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Abstract

We used a simple problem-solving game task to study
imitation and innovation in groups of participants. Guesses
were composed of multiple elements with linear and
interactive effects on score, and score feedback was provided
after each of a number of rounds. Participants were allowed to
view and imitate the guesses of others during each round, and
the score information accompanying others’ guesses was
either shown or hidden in two conditions. When scores were
not visible, social learning was impeded; participants were
less efficient in their searching of the problem space and
achieved lower performance overall. When scores were
visible, higher performance was observed, and results
indicated a more equitable sharing of productive exploration
among participants within groups as a result of selective
imitation and  cross-participant  cumulative = mutual
innovations.
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imitation; problem solving; innovation diffusion.

Background

The act of learning about the world from others permeates
human life. This is evident upon casual reflection about how
people gather information and make choices about
restaurants or movies, candidates for a job or political
office, a new city to live in or a large household purchase,
not to mention direct collaboration. Such "social learning"
has been defined broadly as "the acquisition of behavior by
observation or teaching from other conspecifics" (Boyd &
Richerson, 2005). Social learning is a well-studied
phenomenon in non-human animals, including foraging
choices in starlings (Templeton & Giraldeau, 1996), food
preferences in various rodent species (Galef & Giraldeau,
2001), and mate choices in black grouse (Hoglund, Alatalo,
Gibson & Lundberg, 1995). Humans’ rare talent among
animals for direct and flexible imitation has been called "no-
trial learning" (Bandura, 1965), because it is even faster
than the one-trial learning observed in animals with a strong
built-in tendency to form certain associations (e.g. between
the taste of a food and a subsequent stomach ache). This
talent allows an imitator to add new behaviors to his or her
repertoire without the costs of trial-and-error learning.

Social Learning Strategies

Tendencies toward individual and social learning depend
on the availability and reliability of information in the
environment, including other learners. Laland (2004)

reviews strategies for when social learning is chosen, and
who social learners choose to imitate. The first class of
strategies (when to imitate) often uses the relative cost or
uncertainty of asocial learning as criteria. For example,
learning about predators on one’s own can be very
dangerous, so many animals have adapted to learn predator
responses from others; in at least one instance this learning
has occurred across species (Krause, 1993). The second
kind of strategy (who to imitate) often relies on absolute or
relative performance of candidate solutions (such as copy
the best or copy if better strategies, respectively), or their
relative popularity (such as the copy the majority strategy);
each of these strategies has been shown in several species
(Laland, 2004).

Consequences of Social Learning

Rogers (1988) performed simulations showing that in a
temporally unstable environment, the extent to which
imitation is beneficial depends on how recently the target of
imitation has directly sampled the environment. Therefore,
the addition of random social learners (information
scroungers) to a population of asocial learners (information
producers) does not improve the overall fitness of the
population, because the costs of learning avoided by
imitators will be offset by costs resulting from the increased
use of outdated and inaccurate information. Boyd and
Richerson (1995) and Kameda and Nakanishi (2003)
confirmed and extended these results to show that when
social learners can imitate selectively (e.g. imitating when
individual exploration is relatively unreliable and thus more
costly), the overall fitness of the population can increase,
because both individual and social learning can become
more accurate.

Of course, these models are greatly simplified in several
ways, among them the assumption that social learners
cannot discriminate between model solutions of varying
quality without adopting them first. Even without this
capability, the benefits for social learners (and thus average
benefits for their group) in temporally stable environments
are often assumed to be evident (Kameda & Nakanishi,
2002), but the mechanisms by which these benefits accrue
are not necessarily clear. If social learning is essentially
scrounging that only benefits imitators, then creating
obstacles to social learning will only decrease the average
performance of imitators. However, the results of previous
experiments (Wisdom, Song & Goldstone, submitted) give
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us reason to believe that imitators are often also explorers,
and that social learning serves as a vital component of the
creation of cumulative improvements. Thus impeding social
learning is expected to lead to decreases in the performance
of all participants.

Experiment Overview

The following experiment investigates both the causes
and consequences of social learning. We employ a task in
which participants in groups consisting of between one and
nine persons are instructed to individually build solutions,
which consist of multiple elements chosen from a larger set
of elements over a series of rounds. These solutions are
evaluated according to a score function that takes into
account both individual element values and interactions
between them. Groups of participants play simultaneously,
and each can view the tentative solutions of all others. In
one condition, participants may view fellow participants’
scores alongside their solutions, and in another condition
fellow participants’ scores are invisible.

Predictions

We made the following predictions. When evaluative
information about peer solutions was unavailable,
participants would be unable to be sufficiently selective in
imitation, and thus participants employing highly imitative
strategies would have relatively lower scores. Imitation
strategies in both conditions would be biased toward peers
with solutions similar to the imitator’s, and toward adopting
solution elements that were more popular among peers, but
these effects would be more pronounced in the invisible-
scores condition in order to compensate for the lack of
direct evaluative information. Mean scores would be lower
for participants (including successful asocial learners) in the
invisible-scores condition because they would be unable to
easily take advantage of good solutions found by others
through selective imitation and further improve upon them.

Methods

Participants were recruited from the Indiana University
Psychological and  Brain Sciences  Department
undergraduate subject pool, and were given course credit for
taking part in the study. Participants populated each session
by signing up at will for scheduled experiments with a
maximum capacity of 9 persons. 234 individuals
participated in the experiment, distributed across 65 sessions
as shown in Table 1.

Table 1. Distribution of participants across group sizes.

Groupsize 1 2 3 4 5 6 7 8 9
#Sessions 16 8 11 11 5 2 3 3 2
16 33 44 35 12 28 32 18

# Participants 16

Task Details and Instructions

We implemented the experiment using custom software
written in Java and Flash and run in a web browser (a
version of the task can be run as “Creature League” at
http://groups.psych.indiana.edu/ ). Each participant used a
mouse to interact with the experimental game. A central
game server recorded data and updated participant displays
at the end of each round. In the game itself, participants
attempted to maximize the scores earned by their chosen
subsets ("teams") from a set ("league") of creature icons
over 24 rounds. The display included an area for the
participant's own current team, another area that could be
toggled to show the participant's previous round team or
their best-scoring team so far in the game (along with its
associated score), a league area which showed all of the
icons that were available for selection, and indications of the
current round in the game and the amount of time remaining
in the current round. If a session included more than one
participant, each participant's display also showed the team
and, in the visible-scores condition, the associated score for
each other participant in the previous round. The ordering of
other participants’ teams in the display was not kept
constant across conditions, to avoid imitation based on past
behavior. Icons could be copied from any part of the display
to a participant's current team by dragging and dropping
them with the mouse, except for those already on the
participant's current team. The current team could be
replaced entirely by another team by using the score box
above it as a "handle" to drag it to the current team area. A
screen capture of the task interface is shown in Figure 1.

Your Team 5 Seconds Left
Q\ Last Round The Other Teams

Round Qof4

Figure 1: Example of experiment task display.

At the beginning of each session, players were given a
hands-on demo of the game (including the various ways to
move creatures to one's current team), and further informed
about the mechanics of the game and what to expect in the
remainder of the experiment session, including the
following information. Each game consisted of 24 rounds,
and each round was 10 seconds long. Score feedback was
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given after each round: if the participant's score had
improved from the previous round, the numerical score
display counted up to the new score and turned green, and if
it had worsened, the display counted down to the new score
and turned red. At the end of each game, the display showed
the player's final score, along with a table of the scores of
each player in each round of the game, sorted by average
score. The player's own score was highlighted to show their
relative performance without placing competitive emphasis
on it. Players were instructed to do their best to maximize
their teams' scores over all 24 rounds. At the beginning of
each game, each player's team was a random selection of
creature icons from the league. Each group played 6 games;
in 3 of the games, other participants’ scores were visible,
and in the other 3 they were not. These were called the
visible-scores and invisible-scores conditions, respectively,
and were played in random order in each session.

In each game, each icon was associated with a certain
positive number of points, and several special pairs of icons
were associated with separate score bonuses or penalties
that captured interactions between icons. The score for a
team was computed by summing the individual point values
for each icon, and then adding or subtracting the value of
any special pairs present. The pairs did not overlap, and the
distribution was designed to be challenging: pairs which
gave large positive bonuses were distributed among icons
with small individual point values, and pairs which gave
large negative penalties were generally found among icons
with large individual point values. There was a greater
number of positive interactions than negative ones, to give
the score distribution a larger upper tail. For ease of
comparison and analysis, all scores were normalized to the
range [0,1] according to the minimum and maximum
possible scores. The combinations of individual and pair
values described above resulted in the probability
distribution of scores among all possible teams shown in
Fig. 2. Participants were not given explicit information
about the maximum score, the score distribution, or the
position of the interaction terms. The icons' display position
and associations with the point distribution were shuffled
randomly for each game, so that their appearance and
placement in the display did not give clues as to their point
values during the course of an experiment session.

Dependent Variables and Definitions

In each round, the following data were recorded for each
player: the icons (choices) on the team at the end of the
round, the source of each icon, and the resulting score. The
source information indicated whether an icon was
unchanged from the previous round (Retained), copied from
the player's own best-scoring team so far (Retrieved),
chosen from the league display (Innovated), or copied from
another player's team (Imitated). When Imitation was
chosen, the persistent identifier of the copied player was
recorded to allow further analyses of imitation decisions. In
the case of a player replacing the entire team with Imitated
icons, only the choices that were not already present on the
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Figure 2: Distribution of scores for all possible teams.

team were counted as Imitated. Similar criteria applied to
replacement of an entire team with Retrieved icons, or
removing an icon and then returning it to the team via an
Innovation choice. Choice similarity was defined as the
proportion of icons that two teams have in common. An
improvement was defined as an instance of a participant
obtaining a score higher than all prior scores of all players
within a particular game. Each participant's normalized
improvement share was defined as their individually
achieved proportion of the total improvements achieved by
all participants in a condition, multiplied by the number of
participants. A value of 1 indicated a "fair" share, e.g. a
participant achieved one-third of the improvements in a
three-person session. Guess diversity for a group in a
particular round was defined as the proportion of icons in
the league represented on one or more participants' teams in
that round. This value was normalized by the average
expected value of this proportion for each participant group
size, generated by a Monte Carlo simulation.

Results

Differences in Performance

Grouped participants achieved mean overall (across all
rounds) and final normalized scores of .398 and .481
respectively in the invisible-scores condition, and
significantly higher scores (.463 and .546) in the visible-
scores condition (see Figure 2). Isolated participants
achieved mean overall and final scores of .356 and .395.
Linear mixed-effects models revealed that score increased
significantly with group size in the visible-scores condition
(F(1,63)=79.75, p<.0001, B=0.354), as well as in the
invisible-scores  condition  (F(1,63)=14.94, p=.0003,
B=0.129), though the latter trend was not as strong. Of all
grouped participants, 81.7% had higher mean scores in the
visible-scores condition than in the invisible-scores
condition (see Figure 3).
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Figure 3: Scattergram of individuals’ mean scores in each
condition, labeled with their participant group size.

Linear mixed-effects models were used to examine trends
across rounds for score and guess diversity, with a random
effect of participant group. Analysis of score versus round
showed a strong positive trend in the visible-scores
condition (F(1,1494)=295.96, p<.0001, B=.534, mean
increase=0.188), and a slightly shallower positive trend in
the invisible-scores condition (F(1,1494)=251.93, p<.0001,
B=.615, mean increase=0.145; see Figure 4). Guess
diversity showed a similarly strong decrease across rounds
in the visible-scores condition (F(1,1126)=304.78, p<.0001,
B=-.443, mean change=-0.468), and a weaker decrease in
the invisible-scores condition (F(1,1126)=97.31, p<.0001,
B=-0.453, mean change=-0.271; see Figure 4).

Grouped participants achieved an average of 1.21
improvements per person in the visible-scores condition,
and 095 in the invisible-scores condition. Isolated
participants achieved an equivalent average of 2.44
improvements per person. Mean proportions of each choice
source for improvement and non-improvement guesses in
each condition are shown in Table 2. In both conditions, the
proportion of Innovation choices was higher for guesses that
yielded improvements relative to non-improvements
(invisible-scores: t(733.20)=-14.03, p<.0001; visible-scores:
t(907.73)=-17.14, p<.0001). In the invisible-scores
condition, the proportion of Imitation choices was
significantly lower for improvements than non-
improvements (t(916.77)=11.54, p<.0001), while in the
visible-scores condition, the proportion of Retention choices
was significantly lower for improvements than non-
improvements (t(916.33)=9.34, p<.0001). Overall there was
significantly higher Retention in the visible-scores condition
(t(360)=-2.218, p=.027, indicating that guesses changed
more slowly.
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Figure 4: Change in score and guess diversity across
rounds in each condition.

Analyses of relationships between mean individual score
and mean individual choice source proportions showed a
strong negative correlation in both conditions between score
and prevalence of Innovation choices (invisible-scores:
F(1,196)=64.16, p<.0001, B=-0.497; visible-scores:
F(1,196)=153.5, p<.0001, B=-0.663) and a strong positive
relationship between score and Retention (invisible-scores:
F(1,196)=15.27, p=.0001, B=0.269; visible-scores:
F(1,196)=62.87, p<.0001, B=0.493), while a strong positive
relationship was shown for Imitation only in the visible-
scores condition (F(1,196)=9.70, p=.002, B=0.217), and a
strong positive relationship was shown for Retrieval only in
the invisible-scores condition (F(1,196)=14.28, p=.0002,
B=0.261).

Of all improvements in the invisible-scores condition,
14.5% resulted from guesses that included Imitation, versus
28.4% in the visible-scores condition. In a large majority
(>70%) of those cases across both conditions, the focal
player imitated at least one peer who had previously
imitated the focal player. In other words, a player who was
imitated by another player often later imitated the same
player in the course of creating an improvement.

Table 2: Mean choice source proportions for (non-)
improvement guesses in each condition. (Significant
differences within a condition are in boldface, and
significant differences between conditions are in italics.)

Condition | Improvement? | Imit. | Innov. | Retain | Retr.
Invisible No 100 | .133 712 | 044
Scores Yes .039 | .216 705 .035
Visible No .091 | 114 .763 | .022
Scores Yes .082 | .194 .695 .021
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Normalized improvement share showed a relatively
equitable distribution of improvements within groups in the
visible-scores condition, with the distribution peaked near a
"fair" share of 1. In the invisible-scores condition, however,
the distribution had a strongly inequitable skew, with a
modal share of zero (see Figure 5). A Kolmogorov-Smirnoff
test of equality of distributions indicated that these
distributions were  significantly different (D=0.171,
p=0.006). Mean overall score showed a strong positive
correlation with improvement share in the invisible-scores
condition (F(1,148)=34.94, p<.0001, B=0.329), but this
relationship was not evident in the visible-scores condition.

Differences in Strategy

In the visible-scores condition, approximately 79% of
imitation events were of the highest-scoring player, while in
the invisible-scores  condition, all players were
approximately equally likely to be imitated with regard to
score. A comparison between the mean choice similarity of
participants’ most recent guesses to those whom they
imitated, and to those whom they did not imitate, revealed a
slight but significant positive difference in the visible-scores
condition: a similarity value of .563 for imitated and .524
for non-imitated guesses (t(5084.88)=-5.47, p<.0001). The
opposite was true in the invisible-scores condition: .317 for
imitated and  .346 for  non-imitated  guesses
(t(4041.53)=4.02, p<.0001). In other words, when scores
were visible, imitation was biased toward similar guesses,
and when scores were invisible, imitation was biased toward
dissimilar guesses.

In order to measure the bias of participants to choose an
icon according to its frequency in peers’ teams, we tallied
the number of players in the group whose teams included
each icon in the previous round (Ng_;), as well as the
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Figure 5: Histograms showing relatively equitable
achievement of improvements within groups in the visible-
scores condition, and an inequitable distribution in the
invisible-scores condition.

number of the remaining players who added it to their team
in the current round via Imitation. To convert these figures
to normalized frequencies, the first number was divided by
the participant group size (N), and the second number was
divided by the number of participants who did not possess
the icon in the previous round (N - Ng_;). If a participant had
decided to imitate an icon at random from among all
neighbors’ teams, a certain chance correlation with choice
frequency would be expected simply because more high-
frequency icons are present. However, a linear mixed-
effects analysis of imitation probability versus choice
frequency showed a positive frequency bias that was
significantly greater than chance in the visible-scores
condition (F(1,604)=943.25, p<.0001, B=.741) and
significantly below chance in the invisible-scores condition
(F(1,604)=231.67, p<.0001, B=.470). This indicates that in
the visible-scores condition, participants were biased toward
imitating higher-frequency icons at a rate greater than
expected by chance, but not in the invisible-scores
condition.

Discussion

When scores were visible, participants were heavily
biased toward imitating higher-performing peers (displaying
the copy the best strategy discussed in Laland (2004)), and
performance was correlated with the average amount of
Imitation in a participant’s choices. Participants also showed
a bias toward imitating solution elements that were
possessed by larger proportions of their fellow participants,
similar to the copy the majority strategy. Another bias
evident in the score-visible condition was toward imitating
more similar guesses, which allowed the imitator to make
use of social learning while keeping a solution partially
compatible with previous solutions and existing knowledge
of the problem space, a phenomenon explored in studies of
innovation propagation (Rogers, 2003).

As expected, hiding other participants’ score information
strongly impeded social learning: when others’ scores were
not visible, the choice of whom to imitate was
approximately random with respect to score, and
performance was correlated with the average amount of
Retrieved information on a participant’s team, showing the
incentive to focus on previously-acquired information rather
than that of others. Surprisingly, participants in the score-
invisible condition also seemed to be slightly biased against
peer solutions that were similar to their own, as well as
icons which were more popular among their peers, perhaps
indicating a bias toward novelty, which would help explain
the overall decrease in individual Retention in this
condition.

However, participants in the invisible-scores condition
still showed a slight bias toward imitating more popular
icons, indicating that the lack of score information did not
cause them to disregard the guesses of their fellow players
entirely. Though it conflicts with the finding that imitation
in this condition occurred without regard to score, this may
explain some of the improvements using Imitation and the
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positive relationship of score with participant group size in
this condition. When players have relatively high incentives
to explore for themselves rather than imitate, and yet have
some solution elements in common, it is reasonable to
conclude that those common solution elements may produce
good scores. This is also consistent with many participants’
self-reported strategies.

As seen in the increasing score and decreasing guess
diversity trends across rounds, average performance
increased via the convergence of group members on regions
of the problem space that contained high-quality teams. This
convergence combined with a small amount of individual
exploration caused such regions to be explored more
thoroughly and still better solutions to be found. However,
in the invisible-scores condition, when imitation was not
focused on a small group of better-performing neighbors
(because performance information was not available), or
similar guesses, this convergence happened much more
slowly, search was more diffuse and less efficient, and
lower performance resulted.

The significant correlation of improvement share with
mean scores in the score-invisible conditions shows that
individuals who were relatively more successful at
individual exploration were rewarded with proportionately
better overall scores compared to others, because their
fellow players could not easily copy their improvements and
achieve their scores. In the score-visible conditions this
relationship disappeared, but mean scores increased
significantly such that nearly all participants did better.

In other words, when social learning was unimpeded in
the visible-scores condition, high and low individual
achievers had approximately the same payoffs, but absolute
payoffs were higher for both compared to the invisible-
scores condition. This is because imitators were not merely
scroungers; the substantial proportion of Imitation present in
improvements shows that imitated guesses were often the
basis for further cumulative innovations. The cumulative
innovation hypothesis is supported by the fact that a large
proportion of improvements which used Imitation involved
mutual Imitation and improvement, in which solution
elements were passed between players via copying and built
into better solutions in the process. This enabled a more
equitable sharing of the “labor” of producing improvements,
and produced more improvements overall.

Gabriel Tarde, one of the founders of social psychology,
considered innovation and imitation to be "the fundamental
social acts" (Tarde 1903/1969). Cultural conventions can be
thought of as a form of large-scale imitation of behaviors
that evolve along with their associated populations, subject
to accompanying adaptive pressures (Boyd & Richerson,
2005). Innovations are necessary to adapt to the challenges
of changing environments, and when members of a group
imitate them, adaptive solutions to problems can be
effectively preserved within a culture.

The findings of this study point to new avenues for
understanding how innovations are generated and spread, as
well as how information, incentives and the dynamic

behavioral interactions of individuals create higher-level
consequences for the groups to which they belong.
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