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Abstract

This paper presents a model of sensorimotor learning
grounded in the sensory streams of a real humanoid robot (the
iCub robot). The robot participates in a replication of two
developmental psychology experiments, in which it is shown
how spatial cues are sufficient for associating linguistic labels
with objects. The robot, using auto-associated self-organizing
maps connecting is perceptual input and motor control,
produces similar performance and results to human
participants. This model confirms the validity of a body
centric account of the linking of words to objects as sufficient
to account for the spatial biases in learning that these
experiments expose.

Keywords: Developmental Robotics; Neural Networks;
Sensorimotor; Learning; Spatial Bias; Category Learning.

Introduction

At the heart of all sensorimotor theories of cognition is the
claim that perception is to a large degree based upon the use
of sensorimotor knowledge in predicting the future sensory
consequences of an action, either overtly executed or
covertly simulated (Gallese & Lakoff, 2005; Morse, Lowe,
& Ziemke, 2008; Noég, 2004, 2009; O'Regan & Noé, 2001).
As such our perception of continuous contact with a rich
visual world laid out in front of us is somewhat misleading,
as sensory input is highly impoverished by comparison to
perception; for example visual acuity is focused on an area
the size of a thumb nail at arm’s length. From a
sensorimotor perspective, our perception of things outside
the fovea is largely constructed from predictions of what
you would see were you to look in this or that direction
(No&, 2004). Clearly such perception is supported by
processing of the sparse input from the periphery of our
visual field, and mechanisms drawing attention to
movement, flashes, and other such changes, yet there
remains a large disparity between sensory input and
perception.

In taking a sensorimotor perspective, the recognition and
categorization of objects in our perceptual field can be
achieved through the identification of profiles of interaction
unique to each object category. As an example we can
perceive a plate as round, not because it projects a round
image onto our retina, but rather because we can predict
how our sensory contact will change as we move a little this

way or a little that way. This rather sparse account supposes
that such profiles can be constructed and recognized,
leading to the recognition of objects in the world in terms of
their Gibsonian affordances (Gibson, 1979). This
construction of profiles of interaction is crucial to the ability
of sensorimotor theories to account for high-level cognitive
and mental phenomena such as perception, but is also the
least detailed and most challenging aspect of these theories.
Few sensorimotor theories do more than just suppose an
ability to do this. Nevertheless such embodiment centric
accounts of perception are supported by a large number of
psychology experiments and neuroscientific evidence
exposing various bodily biases in categorization
(Richardson & Kirkham, 2004; Smith, 2005; Smith &
Samuelson, 2010). For example, for Gallese and Lakoff
(2005) the biological sensorimotor system is not merely
foundational to our mental conceptual abilities but
constitutes action and perception which are inseparably
interwoven in those sensorimotor systems. In addition, the
re-activation of visual and motor areas during imagined
actions (Jeannerod, 1994; Kosslyn & Press, 1994) “shows
that typical human cognitive activities such as visual and
motor imagery, far from being of a disembodied, modality-
free, and symbolic nature, make use of the activation of
sensory-motor brain regions.” (Gallese & Lakoff, 2005, p.
465). Similarly while paralysis and neuromuscular
blockades do not disrupt conscious thought processes
(Topulos, Lansing, & Banzett, 1994), the current activity of
the motor cortex is highly influential on both perception and
thought. Barsalou et al. (2003) highlight some of the ways
in which body posture and action affect perception and
cognition; for example, subjects rated cartoons differently
when holding a pen between their lips than when holding it
between their teeth. The Ilatter triggered the same
musculature as smiling, which made the subjects rate the
cartoons as funnier, whereas holding the pen between the
lips activated the same muscles as frowning and
consequently had the opposite effect (Strack, Martin, &
Stepper, 1988). Moreover, bodily postures influence the
subjects’ affective state; e.g., subjects in an upright position
experience more pride than subjects in a slumped position.
Further compatibility between bodily and cognitive states
enhances performance. For instance, several motor

1362



performance compatibility effects have been reported in
experiments in which subjects responded faster to ‘positive’
words (e.g. ‘love’) than ‘negative’ words (e.g. ‘hate’) when
asked to pull a lever towards them (Chen & Bargh, 1999).

In the remainder of this paper we describe a
developmental robotics (Cangelosi & Riga 2006; Weng et
al. 2002) model of a simple sensorimotor system grounded
in the sensors and actions of iCub, a child-like humanoid
robot. The robot then participates in a psychology
experiment highlighting the role of body posture and spatial
locations in learning the names of objects. Finally we
compare the results of the robot experiments to the data
from human child psychology experiments conducted by
Smith and Samuelson (Smith & Samuelson, 2010).

The ‘Modi’ Experiment

In a series of experiments related to Piaget’s famous A-not-
B error (1963), and derived from experiments by Baldwin
(1993), Linda Smith and Larissa Samuelson (Smith &
Samuelson, 2010) repeatedly showed children between 18
and 24 months of age two different objects in turn, one
consistently presented on the left, and the other consistently
presented on the right. Following two presentations of each
object, the child’s attention is drawn to one of the now
empty presentation locations and the linguistic label “modi”
is presented. Finally the children are presented with both
objects in a new location and asked; “can you find me the
modi”. Not surprisingly the majority (71%) of the children
select the spatially correlated object despite the fact that the
name was presented in the absence of either object. Varying
the experiment to draw the child’s attention to the left or
right rather than to the specific location that the object,
when saying “modi”, resulted in a similar performance
where 68% of the children selected the spatially linked
object. The results of this experiment challenge the popular
hypothesis that names are linked to the thing being attended
to at the time the name is encountered.

In a follow up experiment, using the same basic
procedure, one group of children were presented with only a
single object labeled while in sight; a second group were
repeatedly presented with a consistent spatial relationship
until finally an object is labeled while in sight but in the
spatial location where the other object was normally
presented. In the control group, where a single object is
presented and labeled, 80% correctly picked the labeled
object over the previously unencountered object; in the
second group (spatial competition) a majority of 60%
selected the spatially linked object rather than the object that
was actually being attended while labeled. In both
experiments changes in posture from sitting to standing
disrupted the children’s ability to link the absent object to
the name through space, while other visual or auditory
distracters did not. This is strong evidence challenging the
simple hypothesis that names are associated to the thing
being attended at the time the name is heard, and strong
evidence for the role of the body’s momentary disposition in

space playing a role in binding objects to names through the
expected location of that object.

While several other variations of this experiment have
been conducted with children, it is these two versions of the
experiment that we have replicated with our robot model.

The Robot Experiments

The ‘modi’ experiments, though not conclusive, strongly
suggest that body posture is central to the linking of
linguistic and visual information, especially as large
changes in posture such as from sitting to standing disrupt
the effect reducing performance in the first experiment to
chance levels. In our model this suggestion is taken quite
literally, using body posture information as a ‘hub’
connecting information from other sensory streams in
ongoing experience. Connecting information via a ‘hub’
allows for the spreading of activation via this hub to prime
information in one modality from information in another.
Furthermore using the body posture as a ‘hub’ also makes a
strong connection to the sensorimotor literature reviewed in
the introduction; as actions, here interpreted as changes in
body posture, also have the ability to directly prime all the
information associated with that new position and hence
indicate what the agent would expect to see were it to
overtly move to that posture. Such predictive abilities are
the foundation of sensorimotor theories.

In this experiment we use the humanoid robotic platform
iCub, an open source platform which has been recently
developed as a benchmark platform for cognitive robotics
experiments (Metta et al., 2008). It has 53 degrees of
freedom, allowing experiments on visual, tactile and
proprioceptive perception, manipulation and crawling.
Initial iCub experiments were carried out in simulation
through the open source iCub simulator (Tikhanoff et al.
2008), and then adapted and tested on the physical robot
platform.

Grounding information in sensory streams

The information linked via the body-posture hub is the
result of processing visual input from the iCub robots
cameras, taking the average RGB color of the foveal area
and using this as an input to a 2D self-organizing map
(SOM) (Kohonen, 1998) described in Equation 1, Equation
2, and Equation 3 below. The SOM provides pattern
recognition over the input space preserving input topology
while capturing the variance of the data. The body-posture
‘hub’ similarly used the joint angles of the robot as input to
another SOM. Though the iCub robot has 53 degrees of
freedom, for simplicity in the experiments detailed herein
only 2 degrees from the head (up/down and left/right), and 2
degrees from the eyes (up/down and left/right) were actually
used, thus the body map of the iCub robot has 4 inputs, each
being the angle of a single joint. Further experiments are
underway using a more complex body posture map
involving all the degrees of freedom of the iCub robot.
Finally, auditory input is abstracted as a collection of
explicitly represented ‘words’, each active only while
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hearing that word. In the experiments herein these ‘words’
are artificially activated, though in related work we are
using the open source CMU  Sphinx library
(http://cmusphinx.org/) to provide voice processing,
achieving the same result from genuine auditory input.

Both the color map and the body posture map are
initialized using random values in the appropriate sensory
ranges with an increased probably of values in the extremes
of each range until the SOM’s have stabilized. Increasing
the probability of extreme values ensures that the resulting
stable map fully covers the range of possible input values,
without this step mid range values would tend to pull in the
extremities of the map resulting in poor coverage.

Equation 1: Initial activation of SOM units

Where 4; is the resulting activity of each node in the map
following a forward pass, v; is an input, and w;; is the weight
between that input and the current node. The winning node
is the node with the smallest value for 4;

Equation 2: Final activation of SOM units
2]
yi=e ad

Where y;is the final activation of the i™ node in the map, /3 is
the distance from node i to the winning unit, and » is the
total number of nodes in the map. Note: units not within the
neighborhood size are set to zero activation, the
neighborhood size and learning rate are monotonically
decreased and the map is taken to be stable when the
neighborhood size is zero.

Equation 3: Weight changes
Aw,; = a(vi_wij)yi

Where w;; is the weight between input j and unit i, and & is
the learning rate.

The neural model forms the upper tier of a 2 layer
subsumption architecture (Brooks, 1986) where the lower
tier continuously scans whole images for connected regions
of change between temporally contiguous images. The
robot is directed to orient with fast eye saccades and slower
head turns to position the largest region of change (above a
threshold) in the centre of the image. This motion saliency
mechanism operates independently from the neural model,
generating a motion saliency image driving the motor
system. This motion saliency image can be replaced with a
color-filtered image to provoke orientation to regions of the
image best matching the color primed by the neural model.
Using the model described we then replicated the
experimental setup used by Smith and Samuelson (2010),
linking the activity of the color map and the auditory words

to the body map in real time using positive Hebbian
connectivity following Equation 4 below.

Equation 4 Positive Hebbian learning
Aw,=0x,.x;

Where w;; is the weight between node j and node i, ¢ is the
learning rate (0.01), x; is the activity of the winning node in
one map, and x; is the winning node in the posture map.

These Hebbian associative connections were then only
modified from the current active body posture node.
Inhibitory competition between any simultaneously active
nodes in the same map provides arbitration between
multiple associated nodes resulting in dynamics similar to
those expressed in Interactive Activation and Competition
(IAC) models which have a long history of use in modeling
psychological phenomena (Burton, Bruce, & Hancock,
1999; McClelland & Rumelhart, 1981; Morse, 2003).

As the maps are linked together in real time based on the
experiences of the robot (see Figure 1), strong connections
between objects typically encountered in particular spatial
locations, and hence in similar body postures build up.
Similarly, when the word ‘modi’ is heard, it is also
associated with the active body posture node at that time.
The relative infrequency of activity in the word nodes
Output of Auditory Modi
Pattern Recognition )

4
Visual Features P

S
A,

Body Posture
FoveaVisual Input
Map of colour space

Touch

Figure 1: The general architecture of the model.
SOMs are used to map the color space, the body
posture, and the word space. These maps are
then linked using Hebbian learning with the body
posture map acting as a central ‘hub’. The
model can easily be extended to include other
features such as visual and touch information in
additional SOMs.

compared with continuous activity in the color map is not a
problem as competition is between nodes within each map
and not between the maps themselves. Finally at the end of
the experiment, when the robot is asked to ‘find the modi’,
activity in the ‘modi’ word node spreads to the associated
posture and on to the color map node(s) associated with that
posture. The result is to prime particular nodes in the color
map, the primed color is then used to filter the whole input
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image and the robot adjusts its posture to center its vision on
the region of the image most closely matching this color.
This is achieved using the same mechanism that detects and
moves to look at regions of change in the image, replacing
the motion saliency image with a color-filtered image. Here
the robot moves to look at the brightest region of the color-
filtered image, circled in Figure 2 below.

Figure 2 left: Image from the iCub robot’s left
camera. Right: the same image color-filtered
with the primed blue color of the toy truck. The
brightest area (circled) indicates the closest
match to the primed color.

Given that the number of associations constructed will grow
over time in the absence of negative Hebbian learning and
in a changing environment, large changes in body posture
are used to trigger a removal of these associative
connections consistent with the eradication of spatial biases
in the psychology experiment following changes from
sitting to standing. Additionally, external confirmation that
the correct object has been selected leads to more permanent
connections being constructed either directly between word
and color maps or via a second pattern recognition based
‘hub’.  As these mechanisms are superfluous to the
experiments modeled herein their details have been omitted.

The model as described is then used to replicate each
condition of the two psychology experiments described in
the previous section as detailed below.

Experiment 1 No Switch Condition

1. Object A is presented to the robot’s left — the robot
then looks at object A,

2. Object B is presented to the robot’s right — the robot
then looks at object B,

3. Steps | and 2 are repeated,

4. The robot’s attention is drawn to its left in the
absence of objects A and B and the word ‘modi’ is

spoken,

5. Steps 1 and 2 are repeated again,

6. Object A and object B are presented in a new
location and the robot is asked ‘where is the modi’ —
the robot then looks at one of the objects.

This experiment was repeated 18 times resetting the model
between each run and starting with a different random seed
thereby simulating 18 different individuals. The position of
object A and object B (to the left and right) was swapped
between each trial and the location that the robots attention
was drawn to in step 4 was changed between the first 9 and
the remaining trials thereby removing any bias favoring one
object or one location over the other. The whole experiment
was videoed and stills from steps 1, 2, 4 & 6 are shown in
Figure 3. The results recorded which object was centered in
the robots visual field following step 6.

Experiment 1 Switch Condition

In the switch condition the location of presentation of
objects A and B was swapped for the first presentation only
of each object (step 1). Subsequent presentations of each
object in steps 2 and 5 remained consistent with the original
locations in the no switch condition. Again the experiment
was repeated, this time 20 times, with the same variations as
used in the no switch condition and the results recoded
which object if any is centered in the robots visual field
following step 6.

Experiment 2 Labeling while in sight — Control
Condition

Experiment 2 provides a variation on experiment 1 in which
objects are labeled while in sight. In the control condition a
single object is presented either to the left or to the right and
labeled ‘modi’ while being attended, the object is then
presented in a new location with a second object and the
robot is asked to ‘find the modi’.

Experiment 2 Labeling while in sight — Switch
Condition

1. Object A is presented to the robots left — the robot then
looks at object A

2. Object B is presented to the robots right — the robot then
looks at object B

3. Steps 1 and 2 are repeated

Figure 3: The experiment sequence with the iCub robot.
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4. Steps 1 and 2 are repeated again

5. Steps 1 and 2 are repeated yet again

6. Object A is presented to the robots right (i.e. in the wrong
location) and the word ‘modi’ is spoken

7. Steps 1 and 2 are repeated again

8. Object A and object B are presented in a new location and
the robot is asked ‘where is the modi’ — the robot then
looks at one of the objects

Experiment 2 was repeated 20 times in each condition with
differently seeded networks where the identity of object A
and object B was swapped on each consecutive trial and the
locations (left and right) were reversed following 10 trials to
remove any object or location specific bias.

This model represents preliminary work investigating
spatial biases in object categorization. Further work
developing and extending this model as a model of
sensorimotor learning is currently underway.

Results

In each condition of each experiment, the results recorded
which object, if any, was centered in the robots view
following the final step of each experiment where the robot
was asked to ‘find the modi’. In the no-switch condition of
experiment 1, 83% (15/18) of the trials resulted in the robot
selecting the spatially linked object, while the remaining
trials resulted in the robot selecting the non-spatially linked
object. This is comparable to the reported result that 71% of
children selected the spatially linked object in the human
experiment in the same condition (Smith & Samuelson,
2010).

100
Il Robot data
90 Il Human Data

80

70

60

50+

40F

30

Percentage of trials in which the
spatially linked object was selected

20

L
Exp1 Switch

Exp1 No Switch Exp2 Control

Exp2 Switch

Figure 4: The percentage of spatially linked objects
selected in each experimental condition for both
robot data and for the human child data.

Reducing the consistency of the object-location correlation
in the switch condition resulted in a significant reduction in
the spatial priming effect with a close to chance
performance of 55% (11/20) of the trials finishing with the
spatially correlated object being centered in the view of the
robot. The remaining 9 trials resulted in the other object
being selected. In experiment 2 objects were labeled while
being attended, the control group resulted in 95% (19/20) of
the trials selecting the labeled object while in the switch
condition only 45% (9/20) of the trials resulted in the
labeled object being selected. The remaining trials all

selected the other object. These results are compared to the
reported human child data in Figure 4.

Discussion and Conclusion

The close match between the results from the robot
experiments and the human child results reported by Smith
and Samuelson (Smith & Samuelson, 2010) suggests that
the hypothesis that body posture is central to early linking of
names and object, and can account for the spatial biases
exposed by these experiments. What is of relevance here is
that the relations between the conditions of each experiment
are consistent between the human and robot data, rather than
the absolute values achieved. As can be seen from Figure 4
the robot data consistently produced a slightly stronger bias
toward the spatially linked objects than the human data.

That the priming effect did not cause the robot to always
select the spatially linked object in every variation of the
experiments was due to a variety of factors including; noise
in the input sensors, varying lighting and reflectance
properties as objects are rotated slightly, inaccuracies in the
orienting mechanism and so on. In combination these
factors produced variations in which a node in the color map
was activated as one particular object is being observed, this
can lead to weak connections between several similar nodes
rather than a single strong connection to one node. In the
switch condition of experiment 1, this situation more
frequently resulted in object B having a stronger connection
to the body posture in which object A was more frequently
observed, thus object B was more strongly primed and
selected. In these cases increasing the consistency in which
an object is seen in the labeled location promotes the
strengthening of connections leading to that object being
selected, as is seen in the no-switch condition of exp. 1.

It is anticipated that the inclusion of other visual features,
though likely to be subject to similar variance, would
increase the discrepancy between the data from this model
and the human data. This would be due to activation
spreading between maps, influencing the priming in much
the same way a localist IAC model (Burton et al., 1999;
McClelland & Rumelhart, 1981; Morse, 2003). Despite this
the relative effects of the various conditions across each
experiment should remain relatively consistent. We suggest
that the close fit to human data could be misleading, as by
comparison in the human case spatial priming would be in
competition with far more complex factors influencing the
saliency of the objects, factors we have not attempted to
model here. Conversely such competition may in fact
reduce the models tendency to over perform thereby more
closely matching the human data.

As indicated in the introduction our model is consistent
with the sensorimotor approach to understanding cognition
as the model is able to predict the sensory input it would
receive were it to move to different body-postures. This
information is accessed simply by a spread of activation
from primed body-posture nodes in the ‘hub’. The model is
also easily scaled up to include additional information
presented in additional maps retaining the current IAC-like
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architecture. Such models are also suitable for use in
hierarchies providing a better fit to the underlying biology.

In conclusion our model accurately reproduces the human
data from Smith and Samuelson’s (2010) experiments, in an
ongoing embodied human robot interaction. In fact, the
close fit between our data and the reported human data is in
part due to the difficulties and inaccuracies inherent in
conducting experiments with complex real robots rather
than simulations. In future work we are developing and
demonstrating this architecture in a variety of related
sensorimotor and psychological tasks involving object
manipulations. The goal is close empirical studies of robots
and children — in which robot models generate new
predictions tested in children. Such joint studies should
advance robotics, our understanding of human cognitive
development, and the nature of embodied intelligence more
generally.
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