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Abstract

People seek for patterns and pay particular attention to streaks
even when they are generated by a random process. The
present paper examines statistics of pattern time in sequences
generated by Bernoulli trials. We demonstrate that streak
patterns possess some statistical properties that make them
uniquely distinguishable from other patterns. Because of the
uncontaminated continuity, streak patterns have the largest
amount of self-overlap, resulting in the longest waiting time
and the largest variance of interarrival times. We then discuss
the psychological implications of pattern time such as in
memory encoding and perception of randomness.
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Introduction

When faced with temporal sequences of events, people often
attempt to make sense out of apparent patterns even when
they are completely random. Among the most perceptible
patterns, “streaks” or “runs,” defined as continuous series of
the same outcomes, are notorious for they not only yield
counterintuitive statistical properties but also inspire
extensive investigations on the biases in human perception
of randomness and probabilistic judgment and reasoning.
One well-known example is the hot hand belief. Many
basketball fans believe that some players have the “hot
hand” and tend to make successful shots in streaks.
However, in a seminal study, Gilovich, Vallone, and
Tversky (1985) find no significant statistical evidence to
distinguish the actual shooting sequences from the
sequences of Bernoulli trials. This finding has been
controversial but withstood several critical attacks (for a
comprehensive summary on the hot hand study, see, Bar-
Eli, Avugos, & Raab, 2006). In explaining the hot hand
belief, Gilovich et al. (1985) use the representativeness
heuristic, which has also been used to explain the gambler’s
fallacy (Tversky & Kahneman, 1974). By such heuristic,
people expect the essential characteristics of a chance
process to be represented not only by the entire global
sequence but also by local subsequences. For instance, when
tossing a fair coin, a streak of four heads—which is quite
likely in even relatively small samples—would appear to be

non-representative.! Thus, in the gambler’s fallacy, a tail is
“due” to balance a streak of heads. In the hot hand belief, a
streak of successful shots may lead people to reject the
randomness of sequences and signal the existence of a hot
hand. Several researchers have questioned the
representativeness heuristic for its incompleteness in
accounting for two opposite psychological dispositions, but
their arguments are still based on the evidence that the hot
hand belief is false (e.g., Ayton & Fischer, 2004; Burns,
2004). Together, the hot hand belief and the gambler’s
fallacy have been considered as two outright fallacies in
people’s perception of streak patterns, and this stance has a
great impact on studies in other disciplines such as
behavioral finance and economics (e.g., Camerer,
Loewenstein, & Prelec, 2005; Gilovich, Griffin, &
Kahneman, 2002; Rabin, 2002).

Moreover, studies on people’s judgment and generation of
random sequences show that people expect fewer and
shorter streaks when observing sequences produced by an
independent and identically distributed process (i.i.d.) and
they tend to avoid long streaks when instructed to generate
such sequences (e.g., Budescu, 1987; Falk & Konold, 1997;
Nickerson, 2002; Olivola & Oppenheimer, 2008). Besides
behavioral evidence, the salience of streak patterns is also
indicated by the results from a functional magnetic
resonance imaging (fMRI) study (Huettel, Mack, &
McCarthy, 2002). In a “pattern violation task,” participants
were informed of the random order of the sequences.
However, greater activation was found in prefrontal cortex
(PFC) when participants observed violations of streak
patterns (e.g., [AAAA] vs. [AAAB]) than violations of an
alternating pattern (e.g., [ABABAB] vs. [ABABAA]) in a
random binary sequence. In addition, the amplitude of fMRI
hemodynamic responses (HDR) started increasing at lengths
2 for streak patterns (i.e., [AAB]) but only started increasing
at lengths 6 and larger for alternating sequences (i.e.,
[ABABAA]). (Oskarsson, Van Boven, McClelland, &
Hastie, 2009, provided a comprehensive review on
judgments of random and nonrandom sequences of binary
events.)

Given the unique role of streaks in people’s perception
and judgment of temporal sequences, an inevitable question
is what is so special about streaks? To answer this question,
we have to examine the statistics of patterns more carefully

! The probability of observing four heads in a row at least once
in 20 tosses is 0.48.
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since they are widely known for producing counterintuitive
results (for the same reason, many people are surprised by
the results of the runs test in the hot hand study).

It would seem too obvious to mention once again the
unique composition of a streak: a streak is composed of an
uncontaminated run of the same elements, which makes it
exceptionally stand out from other non-streak patterns (such
as alternation and symmetry) or any composition without an
apparent order. While this property does not affect how
often a streak occurs, it does affect when a streak first
occurs. To exemplify, we compare two patterns HHH and
THH (where H = heads and T = tails in tossing a fair coin).
Governed by the independence and stationarity assumptions
of Bernoulli trials, these two patterns have the same
probability of occurrence in any three consecutive tosses
(hence the fallacy in the gambler’s fallacy and the hot hand
belief). However when the coin is tossed repeatedly, the
probability of first occurrence—the probability that a
pattern first occurs at the n™ toss, given that the pattern has
not occurred before—can be different for different patterns
(see Figure 1). For example, both patterns THH and HHH
are equally likely to occur or not occur in the first three
tosses. If THH has not occurred before, it will have a
probability of 0.125 to first occur at the 4™ toss. In contrast,
if HHH has not occurred before, its probability of first
occurrence at the 4™ toss is only 0.0625, half of that for
THH (for a method of calculating the probability of first
occurrence, see Sun, Tweney, & Wang, 2010a). Overall, it
will on average take 14 tosses to observe the first
occurrence of HHH but only take 8 tosses to observe the
first occurrence of THH. Moreover, if we monitor these two
patterns simultaneously, it is more likely that we first
encounter THH than we first encounter HHH (the odds are
7:1). In other words, it appears that the first occurrence of
the streak pattern HHH has been “delayed.”

The time it takes for the first occurrence of a pattern
(measured by the number of trials) is a statistical property
known as waiting time. Compared to the long history of
studies on the gambler’s fallacy (see, Ayton & Fischer,
2004), the development of waiting time and its related
properties is fairly new (see, Gardner, 1988; Graham,
Knuth, & Patashnik, 1994). Most recently, this development
has received attention in psychological literature. Hahn and
Warren (2009) argue that given people’s limited exposure to
the environment (i.e., the number of coin tosses is finite),
the longer waiting time of streak patterns would have made
them less likely to be observed, thus, “there is something
right about the gambler’s intuition that the longer the run,
the more likely, by contrast, is a sequence with a final tails”
(p. 458). Sun et al. (2010a) criticize Hahn and Warren’s
interpretation, and argue that it is the particular composition
of patterns, rather than the length of the global sequence,
that plays an essential role in both the statistics of waiting
time and people’s perception of randomness (also see Sun,
Tweney, & Wang, 2010b).

Notwithstanding the debate above, the unique
composition of a streak and its “delayed” first occurrence

may provide a new prospective in the investigations on
human perception of randomness. Particularly, different
compositions of patterns may be directly related to memory
encoding due to the limited working memory capacity (e.g.,
Falk & Konold, 1997; Olivola & Oppenheimer, 2008). For
example, a streak of HHH can be easily memorized as
“3Hs.” In addition, different waiting times in effect indicate
different variances in the distribution of pattern occurring
times (Sun & Wang, 2010), and this fact may have direct
consequence in people’s intertemporal choices as it has been
suggested that human brains are sensitive to time
discounting (e.g., Ainslie & Monterosso, 2004; McClure,
Ericson, Laibson, Loewenstein, & Cohen, 2007; McClure,
Laibson, Loewenstein, & Cohen, 2004). In the following,
we demonstrate some interesting properties in the statistics
on the time of patterns and discuss the psychological
implications.
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Figure 1: Probabilities of first occurrence for patterns
HHH, HTH and THH when a fair coin is tossed
repeatedly.

Mean Time and Waiting Time

The time of patterns has been studied by several different
methods and different terminologies exist (e.g., Graham, et
al., 1994; Li, 1980; Ross, 2007). To be consistent, here we
clarify some basic concepts. In a process of coin tossing, the
interarrival time (T) is the number of trials (tosses) between
any two successive occurrences (arrivals) of the pattern, and
the first arrival time (T*) is the number of trials required to
encounter the first occurrence of the pattern since the
beginning of the process®. Then, mean time (E[T]) is the
expected value of the interarrival time, and waiting time
(E[T*]) is the expected value of the first arrival time. We
also distinguish the variance of interarrival time and the
variance of the first arrival time by Var(T) and Var(T*),

2T and T* may have different distributions, so that the process
of counting patterns is also called a general renewal process or a
delayed renewal process (Ross, 2007).
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respectively. To simplify the discussion, here we only
discuss the case of a fair coin (i.e., py = pr = %) and focus
on pattern length r = 3. Unless specified, the discussion in
the following will extend to patterns for all r > 3. (A more
general treatment can be found in Sun & Wang, 2010.)

Overlap and Waiting Time

We first note that when generated by an independent
Bernoulli process, a pattern will have a mean time that is the
inverse of its probability of occurrence. Thus, any pattern of
the same length will have the same mean time. For example,
E[Tuw = E[Turn] = E[Tra] = (1/2)” =8.
However, waiting time can be different for different
patterns. Compared to other patterns of the same length,
streak patterns always have the longest waiting time. For
example,
E[T *yn ] =14, E[T *,1,,] =10, and, E[T *,,,] =8.

Table 1 lists the mean and variance of interarrival time T
and the first arrival time T* for all possible patterns of
length 3. Extra caution should be taken to properly explain
these results. An example is given in Figure 2, which
depicts pattern time in two different contexts where
individual patterns are monitored either independently
(panel A) or simultaneously (panels B and C). Note that the
colored circles in Figure 2 highlight the position where
individual patterns have occurred and they actually
represent the values of an “indicator variable” for pattern
occurrence. In addition, arrows represent the minimum
interarrival time between successive occurrences of
patterns—the “minimum succeeding distance” for a pattern
to occur given a previous occurrence of either the same
pattern or another pattern.

Table 1: Mean and variance of interarrival time T and
the first arrival time T* for patterns of length r = 3.
Note that for non-overlapping patterns such as HHT,
the two pairs of statistics are identical (shown in bold).

Patterns E[T] Var[T] E[T*] Var[T*]
HHT 8 24 8 24
HTT 8 24 8 24
THH 8 24 8 24
TTH 8 24 8 24
HTH 8 56 10 58
THT 8 56 10 58
HHH 8 120 14 142
TTT 8 120 14 142
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Figure 2: Visualization of pattern occurrences. Each circle
represents the outcome of a single toss and the colored
circle indicates one occurrence of the corresponding
pattern. Arrows represent the “minimum succeeding
distance” between successive occurrences of patterns,
which also inversely indicate the levels of self-overlap
(A) and inter-overlap (B and C).
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Figure 2A illustrates the essence of waiting time as it is
defined independently for each individual pattern. When the
coin has been tossed exactly 3 times, the probability of
occurrence for any pattern is the same, 1/8 (also see Figure
1)%. However, interesting phenomena will happen at the 4"
toss (or, an observational window of size 3 starts moving
from the beginning towards the end of the sequence one
position a time). For example, if pattern HHH has occurred
at n = 3, it can have an immediate reoccurrence at n = 4. In
contrast, if pattern HTH has occurred at n = 3, its earliest
next occurrence will have to be 2 tosses away at n = 5. More
extremely, if we are monitoring pattern HHT and it has
occurred at n = 3, then its earliest next occurrence will have
to be 3 tosses away at n = 6. An intuitive explanation for
this is that the reoccurrences of HHH can self-overlap with
each other thus tend to be mostly clustered and the

% Alternatively, we can imagine that a coin is tossed repeatedly
and a long sequence of heads and tails is generated. Then, an
observational window of width r = 3 randomly lands on any
position of the sequence and captures exactly 3 trials. Given the
independence assumption of Bernoulli trials, the probability that
the observational window will capture any pattern is the same 1/8,
as if the process starts from scratch (i.e., the window lands at the
beginning of the sequence).
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reoccurrences of HHT cannot overlap thus tend to be mostly
dispersed.

Figure 2A in effect illustrates all 3 possible levels of self-
overlap for patterns of length 3, since reoccurrences of
reciprocal patterns self-overlap in the same way (e.g., HHH
and TTT, HTH and THT), and reoccurrences of HHT, HTT,
THH, and TTH do not self-overlap. Comparing Figure 2A
with Table 1, we can see that with other factors remaining
constant, the self-overlapping property of a pattern
completely determines the pattern’s waiting time E[T*] and
the variance of interarrival time Var(T). Since a streak
pattern is an uncontaminated run of the same elements, by
such unique composition, a streak pattern will have the
largest amount of self-overlap and consequently, the longest
waiting time.* As a comparison, non-streak patterns such as
HTH or HHT only have partial self-overlap or no self-
overlap at all so that they will have shorter waiting times.
Moreover, waiting time grows approximately exponentially
as the amount of self-overlap grows. As a consequence, the
difference in waiting time between HHH and HTH is much
greater than that between HTH and HHT.

The difference in waiting time can be viewed as one type
of precedence relationships in which individual patterns are
monitored independently and only the self-overlap within
each pattern is considered. For example, suppose two
players are betting on two patterns HHH and HHT,
respectively, then each player tosses a coin of her own in
isolation (i.e., the “solitaire game” in Sun, et al., 2010a).
Because of the different waiting time, the player who bets
on HHT will be more likely to get her desired pattern earlier
than the player who bets on HHH.

Inter-overlap and Nontransitivity

The result above might give an impression that pattern HHT
is always more likely to occur earlier than pattern HHH,
thus the gambler’s fallacy might actually have a valid
statistical basis. However, such precedence relationship
may not hold if two patterns are monitored simultaneously
in the same sequence and both self-overlap and inter-
overlap are involved (the “interplay game”). The fact is that
although HHT is faster than HHH in the solitaire game, in
the interplay game, HHT overlaps with the end of HHH
(two positions) more than HHH overlaps with the end of
HHT (none) (see Figure 2B). Overall, it can be calculated
that in the interplay game, we are equally likely to first
encounter HHH as to first observe HHT.

Figure 2C shows another comparison between HHT and
HTT. Despite that these two patterns have the same waiting
time of 8 tosses, because of the different amount of inter-
overlap, the odds of HHT preceding HTT against HTT

* It might seem counterintuitive that overlapped occurrences
(hence faster reoccurrences) are associated with a longer waiting
time. However, a reoccurrence of the pattern has to be based on a
previous occurrence. Since a pattern of length r > 2 is more likely
to have not occurred in the first r tosses than it has occurred, faster
reoccurrences actually signify a delay in the waiting time.

preceding HHT are 2:1. This indicates that the precedence
relationship in the interplay game is nontransitive. That is,
for pattern length r > 3, if one player first chooses any one
of the patterns, the other player can always choose another
pattern of the same length to ensure a better than even
chance to win. In other words, the interplay game only
favors the player who chooses later.

B Maximum Wins

—=15:1

Bottom-up Wins

—_—=2:1

MNon-horizontal Ties

e e

Figure 3: Pair-wise precedence in the interplay game and
the corresponding odds. Arrows originate from the faster
patterns and point to the slower patterns. A: pattern length
r = 3. B: pattern length r = 4. Only the relationships in
legends are connected between patterns and all other
connections are either downward wins or horizontal ties.
Note that in both A and B, no arrow originates from
streak patterns.

Figures 3 shows the pair-wise precedence relationships in
the interplay game for pattern length r = 3 and 4. Close
examinations of Figure 3A confirm that the precedence
relationship does not exactly follow the order of waiting
time listed in Table 1. Particularly, a pattern with a shorter
waiting time may not be necessarily encountered earlier
than a pattern with a longer waiting time. Nevertheless, it
appears that streaks are still the slowest patterns—at best, a
streak pattern can tie with its “end-reversal” counterpart or
its reciprocal streak (e.g., HHH vs. HHT, or, HHH vs. TTT),
and it can never “beat” any other pattern. In other words,
nontransitivity in the interplay game does not mean the
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equivalence (or indifference) between patterns in a circular
fashion. Considering all possible pair-wise comparisons,
streak patterns are still unique for their delayed first
occurrences.” This fact holds for all pattern length r > 2.
Figure 3B shows the pair-wise comparison in the interplay
game when pattern length r = 4, in which streak patterns are
still at the bottom of the game.

Discussion

We have examined several types of pattern time statistics in
different contexts and demonstrated that streak patterns
indeed possess some unique statistical properties. Here we
discuss their psychological relevance and implications in the
investigations on human perception of randomness.

First, the particular unbroken continuity of a streak leads
to the maximum amount of self-overlap. As a consequence,
successive occurrences of a streak tend to be clustered and
such tendency would make it harder for human memory to
keep an exact count of the actual number of occurrences. By
contrast, successive occurrences of other patterns have to be
either partially or completely separated (e.g., Figure 2A) and
much more evenly distributed (indicated by the small
variance of interarrival time in Table 1). For example, in
Figure 2A, if the observational window is in size 4 instead
of 3, two consecutive instances of 3Hs can be captured by
one window. If the memory is encoded as the number of the
windows containing the streak (at least once), two instances
of 3Hs captured in the same window would have the same
weight as one instance of 3Hs. Alternatively, two instances
of 3Hs could be replaced by one instance of 4Hs. In either
case, the remembered number of occurrences of 3Hs will be
less than it actually is.

Moreover, compared with all other patterns, a streak is the
slowest pattern to occur, determined by either self-overlap
alone (solitaire) or a combination of self-overlap and inter-
overlap with another pattern (interplay). In other words, as a
random sequence unfolds over time, we are more likely to
first encounter another pattern other than a streak. The only
exception is the case in interplay where a streak can tie with
its end-reversal counterpart or another streak (e.g., Figure
3). Even in this exception, a streak retains an inferior status
because of the “minimum succeeding distance” (see Figure
2B). Although it is equally likely HHH preceding HHT as
HHT preceding HHH, if HHH occurs first, HHT can
immediately follow. If HHT occurs first, the next best shot
for HHH has to be 3 tosses away. That is, the discrepancy in
the minimum succeeding distance can obscure people’s
experience of HHH more than it does to HHT.

Together, although streak patterns have the same mean
time as any other pattern, their longest waiting time and
maximum  clustering tendency can leave them

® Guibas and Odlyzko (1981) and Graham et al. (1994) provide
strategies to construct a “winning pattern” to beat a given pattern
for pattern length r > 3, in which a streak can never be constructed
as a winning pattern.

underrepresented in people’s experience thus make them
appear rare or “non-representative” in recollection.
Actually, a recent study by Olivola and Oppenheimer
(2008) seems to confirm our speculation: when participants
recalled the studied binary sequence, the lengths of streaks
present in the original sequence were underestimated. Even
more interestingly, Olivola and Oppenheimer found that
when a streak was present early or late in a 25-event
sequence, the overall sequence was judged as less likely to
be random, compared to when the same streak occurred in
the middle of the sequence. It appears that people may
actually have an intuitive and accurate response to waiting
time such that a streak is unlikely to occur early in
sequences generated by a random process.

It should be noted that besides the delayed first
occurrence, the particular composition of streaks can
manifest itself in many other forms. One example is the
probability of occurrence at least once and its
complementary “probability of nonoccurrence,” whose roles
in affecting people’s perception of event likelihood have
been discussed (Hahn & Warren, 2009; Sun, et al., 2010a).
Another example is the shear disparity in the variance of
interarrival times between different patterns. When time is
essential in predicting future events, different levels of
variance may have direct consequences in people’s risk
preference (e.g., Lopes, 1996; Markowitz, 1991; Sun &
Wang, 2010).

Last but not least, in the examples discussed throughout
the paper, the sequences of coin tosses are generated by
Bernoulli trials (hence inter-event independent and
memoryless). However, the process of counting patterns,
particularly streak patterns, are not exactly memoryless (this
is implied by the unequal mean time and waiting time, see
Table 1). As human memory plays essential roles in
predicting and planning future events, studies on such
process can be useful in order to untangle the interaction of
human memory and perception of randomness. Among
these different statistics of the similar nature, people can be
more sensitive to one form of manifestation than to another
or even completely indifferent. We may not be able to use
these statistics to vindicate a certain type of bias or fallacy.
Nevertheless, these statistics can aid us to better understand
the task environment so that we may eventually be able to
more precisely pinpoint the source of the error.
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