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Abstract

Recursion is argued to be the crucial propertyraisishing
human and non-human primates language learnindtyacu
(Hauser, Chomsky, & Fitch, 2002). Recently, 2 stadi
(Bahlmann & Friederici, 2006; de Vries, Monaghangkht,
& Zwitserlood, 2008), which investigated the leditity of a
recursive artificial grammar of the type ofBX, used the
same material but reported divergent results. Vépgse that
the organization of the linguistic environment Gally
determines learnability of the recursive structarg] that this
factor might offer some explanation to the incoritpat
findings. In a grammaticality judgment task usihg same
materials as in Bahlmann and Friederici (2006) @adries
et al.’s (2008), we found significantly better perhance
when the training input was arranged in a starsimgl|
fashion, than when it was organized randomly.

Keywords: Starting small; Recursion; Artificial grammar
learning; Statistical learning.

Introduction

Exploring the mechanism behind language learnirsg ha
been the focus of an enormous body of research in
linguistics, psychology and education. The questdmw
children can possibly acquire such an astonishimgpdex
system so rapidly, while the linguistic environmagut is
noisy and limited. Sentences lik&e rat the cat the dog
chased killed ate the malt. (Chomsky & Miller, 1963) with
two recursive center embedding clauses are nearly
unintelligible, even for native English speakersa¢B,
Brown, & Marslen-Wilson, 1986; Hudson, 1996;
Newmeyer, 1988; Vasishth, 2001), due to the astautia

elements in the sentence being distant from onthan¢e.g.

“the rat” and “ate”). Moreover, recursion is a sedferential
principle that can be applied an infinite numbetiofes,
producing sentences with numerous embeddings being
cognitively very hard to process. Among all synitzadt
characteristics of natural language, recursionha®fore
been argued to be the most fundamental and chailg by
acquire (Hauser, Chomsky, & Fitch, 2002).

A recent experimental study (Fitch & Hauser, 200gihg
an artificial language has reported that cottontéoparins
could master thénite state grammar (FSG) with the (AB}'
type, but not a higher-level recursiyrase structure

discrimination paradigm, Fitch and Hauser (200# fi
presented the animal participants two auditory ekts
consecutive consonant-vowel nonsense syllableslé g,
ba). Category A syllables were spoken by a femalalspie
while Category B syllables by a male. The two setse
identical except for the underlying structure, adlas the
pitch. The (AB)' set in FSG was formed by local transitions
between A and B, while the"B"sentences were made
according to a center embedding recursive rule kgpare
1). After this training phase, a discriminationkagas
performed by the tamarins using the familiarization
paradigm. It showed that tamarins could detect the
ungrammatical sequences from the grammatical anes i
FSG, but not in PSG. Contrastively, humans dematestr
clear discrimination in judging grammaticality afth
grammars. This study has raised a renewed interest
concerning the inductive learnability of recurssteuctures,
usingartificial grammar learning (AGL) paradigm
(Bahlmann & Friederici, 2006; Bahlmann, J., Schab& .,
& Friederici, A.D., 2008; de Vries, Monaghan, Kngch
Zwitserlood, 2008; Kersten & Earles, 2001; Perrtighe
Rey, 2005). Nevertheless, a study (Gentner, Fenn,
Margoliash, & Nusbaum, 2006) concerning song birds’
capability of processing 8" structure posed a challenge to
this “uniquely human” claim.

Finite State Grammar Phrase Structure

(AB)" Grammar AB"
R PN
AB AB AB AAA BBB

AB AB no li ba pa AA BB yo la pa do
ABABAB lapawumonoli AAABBB balatulipaka

Figure 1. Structures of Finite State Grammar (AB)
and Phrase Structure GrammdBAused by Fitch

and Hauser (2004). The phrase structure grammar
is recursive, center-embedded, and generates long-
distance dependencies.

Bahlmann and Friederici (2006, henceforth B&F) and
Bahlmann et al. (2008) carried out an fMRI studptobe

grammar (PSG) with the AB" type, which could be learned g the neural basis of processing center-embeddin

by human participants. Using a familiarization-
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structures in AGL. Significantly stronger activatim
Broca's area, involved in natural language processias
observed in processing of hierarchically recursivacture
A"B", than for the (ABJ grammar. By contrast, de Vries et
al. (2008) replicated this study by B&F but repdrte
learning of center-embedding structures. De Vried.e
(2008) first trained all participants on the sarimsgli as
B&F, and required participants to judge the granicadity
of new items violating the center-embedding rulewldver,
participants were tested with different types aflaiions,
namely:scrambled (e.g. AA,A,B,B,B,)" sequences and
scrambled + repetition sequences (A,A,B,B,By). As they
predicted, their participants could detect the mixiad +
repetition violations, but not the scrambled orfidwerefore,
de Vries et al. (2008) argued that successful pedoce in
the study of B&F was due to alternative heuristiegh as
counting or repetition-monitoring, instead of léagthe
abstract center-embedded principle. Indeed, B&Hiegp
replacement violations (e.g. AA,A,B,A,By) and
concatenation violations (e.g. AA,B,B,) in their testing
materials, which could possibly also be detectatiout any
knowledge of the center-embedding rule, by merely
counting the A’s and the B’s, or by simply detegtanB
that was unrelated to any of the A’s in a sequebDegVries
et al. (2008) concluded that surface features"&"A
sequences were learned by humans, such as repetitio
patterns and the match between the number of Alsfzan
number of B’s, but not the abstract recursive ppiec
determining the long-distance dependencies betwaeh A
and each B in such a sequence. In sum, the leditpaibi
center-embedded structures by mere exposure tb inpu
exemplars could not unambiguously be established in
research using artificial materials, thus fareems still
inconclusive to which extent AGL studies could hefp
understand the mechanism of learning recursion.

Here we propose that two fundamental propertigbef
training set might point at an alternative accafrthe
inconclusive findings. One crucial propertystarting small,
which is the way learning input is ordered. Thaaobf
starting small was first raised by EIman (1991,3)98%e
trained a connectionist network to parse complaxcsires
which contained embedded subordinates. The network
succeeded in learning only if it was provided véthtaged
training input (starting small), but not after espee to the
entire random input as a whole. A number of emgiric
researches showed supporting evidence for thigy stud
(Cochran, McDonald, & Parault, 1999; Kareev, Lighan,
& Lev, 1997; Kersten & Earles, 2001), while sombest
findings yielded contradictory results (Rohde &UR|al999).
Possibly the diverging findings might be explairgdthe
highly different methodologies, such as type oflgtu
(experimental designs versus simulation studi¢ishutus

1 In the figure of Fitch and Hauser (2004), thereen® indices
for (AB) "or A"B", because any A could be related with any B.
Contrarily, in B&F, de Vries et al. (2008) and ttwarent study,
indices were used to indicate dependencies betsegific A’s
and B's.

set, input size, training and testing procedureth®type of
grammar used. An input ‘growing’ gradually, migig b
especially efficient for learning a complex recuesi
structure, when the input contains sequences wit |
distance dependencies, as in the study of B&F.

The second property fsequency distribution of the input.
In natural language, simple phrases or sentendbszefio-
level-of-embedding (0-LoE) appear much more fredyen
than those with several levels of embeddings (&
Chater, 2006). In real life, this type of short appgical
sentences with only adjacent-dependencies, is etead
much more often than more complex compound sergence
with several sub-clauses. Sentences with simpletstres
occur frequently (Philips, 1973; Pine, 1994; Peleit
Chater, 2006; Snow, 1972). We propose that theiloligion
of simple and complex sentences in the input sghtrplay
a role in rule induction. In our experiment, wegmeted the
input stimuli of our artificial grammar in a didtrition that
reflected the unequal occurrence of simple and ¢exnp
sentences in natural language.

To a large extent, both properties of the input we
hypothesize to help learners, also occur in tharaht
linguistic environment of children. Compared to lkdu
directed speech, child-directed speech has sHortgristic
constituents, simpler structures, and mainly adjace
dependencies (Pine, 1994). A large amount of reqesi of
syntactically short utterances help children lghmbasic
structure of language. As children grow, child-diesl
speech develops into more mature speech typesn(@si)
1980; Garnica, 1977) because more complex conginsct
are gradually introduced. Therefore, if we can desh@te
experimentally successful grammar learning withiangng
environmental input and unequal frequencies foptnand
complex exemplars, this might help understanding
environmental factors involved in the mechanismatiral
language learning.

In the present study, we tested whether participanild
learn the hierarchical recursive rule when therlizay set
was organized ‘starting small’ rather than randqratyd
when unique simple exemplars were repeated, whist
complex ones were not. We predict that participavills
show learning under these conditions.

Experiment
Method

Participants. Twenty-eight students (20 female), from
Leiden University participated in the experimentdourse
credit or payment. All were native Dutch speakaétkhad
normal or corrected to normal vision.

Materials and design. The same stimuli were used as in
B&F and de Vries et al. (2008). There were two séts
syllables, categorized by their vowels. SyllableSategory
A contained vowels -e/-i, i.e. {be, bi, de, di, g8, whereas
syllables in Category B contained vowels -o/-u, {p®, pu,
to, tu, ko, ku}.
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Each syllable in Category A was associated with its

counterpart in Category B according to the onsaesonants.

For instance, any Acould be related with any,BThere
were two possible syllables forA.e. “be” or “bi” and two
for By, “po” and “pu”. Therefore, the associated pairseve
{be/bi-po/pu}, {de/di-to/tu} and {ge/qgi-ko/ku}. Syable
strings were made out of two, four, and six pasgtiables
following the hierarchical center-embedded rul@A The
resulting grammar G is schematically displayediguFe 2.
Frequencies of syllable occurrence were contrdthed

% 1 X

\ ouT

8 35
!

Cat;w A Category B

Grammar G
Figure 2. Grammar G, a recursivéBA center-

embedded structure ,A{be, bi}; A,={de, di};
A;={ge, gi}; B,={po, pu}; B,={to, tu}; B,={ko,

the same items, i.e., syllable strings, generayettid
grammar G in Figure 2. The learning items for tisegBoup
were ordered by their levels of embedding (LoE)thia first
four blocks of the SS group, only 0-LoE items were
presented during learning. The following four bleck
displayed 1-LoE items only. In the last four blocRd oE
items were presented. In this manner, the leanpiage was
comprised of three consecutive stages, each ofwhic
contained four blocks. The ordering of syllabléngs
within one block was counterbalanced over partitipa
The random group would see exactly the same ssitinfjs
but in a random order. In the random group, eachkbdnd
each stage contained an equal number of each Lizfgargy
items.

Both groups were presented the same blocks oitéess,
in the same order. The grammatical test items wevel
items with 0-, 1-, or 2-LoE. Ungrammatical itemsreve
made by mismatching syllables from Category A dwairt
counterparts from Category B. To control for as ynan
confounding surface cues as possible, the violation
satisfied a number of demands. For two-syllabiags,
violations appeared necessarily in the secondipodié.qg.
A,B,); for four-syllable strings, violations appearedtie
fourth position (e.g. MA,B,B,, AA,B,B,); and for six-
syllable strings, violations appeared in the fifttsixth
position (e.g., RA,A.B,B,B, AA/A,B,BBy,
AAABB,B, A/A/AB,B,B,). In this way, no adjacent
AB violations (illegal bigrams) were presented etder
the two-syllable test items, in which violationsreve
necessarily an illegal bigram, i.e. an illegal A&p
Secondly, in contrast to B&F, no adjacent repetitid

ku}. Examples of strings generated by G are: bi pu syllables appeared in the same sequence. All graéicaha
(O-LoE), de ge ko tu (1-LoE), be di ge ku to po (2- and ungrammatical test strings had an equal nuofb&'s

LoE). “G” in the loops at states,S5, and S refer

to Grammar G, indicating that a center-embedded

clause can legally be inserted at that state.

There were 12 blocks in total. Each block consisted
two phases, i.e. learning and testing. All learrang testing
blocks together contained 144 strings respectivelgch
learning phase was made of 12 syllable stringserAdach
learning phase, a testing phase followed with 2Zho
syllable strings, of which six syllable strings wer
grammatical and six were ungrammatical.

Note that grammar G generates 12 unique 0-LoE jtems

12 = 144 unique 1-LoE items, and 144 x 12 =1728 umiq
2-LoE items. The 12 unique 0-LoE items were presgbnt
four times each (48 in total). Forty-eight 1-LoErnits were
sampled from the 144 possible ones and presentdd ea
once, without repetition. Finally, 48 2-LoE itemseng
sampled from the 1728 unique exemplars of G, atd no
repeated. In this manner, the differential frequesof
repetitions of ‘simple’ vs. ‘complex’ exemplars &f
grammar were represented in the input.

Participants were randomly assigned to one ofuloe t
experimental groups: the starting small (hencefS8Sh
group or the random group. All participants werpased to

and B’s. Hence, violations were not detectable bycimng
the number of A’s to the number of B’s. Thirdly,lpone
illegal pair was allowed in the same string to kéepglobal
level of difficulty constant for each test item. Asesult of
these constrains, three types of violation wereegged:
first, violations of type AA,AB«B,B, with A’'s and B’s
from the same subsets but not equally distribugedond,
violations of type AA,B,B,, or A/A,A,B,B,B, with one B
that could not be paired with any of the A’s; thiviblations
of type AA,B,B,, or AA,A,B,B,B,, with one A missing a
B from the same subset. Constructing the violatiorikis
manner, violations detection by superficial heigsstould
be largely excluded and categorization performanoced
be reasonably attributed to knowledge of the hidniaal
structure

Procedure. At the beginning of every learning trial, a
fixation cross appeared in the center of the scfeeb00
ms. Then, each syllable was presented separate80fbms,
with no interval in-between. Participants wereriasted
that there was a rule underlying the sequenceghagthad
seen. After presentation of 12 syllable strings,t#sting
phase followed, in which the sequences appeartin
same fashion. When the last syllable of each test had
disappeared, participants had to press the keylmadtdns
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indicating “YES” or “NO”. They were required to malk
judgment whether the novel syllable string was greatical
or not, according to the rule underlying the segeerin the
learning phase. After each judgment, approprisgdiack
was given for 500 ms as B& F and de Vries et &108) did.
Approximately, the task took about 30 minutes.

Resultsand analysis

First, we estimated the mean proportion of “YES”
responses to all test items. There was a smalbnsspbias
favoring positive responses (M = .53, SE = 10%,.01).
Accordingly, d'-values were calculated and used as
measure for sensitivity to grammaticality of thepenses,
i.e. performance. We conducted an independent-santpl
test on mean d’-values for all test items, to corapa
performance between these two groups. OverallSthe
group (M = 1.51, SE = .36) highly outperformed thadom
group, M =.08, SE =.0%,(26) = 3.94p = .001. Moreover,
as indicated by a one-sample t-test comparing mean
performance with chance level in both groups, ohéySS
group performed above chant€13) = 4.21p = .001.

—|—SS
—/— Random

2,0

15 4

1,0 4

0,5 -

Mean d'-value

0,0

-015 T T T T 1T T T 1T 1T T 1
012 3 456 7 8 9101112

Block

Figure 3. Experiment 1: Mean d’-values for all
blocks in both conditions. Points represent mean
d’-values per block. The dotted line represents
chance level performance (d'= 0).

To evaluate the development over time, in bothnliegr
conditions, we compared performance on the firsthl
(Block 1) with the last block (Block 12) for bothayps. For
the SS group, mean d’-values in Block 1 was M =(SB
=.30) and in Block 12, M = 1.59 (SE = .33). Pemnfance
had improved in the last block as compared toitiselflock
as revealed by a t-test for means of paired sanp(&3) =
2.59,p < .05. In the random group, however, performance
did not improve: in Block 1, M = .01 (SE = .21);Bock
12, M = .33, (SE =.29},(13) = -.98, n.s.. Although in
Block 1 the SS group performed slightly better than
random group in the same block, this difference mats

significant,t (26) = 1.98, n.s.. However, in the last block,
the SS group clearly outscored the random gro(g8) =
2.87,p < .01. In Figure 3, mean d’-values are displayed f
all blocks in both conditions, showing learninglie SS
group over time, but no learning for the randonugro

To explore more in detail how the center-embedding
recursive principle was learned, we looked intdgrenance
on test items with different LoEs. Performance dfecent
types of test items (0-, 1-, and 2-LoE) was comgare
between conditions, at several stages of expoBorethis
analysis, exposure was divided into three stagegéSL
consisted of Block 1-4, Stage 2 consisted of Bledgk and
Stage 3 consisted of Block 9-12.). For the SS grthe
stages of training reflected increasing LoE ingtimuli
(Stage 1 comprised 0-LoE learning items only; S@&gk
LoE items only; Stage 3, 2-LoE items only). In thadom
group, all LoEs were presented in the learning ghas
every stage. To test the development of performanee
time for test items with increasing LoEs, we catraat an
ANOVA, with stage and LoE as within-subject factaad
condition as between-subject factor. The LoE x &tag
Condition interaction was significant, F (4, 1042284,p
< .05, indicating that performance for differentd_test
items developed differently in each learning candit

Subsequently, an ANOVA was conducted with LoE as
the within-subject factor and d’ performance as the
dependent variable, for each group separatelythieogS
group, a main effect of LoE was found, F (2, 2a)0-86,p
< .001. As can be seen in Figure 4, learning feritems
with 0-LoE was quite high (M =1.89, SE =.39) and
significantly better than learning for items wittgher LoE
in the SS group, M = 1.45, SE = .37{13) =3.14p< .01
and M = 1.29, SE = .38,(13) =4.19p = .001 for 1-LoE
and 2-LoE, respectively. This indicates that partiots
acquired fundamentally solid knowledge of the a€ljgc
dependencies of grammar G, under the SS learning
condition. Violations of 0-LoE items were obsertede
easier to detect than 1-LoE and 2-LoE ones beaafubeir
illegal adjacent-dependencies, i.e. bigrams. Howeties
advantage was only beneficial for the SS groupsemted
with all 0-LoE training items which clustered iretfirst
stage of exposure. In the random group, particgdiut not
perform differently for various LoE test items. Mffect of
LoE was found, F (2, 26) = 1.31, n.s. Chance level
performance was observed in the random group Foy@ds
of test items.

Furthermore, our data revealed a main effect gfesta
the SS group only: Performance on all types ofitests
improved along with exposure to increasing LoE &efa (2,
26) = 3.57p < .05. The curves of 1-LoE and 2-LoE test
items evolved equally (see Figure 4), suggestiagttie
center-embedding rule was learned and recognizeallgq
well for items with one and two recursive loopscomtrast,
no main effect of Stage was found for the randoaugy F
(2, 26) = .87, n.s.: Performance was low at theriyegg
and did not increase significantly over time.
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Finally, for the SS group, we compared participants
accuracy on all types of violations with an ANOW&ith
Type of Violation as a within subjects factor, ¢sttwhether
some surface characteristic of the test items (eften
careful control for confounding surface cues) migée
affected performance. No effect of Type of Violatoon
accuracy was found, F (2, 26) = .151, n.s.. Thigyeats that
participants performed equally well over differéypies of
violations, indicating knowledge of the hierarchicanter-
embedded structure learned in the SS procedure.

Hence, our findings indicate that center-embedded
structures in an AGL could be learned through tBe S
procedure, but not in the random procedure, in @zswe
with our hypothesis. Moreover, an incremental expe$o
the input in accordance with increasing applicaiofthe
recursive rule, correlated with a synchronic imgnment in
performance. Participants learned the center-enibgdd
principle along with exposure to increasingly mooenplex
exemplars. Robust knowledge of the 0-LoE exemmautd
be shown in the SS group only, suggesting that this
knowledge was a prerequisite for learning the erdimep
principle. Furthermore, the SS group did not julips
accurately test items with 2-LoE than items withdle,
suggesting that the recursive rule was learned and
recognized equally easily for 1- and 2-LoE strings.

—=8—0LoE_SS
—a——1L0E_SS
—e—2l0E_SS
— —0— — OLoE_random
— —&— — 1LoE_random
— —0— — 2LoE_random

2,5
2,0
15
)
=]
[
3
5 10
e
©
]
=
0,5 o
d
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A
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\6
-0,5 T
1 2 3
Stage

Figure 4. Experiment 1: Mean d’-values for O-, 1-,
and 2-LoE test items at different stages. Points

Discussion
We observed a ‘starting small’ effect highly fatiting
learning a center-embedded recursive grammar. When
participants were presented with a randomized irthete
was no learning of the underlying hierarchical rule
Moreover, in our training materials as opposedéo t
materials presented in similar studies using tineesanique
training exemplars, simple stimuli were presenteuen
frequently than complex ones, possibly contributmghe
dramatic learning effect of the starting small @ioig found
in our study. In the AGL program, it is still undégebate
whether performance in learning reflects real krealge of
the abstract grammar, or local pattern learningpgaition
of repetitions and other surface heuristics (Pelest Van
Schijndel, 2009). In the present experimental pethe
violations inserted in the test materials were aalgd as
much as possible for surface cues that would iz t
easy to detect without knowledge of the structliteaugh
the use of cues can not be excluded definitely data
make a strong case for the learnability of a ceatebedded
structure provided training with a staged input] an
sufficient exposure to basic exemplars without edulieel
clauses.

Our training stimulus set may be regarded as a
representation of the child’s natural linguistiozeanment.
The input contains not only a huge number of simple
adjacent-dependencies (0-LoE items) produced by the
grammar, but they were also presented repeatediyn Ehe
complex items produced (1-, and 2-LoE items), a
proportionally smaller sample was presented, and no
repetitions occurred. This environment with botbwging
data and repetitions of basic patterns reflectsyeaslaim,
the natural linguistic environment. In the SS grodige to
an intensive training with only 0-LoE items, paigi@nts
might become familiar with the most basic adjacent-
dependencies, which might have provided them wablil
foundation for further induction of the recursiveeoation.
Furthermore, the staged ordering helped particgpant
gradually identify the recursive rule and the cartioas
between long-distance dependencies. By contrastjqus
studies failing to find recursion learning, traingatticipants
with the whole corpus randomly presented as ametnti
and no O-LoE items (de Vries et al., 2008). The tagiors
investigated here seem therefore to play a crucialin
learning complex recursive rules.

As Elman (1993) indicated humans’ most amazing
achievement in languages occurs in childhood. iyghriod,
children are exposed to continuously repeated simpl
structures. Furthermore, thessis more proposal that the
limited cognitive capacity of children is beneficia
language learning (Newport, 1988, 1990) is consistgth
the starting small environmental factor found im ou
experiment.

In sum, the present study reveals crucial rolestaged

represent mean d’-values of performance per stagdnput and for solid primary knowledge of the balica

The dotted line represents chance level
performance (d’'= 0).

simple structures in learning a center-embeddedrsee
structure by induction. The picture raised is fhvaiminary
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simple associative learning mechanisms such aseja
dependencies learning might prepare learners fisesjuent
processing of gradually encountered more complex an
more distant dependencies. Our research suggestheh
old puzzle of the inductive learnability of recwesi
structures might benefit from a shift of focus frtime

formal characteristics of the structure to the gtim
environment and how this environment is nicely sitbi
fulfill the needs of the language learner.
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