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Abstract

Recursive structure is viewed as a central property of human
language, yet the mechanisms that underlie the acquisition and
processing of this structure are subject to intense debate. The
artificial grammar learning paradigm has shed light onto
syntax acquisition, but has rarely been applied to the more
complex, context-free grammars that are needed to represent
recursive structure. We adapt the artificial grammar serial
reaction time task to study the online acquisition of recursion,
and compare human performance to the predictions made by a
number of computational language models, chosen to reflect
multiple levels and types of syntactic complexity (n-grams,
hidden markov models, simple recurrent networks, and
Bayesian-induced probabilistic  context-free = grammars).
Evidence is found for a dissociation between explicit and
implicit mechanisms of sequence processing, with the SRN
more highly correlated with implicit performance, and the
PCFG more correlated with explicit awareness of the
sequential structure.

Keywords: artificial grammar learning; syntax; recursion;
serial reaction time task; simple recurrent network; context-
free grammars; implicit/explicit processes.

Introduction

The nature of linguistic structure, and the computational
mechanisms by which humans comprehend it, have long
been subject to heated debate. Recursion — the ability to
hierarchically embed elements within instances of
themselves — has been a central point of contention.
Although the recursive structure of language was not a new
idea at the time, Chomsky formalized the notion of syntactic
recursion, touting it as the fundamental property that allows
for human linguistic ability, a thesis he continues to
popularize today (Chomsky, 1956; Hauser, Chomsky, &
Fitch, 2002).

In the Chomskyan tradition, the human syntactic system
implements a set of rules that allow for theoretically
unbounded levels of recursive embedding (“competence”),
but this system is then subject to processing constraints, such
as working memory limitations, that explain our limited
ability to process recursive structures beyond a few levels of
embedding (“performance”). Other theorists, particularly
from the connectionist camp, have attempted to explain the
(limited) human ability to process recursive structure without
hypothesizing unbounded competence, by modeling
syntactic processing in systems that do not make use of rules
or explicit representations (e.g. Elman, 1990; Pollack, 1990;
Christiansen & Chater, 1999).

The artificial grammar learning paradigm (initiated by
Reber, 1967) has been used to examine processes of
syntactic acquisition, but this has been largely restricted to

the class of regular grammars, which doesn’t shed light onto
the acquisition or processing of context-free or recursive
structure. The goal of the present study is to obtain estimates
of a subject’s online string continuation expectancies while
responding to sequences generated by a context-free
grammar (palindromes), so that these may be compared with
the predictions made by a variety of language models trained
on the same input history as the subject. The traditional
measures of successful acquisition in artificial grammar
experiments — such as grammaticality judgments or recall
error rates — are not able to provide the incremental (symbol-
by-symbol) expectancy data that we require. We adapt a
paradigm first employed by Cleeremans & McClelland
(1991), known as a serial reaction time task, in which
subjects respond to a sequences of stimuli (with a button
mapped onto each stimulus class) by pressing the
corresponding button as quickly as possible after perceiving
stimulus onset. The resulting reaction times are then
correlated with the probabilities generated by the competing
computational models.

Surprisal

Surprisal, or self-information, is a notion from information
theory that quantifies the amount of novel information that a
particular event carries with it. An event’s surprisal is
defined as its negative log probability:

—log( P(x | context) )

The concept of surprisal has been wused in
psycholinguistics as a potential measure of incremental
processing difficulty, and is thus expected to correlate with
behavioral measures such as reading times in eye-tracking
studies, and response times in self-paced reading studies
(Hale, 2001; Levy, 2008).

The surprisal model requires that we adopt some measure
of the probability of a word’s occurrence given the preceding
sentential context. Hale (2001) uses a probabilistic Earley
parsing algorithm to generate incremental word probabilities,
using the resulting surprisal values to explain the garden path
effect. Levy (2008) uses a similar model to explain a wide-
range of effects found in the psycholinguistic literature, such
as predictability (e.g. effect of Cloze probability), locality
effects (e.g. preference for local dependencies),
competition/dynamical models (e.g. greater ease in highly
constrained contexts), the tuning hypothesis (e.g. effect of
structural frequency), and connectionist models (e.g.
predictions made by an SRN). The case of the SRN is
particularly interesting, because there are significant
divergences between the predictions made by an SRN and a
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PCFG-based surprisal model, particularly for constructions
such as recursive center-embeddings, which PCFGs process
flawlessly, and SRNs — much like humans — have difficulty
processing beyond a few levels of embedding (Christiansen
& Chater, 1999).

Frank (2009) tested a surprisal model against human eye-
tracking data from the Dundee corpus, comparing PCFG-
with SRN-generated probabilities, and found that the PCFG
produced more accurate objective probabilities, but that the
SRN produced probabilities that better matched the human
data. He concludes from this, firstly, that subjective
probabilities diverge from the objective probabilities, and
secondly, that the SRN may in fact be a better model of
human performance. Other surprisal studies have used n-
gram statistics, such as a trigram model with Kneser-Ney
smoothing (Smith & Levy, 2008), and also shown close
correspondences with human eye-tracking data.

Language Models

A probabilistic language model is a distribution over the
strings (sentences) in a language. The models considered in
this paper also all support incremental prediction; that is,
given a sentence prefix, they assign a distribution over the
symbols that might come next.

To allow for comparison with the human data, each of the
models is trained on the precise input that a subject has been
exposed to at every point in the experiment (rather than
training on a larger corpus, or simply using the probabilities
assigned by the model that generated the stimuli). This
allows us to observe how a subject’s predictions change over
the course of learning, to gain insight into the rate at which a
system is acquired, as well as possible shifts in strategy,
rather than simply comparing fully trained systems.

It is also important to note that none of the model
parameters are fit to the human data; a model is trained to
predict a sequence’s continuation based on the set of
sequences it has seen up to that point in the experiment,
making use of the algorithmic and representational resources
at its disposal, but agnostic to human performance.

The models were chosen from amongst those most
commonly used within computational linguistics to model
sequential structure, at various levels of complexity (some
corresponding roughly to levels in the Chomsky hierarchy).

N-grams (bigrams/trigrams)

One of the simplest but most commonly used language
models, n-grams calculate the probability of a symbol in
terms of the frequency with which it occurs in its
immediately preceding context. Here, we will consider
bigrams (which take into account the preceding symbol of
context) and trigrams (which take into account the 2
preceding symbols). The predictions made by the n-grams at
every step were based on training on all preceding sequences
(excluding the sequences that had not yet been seen).

Hidden Markov Model (HMM)

Whereas n-gram transition probabilities are defined
between sets of adjacent words, the transitions in a hidden
markov model (HMM) are defined over a set of “hidden”
states, and these states, in turn, generate the individual
words. The idea is that there is an underlying “hidden
markov process” that we cannot access directly, and all we
can observe is the final sequence of words that is produced
by this underlying state sequence. Computationally, HMMs
roughly correspond to regular languages at the bottom of the
Chomsky hierarchy.

We use the standard Baum-Welch algorithm (Baum et al,
1970) to estimate the HMM’s transition and emission
matrices from the training corpus (the preceding sequences)
for an HMM with 5 hidden states. The trained HMM is then
used to compute the incremental posterior probabilities of
each symbol given its preceding context. As always, the
predictions only used the preceding sequences as a training
corpus (so as to be comparable to the human data).

Simple Recurrent Network (SRN)

A simple recurrent network (SRN) is a standard three-
layer feed-forward network, with the addition of a context
layer that maintains a copy of the hidden layer’s state from
the previous timestep, and then allows the nodes in this
context layer to feed back into the hidden layer during the
next timestep, alongside the next input (Elman, 1990). The
context layer in an SRN effectively implements time-tapped
feedback loops from every node in the hidden layer back to
each of the nodes in the hidden layer (delayed by one
timestep). The addition of recurrent hidden layer connections
allows an SRN to learn to use its hidden layer representations
to maintain task-relevant contextual information over
theoretically unbounded (though in most cases, rapidly
decaying) distances.

The SRN used in this paper contained 9 input nodes (one
for each symbol, plus a sequence boundary marker), 16
hidden nodes, and 9 output nodes. The network was trained
using standard back-propagation, with a learning rate of 0.5
and no momentum, on a single pass through the sequences.
Output activations at every timestep were converted into
probabilities through the Luce choice rule (in -effect,
normalizing the network’s output vector).

Probabilistic Context-Free Grammar (PCFG)

Context-free grammars (CFGs) have played a central role
in linguistic theories of syntax ever since Chomsky (1956)
proposed them as being necessary (and almost sufficient) to
account for the types of recursive phrase structure observed
in human language. A probabilistic context-free grammar
adds probabilities to the production rules in a context-free
grammar, allowing us to calculate a distribution over strings
in the language.

1382



Once we know the parameters of the grammar (see below),
incremental predictions can be computed as follows (adapted
from Jelinek & Lafferty, 1991):

1.  The probability of a string is the sum of the

probabilities of all its parse trees.

2. The probability of a string prefix is a sum over the
probabilities of all possible completions of the
prefix.

3.  The probability that a particular symbol w; will
appear following the string prefix w;..w;; can be
computed by dividing the probability of the prefix
with that symbol appended, P(w;..w;), by the
probability of the prefix, P(w,..w;)

Stolcke (1995) modified the Earley parsing algorithm to
compute the above incremental probabilities efficiently, and
we use an implementation by Levy (2008) in the present
work.

Learning the parameters of a PCFG from an unparsed
corpus is not a trivial task, however. Here, we use a
Bayesian framework developed by Mark Johnson' that uses
Gibbs sampling to learn the probabilities for a set of
production rules, given a corpus of training sequences. All
combinations of production rules with 8 states (in Chomsky
Normal Form, e.g. A->BC) were included in set of candidate
rules, and the sampler was given a prior of alpha=0.0001.
The counts on the final sample grammar were normalized
into probabilities. As with all the other models, the
predictions made for every symbol were based on re-training
after every sequence, using only on the sequences that
occurred prior to that point in the experiment, so that the
models have precisely the same information available to
them at each timestep as the human subjects. This entire
process was repeated 5 times, and the resulting sequences of
probabilities were averaged together.

Experiment

Methods

Interface Care was taken in designing and constructing an
interface device for the task, due to concerns about
measurement noise. The button box (Figure 1) consists of 8
finger-sized push buttons arranged in a 2x4 array, with each
button containing its own separately controllable LED for
use as a response cue. The buttons and LEDs are interfaced
to the PC via a USB-powered LabJack U3 DAQ device,
which has very high sampling rates and low command-
response latencies, allowing for RTs to be measured to
millisecond accuracy.

Figure 1: Button box used in experiment.

! http://www.cog.brown.edu/~mj/Software.htm

Participants Eight subjects (mean age 20.5, all right-
handed), drawn from the UCSD undergraduate subject pool,
received 2 hours of course credit for their participation.

Stimuli Sequences were generated from the following
grammar in Table 1.

Table 1: Context-free grammar used to generate stimuli.

Probability Production Rule
0.193 S>T0STO
0.146 S=>TISTI
0.112 S=>T2ST2
0.128 S>T3ST3
0.077 S>T4ST4
0.082 S>T5STs
0.159 S>T6ST6
0.103 S > 17

This grammar generates palindromes, a particular type of
“mirror recursion” in which the right-hand side of the
sequence is a mirror image (flipped left-to-right) of the left-
hand side. The 7™ symbol serves as a consistent center
marker, making the grammar deterministic. An example
sequence would be “04 1373140,

Palindomes are the canonical example of context-free
structures, and possibly the simplest type of grammar that is
context-free and thus cannot be fully captured by finite state
models such as an HMM, or by n-gram statistics.

An experimental session consisted of 16 blocks of 25
sequences each, with sequences ranging in length from 5 to
15. Each of the 8 subjects were presented with the same set
of sequences, but with a different mapping of symbols to
buttons, shuffled in a Latin-square design such that every
symbol was mapped onto each of the 8 buttons for exactly
one subject (to balance out any effects of button location or
between-button distances).

Procedure Subjects were told that the purpose of the
experiment was to study the “effects of practice on reaction
times”, and were told to “hit each button as quickly as
possible when that button’s light goes on”. No mention was
made regarding the structured nature of the stimuli; as far as
the subjects were concerned, the sequences were entirely
random.

Sequences were presented rapidly, with the next light in a
sequence turning on 120ms after the previous button had
been released. After the end of an individual sequence there
was a 2 second pause before the next sequence began.

In between blocks, subjects were presented with a
feedback screen indicating their performance on the block
relative to their performance on earlier blocks (plotting their
RT contour over time), and also relative to previous subjects,
by means of a highscores list derived from earlier pilot
testing. Subjects were given a chance to take a short break
in between blocks.

After completing the experiment, subjects were
interviewed about the strategies they had employed in the
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task, the factors they thought affected their performance, and
what sorts of patterns (if any) they had noticed in the
sequences.

Results and Analysis

Reaction times longer than 1000ms (greater than ~4.2 std
above mean) were excluded from analysis, to eliminate
extreme outliers caused by events not related to the task
(such as distractions, subject sneezing, etc). Only 0.2% of
the trials were excluded by this criterion. In addition, the
first trial of every sequence was excluded from correlation
analyses, as earlier pilot testing using random sequences
showed that mean reaction times for these sequence-initial
trials were ~70ms slower than for the remainder of the
sequence. Reaction times for error trials (when the incorrect
button was pressed) were measured from when the light went
on to when the correct button was pressed, ignoring the
intervening erroneous button press. Subjects made an
average of 65 errors each (1.7% of the trials), and these trials
were not excluded from the analysis, but doing so has no
noticeable effect.

The median reaction time for each trial is calculated across
subjects, and then the resulting sequence of reaction times is
correlated with the sequences of surprisal values (negative
log probability) generated by each of the models. The
experiment is divided up into four parts to visualize how the
correlations change over the course of training. Standard
correlation coefficients and 95% confidence intervals are
plotted in Figure 2. Note that each of the models is
significantly correlated with the human reaction time data
throughout the experiment, though with no model clearly
dominating (except perhaps a slight preference for the SRN).
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Figure 2: Correlations between models and human
reaction times over the course of the experiment.

Several possible interpretations exist at this point. Since
the models themselves are quite strongly inter-correlated, it
is possible that the correlations for each of the models could
be explained by a common shared component. In particular,
each of the models is capable of representing n-gram
statistics, so perhaps this could explain some portion of the
correlation in the other models. To investigate this

possibility, partial correlations between the human reaction
times and the models are computed after regressing out the
bigram and trigram statistics. The residual correlations are
plotted in Figure 3.
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Figure 3: Partial correlations between model probabilities
and reactions times, regressing out n-gram probabilities.

As is to be expected, the bigram and trigram correlations
become insignificant. nThe HMM correlations are also
eliminated after the first couple of blocks (at which point
none of the models have learned very much), suggesting that
the HMM was not explaining anything significant about the
human behavior beyond n-gram statistics. Both the SRN and
PCFG, however, maintain significant correlations
throughout, suggesting that they are capturing more about
the human reaction times than simply a sensitivity to n-gram
statistics.

We might then wonder whether a common component is
responsible for both the SRN and PCFG correlations, or if
they are each accounting for distinct aspects of the human
behavior. To test this, we regress out all models except for
the model of interest, and see how much of the variance
remains for that model to explain.

Regressing out all the models besides the PCFG reduces
its correlations very slightly, but they remain highly over the
course of a session, as can be seen in Figure 4 below.
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Figure 4: Partial correlations, regressing out all but PCFG.

1384



Similarly, regressing out all models other than the SRN
has very little effect on the SRN correlations, which remain
strong throughout, despite declining somewhat towards the
end (Figure 5).
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Figure 5: Partial correlations, regressing out all but SRN.

These results seem to suggest that multiple simultaneous
processes are playing a role in human behavior on the task;
on the one hand, an associative, incremental component
captured by the SRN, and on the other hand, a more rule-
based, recursive component exemplified by the PCFG. As
SRN models have frequently been used to model implicit
learning (e.g. Cleeremans, 1993; Misyak et al, 2009),
whereas PCFGs are more often associated with explicit rule-
based knowledge, we examined individual differences
between subjects with regards to implicit and explicit
learning, to see if this might help to explain this dissociation.

In the post-testing questionnaire, 3 of the 8 subjects
identified some type of structure within the sequences; some
referred to it as a “circular” or “mirror” pattern, and one also
gave explicit palindromic examples. The 5 remaining
subjects had not noticed any regularity to the sequences,
even when probed further (2 of these “felt” like there might
be some pattern, but could not articulate any details). We
separated these two groups from one another and once again
calculated partial correlations (regressing out n-grams and
the hmm).
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Figure 6: Subjects with no explicit awareness of structure;
partial correlations, regressing out n-grams and hmm.
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Figure 7: Subjects who were explicitly aware of structure;
partial correlations, regressing out n-grams and hmm.

The subjects who were able to report explicit knowledge
of aspects of the palindromic structure, by the end of the
experiment, showed the strongest correlation with the PCFG
(Figure 7), whereas the SRN correlated more strongly with
the group that gained no explicit awareness of the structure
(Figure 6), indicating that the variance explained by the SRN
may reflect a more automatic, implicit processing of the
sequential structure (as suggested, for example, by
Cleeremans, 1993), whereas the acquisition of recursive,
rule-like structures may involve more explicit, conscious
processing. It was not possible to query subjects partway
through the experiment about whether they had noticed any
patterns without drawing their attention to the existence of
structure, but the sudden divergence between the PCFG and
SRN in Figure 7 lines up well with subjects’ comments
during the post-test interview that they had begun to notice
the pattern somewhere in the “middle of the experiment”.

It is also instructive to examine the pattern of reaction
times over the course of an average sequence. As the
sequences are of different lengths, position on the x-axis is
represented as percentage of the way through a sequence
(Figure 8).
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Figure 8: Comparison of RTs and model surprisal over the
course of an average sequence (scaled by percentage).
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There are several things to note in this reaction time data.
Firstly, subjects seem to show a strong advantage in the
second half of the sequence, which is consistent with the
symbols in the second half being completely determined by
the symbols in the first half (due to the palindromic nature of
the sequences), and which is seen most strongly both in the
PCFG and in the learners with explicit awareness of the
structure. Secondly, this advantage is greater immediately
following the center symbol and reaction time and then
increases slightly as the sequence continues. This is
consistent with the fact that later symbols in the second half
involve longer-range dependencies, and thus may reflect
working memory limitations. The reason for the peak seen
halfway through the sequences in both the implicit learners
and the SRN is at first unclear, but it is tempting to interpret
it as reflecting the cognitive load involved in needing to flip
around the first half of the sequence in order to predict the
second half, although we might expect this to appear in the
explicit rather than the implicit subjects.

Discussion

We attempted to shed light on the mechanisms underlying
human processing of recursive structure, by extending the
artificial grammar serial reaction time paradigm in two ways;
firstly, by training subjects on more complex grammars than
are typically used (context-free grammars); and secondly, by
comparing performance not only to transitional n-gram
probabilities and connectionist models, but also to a
Bayesian-induced PCFG model, trained on the exact same
set of sequences as the subjects. Evidence was found for a
dissociation between implicit and explicit modes of
processing, and these modes were seen to correlate most
strongly with the predictions of the SRN and the PCFG,
respectively.

It may also be fruitful to examine the effects of making
subjects explicitly aware of the structure prior to beginning
the task, as the results of the present study would suggest this
would lead to greater correlation with the predictions of the
PCFG. It would also be useful to provide a longer training
period, to shed light on how these processes change over the
course of more extensive exposure.
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