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Introduction 
Attempts to develop an accurate measure of eye movements 
are over a century old (e.g., Delabarre, 1898; Huey, 1898; as 
cited in Karatekin, 2007), and predate the earliest studies of 
categorization (Hull, 1920). Given the long history of both 
categorization and eye-tracking, it is surprising that eye-
tracking has only recently been added to the categorization 
researcher’s toolbox (Rehder & Hoffman, 2005a). 

Selective attention is an important component of theories 
of categorization and eye-tracking provides a measure of 
what features of a stimulus participants have selected to 
attend. There are alternatives to eye-tracking, such as 
inferring attention allocation based on model fits or 
carefully designed transfer tasks. However, these methods 
lack the directness of eye-tracking and provide only a coarse 
measure of how attention shifts over the course of learning. 
Moreover, they provide no account of how attention is 
allocated early in learning and within a single categorization 
trial (including after feedback is presented). This more fine-
grained data can not only clarify our understanding of key 
phenomena, it broadens the range of experimental questions 
that can be asked to understand how humans learn 
categories (Blair, Watson & Meier, 2009; Blair, Watson, 
Walshe & Maj, 2009; Hoffman & Rehder; 2009; Kim & 
Rehder, 2009; Rehder, Colner & Hoffman, 2009; Rehder & 
Hoffman, 2005a; Rehder & Hoffman, 2005b; Watson & 
Blair, 2008) 

This symposium brings together four talks on eye-
tracking and categorization. Each talk focuses on a different 
aspect of categorization and demonstrates how using eye-
tracking can extend our knowledge. One recent trend in 
category learning is the use of alternative training 

procedures. The inference learning task is the most popular 
of these procedures and in the first talk Aaron Hoffman 
presents eye-tracking data illuminating the differences 
between inference learning and categorization. Bob Rehder 
then presents his recent work on understanding the learning 
difficulties associated with Parkinson’s disease. Marcus 
Watson discusses work using eye-tracking to inform our 
understanding of the basic issue in category learning: error. 
Finally, Mark Blair discusses the relationship between 
working memory, attention and performance in a category 
learning tasks.  

Inference versus classification learning 
It has been proposed that whereas feature inference 

learning promotes learning a category’s internal structure 
(e.g., typical features and feature correlations), classification 
promotes the learning of diagnostic information (Markman 
& Ross, 2003). We tracked learners’ eye movements and 
found that inference learners fixated features that were 
unnecessary for inferring a missing feature—consistent with 
their acquiring the categories’ internal structure. However, 
those fixations were limited to features that needed to be 
predicted on future trials. Inference learning appeared to 
induce both supervised and unsupervised learning of 
category-to-feature associations, rather than any general 
motivation to learn the internal structure of categories. 

In a second study, we compared how inference and 
classification learning support learners’ ability to draw novel 
contrasts—category distinctions that were not part of 
training. We found that classification learners were at a 
disadvantage at making novel contrasts. Eye movement data 
indicated that this conceptual inflexibility was due to (a) a 
narrow attention profile that fails to encode many category 
features and (b) learned inattention that inhibits the 
reallocation of attention to newly relevant information. 
Implications of these costs of supervised classification 
learning for views of conceptual structure will be discussed. 

1354



 

 

Using eye-movements to understand 
Parkinson’s patients learning difficulties 

Those with Parkinson's disease (PD) exhibit not only 
motor difficulties such as tremors, rigidity, and postural 
instability but also a variety of cognitive deficits, including 
deficits in procedural learning and in switching to new tasks 
("set shifting"). Out central hypothesis is that deficits in 
selective attention are central to many of PD patients' 
learning difficulties. Moreover, assessing how attentional 
deficits in PD affect learning is critical to understanding 
how other learning mechanisms are affected by the disease. 
A probabilistic category learning paradigm known as the 
weather prediction task (WPT) has played a central role in 
theorizing about learning in PD patients. We report eye 
movement data from both PD patients and controls while 
performing the WPT and discuss implications our results 
have for current theories of category learning. 

Over and under-estimating the importance of 
error-processing in categorization 

The category label (i.e., the correct answer) has a central 
role in most models of categorization. It supplies the 
information necessary to improve both categorization and 
attentional performance. But despite its theoretical 
importance, there has been little direct investigation of how 
errors are processed.  

In this presentation we first evaluate the necessity and 
sufficiency of errors for optimizing attention. Error-driven 
models predict large shifts of attention when errors are most 
common and the absence of shifts when learners are not 
making mistakes. We review data that shows the opposite 
result. We next use eye-tracking to assess how participants 
process stimuli and category labels while receiving feedback 
on their errors. Results show that temporal aspects of this 
process that are not captured in extant models are 
consequential for learning.  

Working memory, attention and category 
learning 

Categorization is a core cognitive task that involves 
accessing information, remembering relationships, focusing 
on relevant aspects of the stimuli, etc. While long-term 
memory and selective attention have long been employed by 
theories of categorization, working memory has had nothing 
much to do. This is especially surprising given that working 
memory is described by some researchers as executive 
attention, and its influence has been demonstrated to be very 
broad. Intuitively, working memory capacity might 
influence categorization performance in a variety of ways. 
High working memory span might be associated with faster 
learning or improved accuracy. It also might influence how 
participants attend to stimulus features.  

This presentation will describe work aimed at 
demystifying the effects of working memory capacity on 
categorization performance, including on attentional 
optimization. Studies reveal that, depending on the task, 

working memory span is related to both attentional 
optimization and learning speed. Working memory span 
(measured by the symmetry span task) is compared to 
measures of attentional network efficiency (measured by the 
Attention Network Test), and to several other aspects of 
attentional learning and categorization data.  
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