatenated representation scheme treats the strings ABCD
and CDAB as if they shared no overlapping features—a
judgement that is at odds with data. In contrast, a
holographic representation scheme distributes information
throughout the vector so that each part of it contains some
information about the whole. Thus, in difference to the
concatenation scheme, the cosine calculation compares all
parts of x (i.e., ABCD) and y (i.e., CDAB) simultaneously
and, thereby, acknowledges similarity between ABCD and
CDAB. Because participants appreciate the similarity
between ABCD and CDAB, the holographic scheme is
preferred.

Critically, holographic stimulus representation finesses the
problem of encoding serial structure. Importantly, it does so
without requiring a change in the similarity calculation or
other aspects of retrieval. This occurs because a
representation of ABCD that is formed using recursive
circular convolution superimposes overlapping orders of
serial structure onto a single distributed structure. Because
different orders of serial information about a string are
superimposed in a single representation, a standard cosine of
two vectors supports parallel comparison of multiple orders
of serial structure. The question we pose, then, is if we
import the holographic representations into an established
model of retrieval, will the previously successful model still
work; that is, can we still explain peoples’ judgements in the
artificial grammar task?

Minerva 2

Minerva 2 is an established model of retrieval (Hintzman,
1986, 1988). When a participant studies an item, an event is
encoded to memory as a unique trace.

In Minerva 2, a stimulus is represented by a vector of n
elements; each element takes values: +1 or -1. To represent
stimuli in the artificial grammar task, we first, generate a
unique random vector for each of the letters in the English
alphabet and then apply recursive circular convolution to
those vectors to represent a string of letters. Thus, a string
TXXV is represented by a trace: ((t * x) * x) * v.

Memory is a matrix, M. Encoding an event involves
copying its corresponding vector representation to a new
row in the memory matrix. Encoding is sometimes
imperfect. Imperfect encoding is implemented by setting
some vector elements to zero (indicating that the element is
indeterminate or unknown). A parameter, L, controls the
probability with which an element is stored. As L increases,
encoding quality improves.

All retrieval is cued. When a retrieval cue is presented, it
activates each trace in memory in proportion to its similarity
to the cue. The activated traces are aggregated into a
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composite called the echo; the contribution of each trace to
the echo is based on its activation.

The similarity of trace, i, to the probe, P, is computed
using a vector cosine, i.e.,

iP, X M”
j=1

T (s, 2
Sefsw P

where P; is the value of the j™ feature in the probe, Mj; is the
value of /" feature of the /" row in memory. Like the
Pearson r, the similarity of the ™ item to the probe, S, is
scaled to the interval [-1, +1]. Similarity equals +1 when the
trace is identical to the probe, 0 when the trace is orthogonal
to the probe, and -1 when the trace is opposite to the probe.

The i trace’s activation, A4;, is the cube of its similarity to
the probe, i.e.,

S, =

3
A=5 [31

The activation function exaggerates differences in
similarity between a probe and items in memory by
attenuating activation of exemplars that are not highly
similar to the probe. This allows traces most similar to the
probe to dominate the information retrieved. Note that the
exponent in the activation function preserves the sign of the
argument, S,.

The information retrieved by a probe is a vector, ¢, called
the echo. The echo is computed by weighting each of the i =
1..m traces in memory by their activations and, then,
summing all m traces into a single vector,

c,=EAl.le,- (4]

i=1

The information in the echo is converted to decision
variable called echo intensity, /, by computing the cosine
similarity (see Equation 2) of the echo and probe. In the
context of the artificial grammar task (i.e., classification),
echo intensity is a proxy for judgement of grammaticality.

In the remainder of this paper we apply the model to data
from the judgment of grammaticality task.

Evaluating the model

The judgement of grammaticality task was introduced by
Reber (1967). In his experiment, participants memorized
grammatical exemplars. After, they judged the grammatical
status of novel test probes. Reber’s subjects discriminated
novel grammatical from novel ungrammatical test probes,
but they could not articulate the rules of the grammar.

We have shown previously that Minerva 2 captures
discrimination of grammatical from ungrammatical test
probes in Reber’s (1967) task, without reference to
grammatical rules (Jamieson & Mewhort, 2009a, 2010). But

we used concatenated stimulus vectors in that work. In the
simulations that follow, we retest the model using the
holographic rather than concatenated stimulus vectors.

To simulate Reber’s (1967) task we began by representing
his stimuli in our model." First, we constructed a unique
100-element vector to represent each letter used to construct
letter strings: {7, V, P, X, S}. Second, we generated a vector
for each training and test string using recursive circular
convolution. Third, we filled successive rows on the
memory matrix with the training vectors. Fourth, we
introduced moderate data-degradation to the items in
memory, i.e., L = 0.7. Finally, we calculated the mean echo
intensity for each of the 24 grammatical and 24
ungrammatical test strings.

The new model successfully discriminated grammatical
from ungrammatical test items. The mean echo intensity for
the 24 grammatical test strings was .57 (SD = .03); the
corresponding value for the 24 ungrammatical test strings
was .49 (SD =.02), #(48) =2.15, p < .05.

In other simulations, we varied the integrity of data in
memory (e.g., Jamieson, Holmes, & Mewhort, in press). As
shown in Figure 2, the magnitude of the difference in mean
echo intensity for grammatical and ungrammatical test
strings (i.e., the model’s discrimination of grammatical and
ungrammatical items) grew as a function of L.
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Figure 2. Mean echo intensity for grammatical and
ungrammatical test strings as a function of data
integrity in memory, L.

The simulation illustrates several points. First, it shows
that the distributed stimulus representations generated using
recursive circular convolution support discrimination of
grammatical from ungrammatical test items. Second,
because the model discriminated the two classes of stimuli
without reference to grammatical rules, the simulation
serves as an existence proof that grammatical strings can be

! Reber did not list the specific study and test items that he used in
his original paper. He did, however, provide a list of representative
strings from the same grammar in another source (Reber, 1993, p.
36). We took our strings from there.
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discriminated from ungrammatical test strings without
knowledge of the grammatical rules. Thirdly, the simulation
shows that we can import holographic stimulus
representations into Minerva 2 without a deleterious impact
on the effects that the model captures using concatenated
vectors (see Jamieson & Mewhort, 2009a, 2010).

Next, we test the new representation scheme by applying
it to data collected by Kinder and Lotz (2009). Their data
provide a more detailed challenge.

Kinder and Lotz (2009)
Kinder and Lotz (2009) engineered an artificial grammar to
distinguish  stimulus properties thought to predict

judgements of grammaticality. They used the grammar to
construct a list of 12 training items and 48 test items. The
test items were of four different types. Type 1 and Type 2
items were ungrammatical; Type 3 and Type 4 items were
grammatical. Type 1 test items violated both positional and
sequential rules of the grammar; Type 2 items violated only
sequential rules (i.e., the strings included at least one illegal
bigram but all letters were in legal serial positions). Type 3
and Type 4 items obeyed positional and sequential rules of
the grammar; but, Type 4 items had the additional property
of being very similar to a specific training exemplar.
Accordingly, if participants endorse Type 2 over Type 1
items, they must appreciate the positional dependencies of
letters in the training set. If participants endorse Type 3 over
Type 2 items, they must appreciate the difference between
studied and unstudied chunks (i.e., bigrams and trigrams). If
they endorse Type 4 over Type 3 items, they must
appreciate whole-item similarity between training and test

strings.
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Figure 3. Empirical: Percentage of items
endorsed as grammatical in Kinder and
Lotz’s (2009) Experiment 2.

Kinder and Lotz’s (2009) results are reproduced in Figure
3. First, participants endorsed Type 2 over Type 1 items
indicating they were sensitive to the positions of individual
letters in the training strings. Second, participants’ endorsed
Type 3 over Type 2 items, indicating they were sensitive to
test strings’ inclusion/exclusion of studied and unstudied
bigrams. Finally, participants endorsed Type 4 over Type 3

items, indicating they were sensitive to whole-item
similarity between training and test strings.

The pattern of results demonstrates that judgement of
grammaticality is influenced concurrently by the positions
of single letters in a string, by knowledge of small chunks
(i.e., knowledge of bigrams and trigrams), and by
knowledge of larger chunks (i.e., whole training strings). To
claim a model as a competent account of decision in the
judgement of grammaticality task, the model must
accommodate concurrent sensitivity to the three sources of
information.

Simulation of Kinder and Lotz (2009; Exp 2)

Kinder and Lotz’s (2009) data provide a principled
challenge to test the idea that holographic stimulus
representation allows multiple orders of serial-structure to
exert a concurrent influence on judgements of
grammaticality. Hence, we tested our model using Kinder
and Lotz’s (2009) materials.” The simulation was otherwise
the same as before.

The results of the simulation are presented in Figure 4; the
means were computed across 50 independent replications of
the procedure. We treat mean echo intensity as a proxy for
mean judgement of grammaticality.
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Figure 4. Simulation: Mean echo intensity for
the four item types in Kinder and Lotz’s (2009)
Experiment 2.

As shown, the model reproduced the pattern of results
from Kinder and Lotz’s (2009) experiment. Firstly, mean
echo intensity for Type 2 items was greater than for Type 1
items indicating that the model was sensitive to positional
dependencies of individual letters in the training strings.
Secondly, echo intensity for Type 3 items was greater than
for Type 2 items indicating that the model was sensitive to
bigram and trigram structure in the stimuli. Finally, echo
intensity for Type 4 items was greater than for the Type 3

% A complete listing of Kinder and Lotz’s (2009) materials is
presented in their Appendix B. The simulations were identical for
the two sets; a testament to their care at stimulus design.
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items indicating that the model was sensitive to larger
chunks of letters, possibly whole strings.

Importing a scheme for holographic stimulus
representation into a Minerva 2-based account of retrieval
allows the model to capture additional details of
performance in the artificial grammar task. Minerva 2 now
captures trends that previously required a very different kind
of computational account (e.g., the SRN, see Elman, 1990).

General Discussion

Judgements of grammaticality reflect a concurrent
consideration of discriminative cues (e.g., Johnstone &
Shanks, 1999). To accommodate that fact, we developed a
new kind of stimulus representation based on recursive
circular convolution. The new representation folds
information about several cues into a distributed data
structure. More importantly, the holographic representation
scheme supports parallel comparison of features in a string,
unconstrained by serial position alignment. Using the
holographic representations in a model of human memory
captures judgement of grammaticality.

In previous work, Jamieson and Mewhort (2009a, 2010)
demonstrated that judgment of grammaticality can be
understood using Minerva 2—an exemplar model of
memory. In that work, exemplars were represented by
concatenating individual letter vectors. Judgement of
grammaticality reflected a test probe’s global similarity to
the studied exemplars. The representation scheme worked
because it preserved the spatial structure of the stimulus
(i.e., letters from left-to-right). However, the account
neglected to include information about left-right sequential
properties of the exemplars—information that subjects
notice during study. Because the model did not
acknowledge sequential structure in stimuli, it incorrectly
computed similarity between two exemplars based on
bigram overlap; a factor measured by associative chunk
strength.

The holographic stimulus representations developed here
finesse the problem associated with the earlier scheme by
folding information about serial-structure into the
representation of a string. By using the holographic
representations, the model now captures judgements that
reflect serial structure (e.g., participants’ appreciation of
chunk overlap). Despite changes to the representation
scheme in the model, we have not changed the model’s
account of retrieval and so we retain our previous
conclusion: Judgement of grammaticality can be captured
without an implicit rule-induction process that abstracts and
applies grammatical information.

Kinder (2000; Kinder & Lotz, 2009) and others (e.g.,
Cleeremans, Servan-Schreiber, & McClelland, 1989) have
argued for a Simple Recurrent Network (SRN) account of
artificial grammar learning. The SRN accomplishes
judgement of grammaticality by learning the sequential
structure in a set of training sequences and then applying
that knowledge to predict sequential regularities in test
items. When the SRN can predict the sequential structure of

a test string, it judges the test string as grammatical (see
Reber, 2002, for an analysis of the approach; see Vokey &
Higham, 2004, for model comparison of the SRN and a
related instance-based model). Cleeremans et al. (1989)
showed the SRN develops a veridical representation of the
grammar used to generate the training strings. By contrast,
our account treats judgement of grammaticality as an
episodic memory task. At study, the model encodes
information about individual exemplars, including serial
structure. At test, the model judges a test strings’
grammaticality by its global similarity to the exemplars in
memory. The two classes of model (Minerva 2 and the
SRN) offer very different explanations of the cognitive
processes that underlie judgement of grammaticality. So,
which approach is to be preferred? We think the answer
should be based on the nature of the experimental problem.

In the training phase of a standard artificial grammar
experiment, participants are asked to memorize exemplars.
At test, they are given the problem of inferring the
grammaticality of test probes. Of course, people can learn
sequential structure in stimuli instructions. But they do not
have to learn it: the task does not cue them to do so. In our
view, although learning sequential structure in a set of
exemplars provides a possible mechanism, for the
judgement of grammaticality task, it implies compulsory
learning of sequential regularities even though that action is
neither implied by nor cued by the task. Unlike the SRN,
Minerva 2 assumes people notice sequential characteristics
of each exemplar, but they do not learn the regularities in
the set of exemplars. Moreover, because our account treats
judgement of grammaticality as a retrospective judgement,
it is not necessary to justify or to describe prospective
abstraction of structure in the training set.

In developing our holographic representation scheme, we
have been careful to avoid altering our model’s assumptions
about retrieval. In both our original and our present
accounts, we assumed a perceptual system loads memory
with what the subjects notice about each of the studied
exemplars. Judgment of grammaticality reflects the global
similarity of a test probe to training items. The difference in
our new account is that the new model assumes that subjects
notice more about the order of the symbols than the old
model assumed; a claim echoed in post-experimental
interviews with our subjects. At a broader level, our solution
honours an insight from Simon’s (1969) parable of the ant.
Simon noted that an ant’s path on a beach may be complex
and difficult to describe. But, the complexity of the path
may be driven by complexity in the beach rather than
complexity in the ant. Simon used the parable to goad
theorists into considering explanations for a behaviour based
on the complexity of the environment before assuming that
the behaviour reflects complex psychological mechanisms.
Here, we have followed Simon’s advice. Peoples’ behaviour
in the artificial grammar task appears complex and difficult
to describe. However, the complexity is in the materials, not
in the subjects. Judgement of grammaticality reflects the
storage and retrieval of studied exemplars.
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