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Abstract

Reinforcement learning (RL) shows great promise as a model
of learning in complex, dynamic tasks, for both humans and
artificial systems. However, the effectiveness of RL models
depends strongly on the choice of state representation,
because this determines how knowledge is generalized among
states. We introduce a framework for integrating
psychological mechanisms of representation learning that
allows RL to autonomously adapt its representation to suit its
needs and thereby speed learning. One such model is
formalized, based on learned selective attention among
stimulus dimensions. The model significantly outperforms
standard RL models and provides a good fit to human data.
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Introduction

Most challenging tasks people face are inherently dynamic
and interactive. Choices affect not just immediate outcomes
but also future events, and hence subsequent decisions that
must be made. Normative and descriptive theories of
learning in dynamic environments have advanced
dramatically in recent years with the development of
Reinforcement Learning (RL), a mathematical and
computational theory drawing on machine learning,
psychology, and neuroscience (e.g., Schultz, Dayan, &
Montague, 1997; Sutton & Barto, 1998).

However, RL currently faces a fundamental challenge
relating to the issue of knowledge representation. Dynamic
tasks tend to be highly complex, with an enormous number
of possible states (situations) that can arise. Therefore,
efficient learning must rely on generalization from past
states that are similar to the current one. Similarity, in turn,
depends on how states are represented, including the
features by which they are encoded and the relative attention
allocated to those features (Medin, Goldstone, & Gentner,
1993). Thus representation is critical to the effectiveness of
RL algorithms, because representation determines the
pattern of generalization by which past experience is used to
make new decisions.

Although there has been little research on representation
in the context of RL, representation and representation
learning have long been topics of psychological study.
Empirical research in a number of domains, including
perceptual learning, attention, categorization, object
recognition, and analogy, has uncovered principles and
mechanisms by which people learn to modify how they
encode objects and situations in the service of learning,
inference, and decision making. Here we describe a
framework for a natural synthesis of these ideas with RL
algorithms, which leads to models that learn representations
for dynamic tasks. A specific model is presented that is

based on principles of attention learning from the
categorization literature (Kruschke, 1992; Nosofsky, 1986).
Two sets of simulation studies are reported, which
demonstrate both the power and the psychological validity
of this approach.

Reinforcement Learning

RL comprises a family of algorithms for learning optimal
action in dynamic environments. RL models characterize a
task as a Markov Decision Process, in which the
environment at any moment exists in one of a set of states,
each associated with a set of actions available to the learner.
The chosen action determines both the immediate reward
received, if any, and the state of the environment on the next
time step. This general framework encompasses most tasks
of psychological interest (Sutton & Barto, 1998).

The key insight behind most RL algorithms is to learn a
value for each possible state or action. This value represents
the total future reward that can be expected starting from

that point. Formally, given any state s and action a, the
state-action value is defined as
k
O(s,a)=E| 37" r, s, =s.a, = a|, (1)
k=0

where ¢ is the current timestep; s, a, and r are the state,
action, and received reward on each step; and y € [0, 1] is a
discount factor representing the relative value of immediate
versus delayed rewards. This approach allows action
selection to be based directly on the Q-values. Here we use
a Luce-choice or Gibbs-sampling rule, with inverse-
temperature parameter 0.

P(a, = a)x %20 )

Once an action is selected, its value is updated according
to the immediate reward and the values associated with the
state that follows. One of the best-studied algorithms for
learning action values, Q-learning (Watkins & Dayan,
1992), uses the update rule

AQ(s,,a,) =&,y 0, 3)

where €., € (0, 1] is a learning rate, and 0 is the temporal-
difference (TD) error, defined as

6=r, +}/'II}13X{Q(SH1,a)}—Q(s,,at). 4)

The TD error represents the difference between the
original action-value estimate, Q(s;, @,), and a new estimate
based on the immediate reward and ensuing state. The
expression max,{Q(s.1, a)} represents an estimate of the
value of the new state, s,.1, based on the best action that
could be performed in that state.
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The simplest implementations of Q-learning and other RL
algorithms use a fabular (i.e., lookup-table) representation,
in which a different set of action values is learned separately
for every possible state that can occur. Tabular
representations are impractical for most realistic tasks,
because the number of states grows exponentially with the
number of state variables. Therefore, most implementations
of RL utilize some form of generalization, whereby
knowledge about one state is extended to other, similar
states. This approach dramatically speeds learning by
reducing the amount of information that must be retained
and updated, and by allowing the learner to draw on a richer
set of past experiences when making each new decision.

Central to the success of generalization in all learning
tasks (not just RL) is the choice of representation. In order
for generalization to be effective, states (or stimuli in
general) must be encoded so that stimuli that are perceived
or treated as similar tend to be associated with similar
outcomes or appropriate actions (Shepard, 1987). Such a
representation facilitates generalization, and hence learning,
because it leads the learner to draw on precisely those past
experiences that are most relevant to the current situation.

Unfortunately, the choice of representation is a
notoriously difficult problem, and the field of machine
learning is far from having automated algorithms that
discover useful representations for learning novel tasks.
Successful applications of RL have instead tended to rely on
hand-coded human knowledge for encoding states. For
example, the state representation in Tesauro’s (1995)
celebrated backgammon program, TD-gammon, was based
on complex features (configurations of pieces) suggested by
expert human players. Likewise, psychological research in
RL generally avoids the problem of representation by using
small sets of stimuli with clearly defined features, so that
the subject’s representation can be confidently assumed by
the modeler and is unlikely to change during the course of
learning (e.g., Fu & Anderson, 20006). Arguably,
representation is where the real challenge often lies, and
therefore starting a model with a hand-coded representation,
or using experimental stimuli with unambiguous features,
presupposes the most difficult and interesting aspects of
learning (Schyns, Goldstone, & Thibaut, 1998).

Selective Attention in Category Learning

One behavioral domain in which generalization and
representation have been extensively studied is category
learning. Much of the research on category learning has
aimed to understand the internal representations that humans
develop to facilitate classification of objects and inference
of unobserved features. All of these models serve, in one
way or another, to allow generalization of category
knowledge from previously encountered to novel stimuli.
The most direct mechanism for generalization in
categorization is embodied by exemplar models (Medin &
Schaffer, 1978). In these models, the psychological
evidence (F) in favor of classifying a stimulus (s) into a
given category (c) is given by summing its similarity to all

previously encountered exemplars (s), weighting each
exemplar by its association to c.

E(s,c) =Y, sim(s,s") w(s',c) (5)

The property of exemplar models most relevant to the
current investigation is the similarity function. Rather than
being fixed, a large body of evidence indicates that
similarity changes during the course of learning as a
consequence of shifts of attention among the stimulus
dimensions (e.g, Nosofsky, 1986). This flexibility is
modeled by expressing similarity as a decreasing function of
distance in psychological space, with each stimulus
dimension, 7, scaled by an attention weight, o, (Nosofsky,
1986). Here we assume an exponential similarity-distance
function, in accord with empirical evidence and normative
Bayesian analysis (Shepard, 1987).

sim(s,s') = e_Eiai‘S’_S;‘ (6)

The effect of attention on similarity is to alter the pattern
of generalization between stimuli so as to fall off more
rapidly with differences along dimensions with greater
attention weights. When stimuli differ only on unattended
dimensions, their differences are unnoticed and hence
generalization between them is strong. This adaptation of
generalization leads to improved performance when
attention is shifted to task-relevant dimensions, because the
learner generalizes between stimuli that have common
outcomes while discriminating between stimuli that are
meaningfully different.

The influence of attention on generalization has extensive
support, both theoretically (Medin et al, 1993) and
empirically (Jones, Maddox, & Love, 2005; Nosofsky,
1986). An important question suggested by this research is
how attention can be learned. One proposal is that attention
weights are updated in response to prediction error
(Kruschke, 1992). In a classification task, prediction error
(9) is simply the difference between the category evidence,
E(s, ¢), and the actual category membership given as
feedback to the learner (e.g., +1 if s € ¢ and -1 otherwise).
The updating rule for attention is then based on gradient
descent on this error, squared and summed over categories.

d 1 2
Aa; =€, 'aﬁdi(ggéc ) 7

This mechanism for attention learning has been
implemented in ALCOVE, a highly successful model of
human category learning (Kruschke, 1992). ALCOVE
learns to shift attention to stimulus dimensions that are most
relevant to predicting category membership and away from
dimensions that are non-diagnostic. This leads to adaptation
of generalization, which in turn speeds learning.

Attention Learning in RL

Because of the strong empirical support for attention
learning in the categorization literature, we believe it is a
potentially fruitful topic for study in the context of RL.
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Selective attention may be especially relevant in this domain
because most interesting RL tasks have complex state
spaces of high dimensionality, and learning to distinguish
relevant from irrelevant dimensions should be expected to
greatly speed learning in such tasks.

The present investigation addresses two questions
regarding the relationship between attention learning and
RL. The first question is a psychological one, of whether
attention learning as observed in supervised tasks such as
categorization also operates in the dynamic tasks modeled
by RL. This extrapolation is not trivial, because RL relies
on TD error, which is an internally generated signal based in
part on the learner’s own value estimate of the ensuing state
(see Eq. 4). It is an empirical question whether this internal
signal can drive attention shifts and other forms of
representation learning in the same way that external
feedback does. A companion paper (Cafias & Jones, 2010)
reports a behavioral experiment that supports an affirmative
answer to this question, and the data from that experiment
are modeled below.

The second question is a computational one, of whether
the formal equations that describe RL and attention learning
can be coherently integrated, and whether the resulting
model will exhibit efficient learning. This normative
question is important psychologically because computation-
al power constitutes a significant motivation for expecting
attention learning to play a role in human RL. If the two are
computationally compatible, then the potential significance
of RL is greatly increased, in that RL is capable of auto-
nomously adapting the representations on which it operates.

Comparison of the equations describing Q-learning and
attention learning reveals there is indeed a natural, highly
complementary integration. The strength of Q-learning, and
RL algorithms in general, is in the sophisticated updating
signals they compute, which take into account both external
reward and internal consistency of value estimates (Eq. 4).
The updating itself is fairly trivial, consisting of adjusting
the existing estimate by a proportion of the error (Eq. 3).
Attention learning, and models of category learning more
generally, have the opposite character. Their updating
signals are fairly trivial (prediction error relative to external
feedback), but the updates themselves are complex, driving
adaptation of sophisticated internal representations. This
complementary relationship suggests the solution of using
the TD error signal from RL to drive representation
learning, and in particular to update attention weights.

We refer to the model resulting from this integration as Q-

ALCOVE. Q-ALCOVE estimates action values via
similarity-based generalization among states, directly
analogous to ALCOVE (Eq. 5).

O(s,a) =Y, sim(s,s')- w(s',a) ®)

The Q-values are used to generate action probabilities
according to the response-selection rule used by both Q-
learning and ALCOVE (Eq. 2). The w parameters, which
act as pre-generalization action values, are updated

analogously to both Q-learning (Eq. 3) and ALCOVE, using
the same TD error signal as in Q-learning (Eq. 4).

Aw(s,,a,) =g, 0 ©)]

Similarity between states in Q-ALCOVE is defined
identically to stimulus similarity in ALCOVE (Eq. 6),
except that a normalization term is included that fixes the
total similarity (i.e., the integral of the generalization
gradient) to 1. We have found that attention learning in
tasks requiring continuous prediction only functions well
when normalization is included.

Learning of attention weights follows the same rule as in
ALCOVE, except for the critical substitution of
classification error with TD error. In addition, we only
differentiate 8 with respect to Q(s;, a,) and not Q(su1, @),
because the motivation behind Q-learning is to use Q(s1, °)
to adjust O(s,, ). Nevertheless, changing a also affects
O(s¢+1, °), and further analytical work is needed to
understand the impacts of this fact on model behavior and
predictions. The resulting rule for attention learning is

d
Aa; =g, 0-—Q0(s,,a,) (10)
o

The intuition behind attention learning in Q-ALCOVE is
that, after feedback, the model adjusts attention weights to
reduce generalization from states that contributed to error
and to increase generalization from states that suggested
more correct predictions. Over the course of experience,
attention should shift to those dimensions that are most
diagnostic of correct actions and their values.

Simulation Studies

Two sets of simulations were carried out to evaluate the
behavior of Q-ALCOVE. The first set was based on
Gridworld, a common benchmark task for RL models.
These simulations aimed to test whether the attention-
learning mechanism in Q-ALCOVE operates as predicted,
to shift attention toward relevant dimensions and away from
irrelevant dimensions. If so, a second question was whether
selective attention leads to significant improvements in
learning speed, and how such a potential advantage depends
on the dimensionality of the task. The second set of
simulations was based on a human behavioral experiment
(Cafias & Jones, 2010) designed to test whether humans can
learn selective attention using internal value estimates (i.e.,
TD error) as feedback, as proposed here. These simulations
aimed to evaluate Q-ALCOVE’s viability as a psychological
model.

Directional Gridworld

Gridworld is a class of tasks with a long tradition as a
benchmark for RL algorithms (e.g., Sutton & Barto, 1998).
The states of a Gridworld task form a rectangular lattice of
dimensionality D. We call the present task Directional
Gridworld, because it was set up in such a way that one
dimension was relevant and the others were irrelevant.
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Figure 1. State space for 3-dimensional Directional
Gridworld task. Grey states are goal states. Black cloud
depicts Q-ALCOVE’s generalization gradient, at the start of
learning (left) and after 300 time steps (right).

Figure 1 illustrates the Directional Gridworld task for the
case of D = 3 (the generalization gradients in the figure are
discussed below). Each dimension has 7 levels, for a total
of 7° states. In each state, the learner has 2D available
actions, corresponding to motion in either direction along
any dimension. For simplicity, we assume that actions are
deterministic and move the learner by 1 step in the chosen
direction. Actions on the boundaries that would take the
learner outside the space have no effect.

States are encoded as vectors corresponding to their
values on the D dimensions. Other than this, the model has
no prior knowledge of the topology of the environment or of
the meanings or effects of actions. The spatial interpretation
is only a convenient metaphor, and the task is not meant as a
model of spatial navigation that might involve specialized
psychological mechanisms. The stricter interpretation is as
an abstract problem space (e.g., Newell & Simon, 1972).

The highlighted states (Fig. 1) spanning the center of the
space are goal states. Whenever the learner reaches a goal
state, a reward of 10 is provided. On the next step, the
learner is taken to a random state maximally distant from
the goal region. All actions that do not lead to a goal
produce a reward of -1. The learner’s task is to choose
actions so as to maximize total temporally discounted
reward (Eq. 1, with y set to .5). Thus, optimal behavior
consists of repeatedly moving in a straight line from the
boundary to the nearest goal state.

For all values of the dimensionality D, the goal states
form a hyperplane through the center of the space. The
dimension perpendicular to the goal region is relevant to
optimal action selection, as the learner needs to move in
opposite directions depending on which side of the goal
region it is on. All other dimensions are irrelevant. Indeed,
it can easily be shown that the optimal Q-values for any
state depend only on the state’s position on the relevant
dimension. Therefore, the most efficient generalization
strategy for learning QO-values is to average over all states at
each level of the relevant dimension but to learn separate
values for each level. This strategy can be achieved by
strong attention to the relevant dimension and zero attention
to all other dimensions. A primary question was whether Q-
ALCOVE would learn such an attention distribution.

Dimensions

3
4
5
6
7
8

Reward Rate

Model

= Q-ALCOVE
—— Fixed Generalization

5(‘)0 10‘00 15‘00 20‘00 25‘00 30‘00

Step
Figure 2. Learning curves in Directional Gridworld for Q-
ALCOVE and version with fixed generalization.

Two models were simulated in addition to Q-ALCOVE.
The first was tabular Q-learning, which learns actions values
independently for all states. The second was a fixed-
generalization model obtained from Q-ALCOVE by setting
the attention-learning rate, €,, to 0. Q-ALCOVE was run
using g,; = .01. All models were run with value-learning
rate €y, = 1 and choice parameter 6 = .5. The models’ value
estimates (w or Q) were initialized at 0 at the start of each
run. The initial values for attention weights were set to .4
for both Q-ALCOVE and the fixed-generalization model.
This value was chosen so as to maximize performance of
the fixed-generalization model on 3 dimensions.

Figure 2 shows average learning curves for Q-ALCOVE
and the fixed-generalization model for Directional
Gridworlds of 3 to 8 dimensions. Performance for tabular
Q-learning was poor enough, especially at higher
dimensionalities, that it is omitted. Each curve indicates
reward rate, smoothed with a rectangular window of 100
time steps, and averaged over 4 separate runs of the model.
As can be seen, Q-ALCOVE learns more quickly with
attention learning than without, and the magnitude of this
advantage grows rapidly with the number of dimensions.
This result suggests that attention plays an indispensable
role in natural tasks of much higher dimensionality.

Figures 1 and 3 illustrate how Q-ALCOVE’s attention-
learning mechanism facilitates learning, in the case of three
dimensions. Figure 3 shows the attention weights for a
single run, which increase for the relevant dimension and
decrease toward O for the irrelevant dimensions. This shift
of attention leads to the change in the generalization
gradient depicted in Figure 1. The initial gradient (left) is
spherical, reflecting the model’s lack of knowledge of the
dimensions’ predictive validities. After 300 time steps
(right), the gradient has been reshaped so that there is strong
generalization between states as long as they match on the
relevant dimension and very little generalization otherwise.
Thus the model has learned the anisotropy of the task, which
allows it essentially to estimate a common set of Q-values
for all the states at each stratum (as an average over all the
ws), while keeping the values for different strata separate.

1261



20 — Relevant

Irrelevant

0 50 100 150 200 250 300 350 400 450 5(.10
Step

Figure 3. Dynamics of attention weights for one run of Q-

ALCOVE in 3-dimensional Directional Gridworld.

Attention weights (a)

The consequences of all three models’ patterns of
generalization are illustrated in Figure 4, which shows a
two-dimensional slice through the center of the three-
dimensional state space. Within each state, the four arrows
indicate the model’s estimated Q-values for the four actions
within the plane. These values are from a single run of each
model, after 300 time steps. Darker arrows indicate greater
Q-values. The values for tabular Q-learning are irregular,
reflecting the fact that they were learned separately for each
state. In most states there has not been enough experience
to obtain reliable estimates. The Q-values estimated by the
fixed-generalization model are more accurate, because each
draws on knowledge from neighboring states, so experience
is used more efficiently. However, there is still irregularity
among states at a given stratum (insufficient generalization
across the irrelevant dimension) and too much smoothing
(excess generalization) along the relevant dimension. Q-
ALCOVE’s estimated Q-values are much more accurate,
allowing the model to select correct actions more reliably.

The Spores Task

Psychologically, the core assumption of Q-ALCOVE is that
attention learning can be driven by internally generated TD-
error signals, not just overt feedback. A behavioral experi-
ment, reported by Cafias and Jones (2010), tested this
hypothesis using a two-step task, in which Action 1 deter-
mined Stimulus 2, but reward was not received until after
Action 2. The basic question was whether selective atten-
tion to the dimensions of Stimulus 1 could be learned, when
the only immediate feedback was the identity of Stimulus 2.
Figure 5 illustrates the design of the task. Stimulus 1 (a
cartoon mushroom spore) varied along two dimensions and
was sampled from a circular set. This set was probabil-
istically divided into two regions, which had different
consequences for the outcome of Action 1 (two options for
how to grow the spore). The border between regions was
oriented so that one dimension was more relevant than the
other. The second step was designed so that the two
possibilities for Stimulus 2 (two colors of mushrooms) each
had a different optimal choice for Action 2 (selling the
mushrooms to a troll or a goblin). Under these optimal
actions, Stimulus 2a led to more reward than Stimulus 2b.
RL models in general predict subjects will learn internal
values for Stimuli 2a and 2b (or their pairings with choices
of Action 2), and these values will be used to generate
internal feedback (TD error) for Action 1. This will in turn

Tabular Q-Learning  Fixed Gen. Q-ALCOVE

Figure 4. Q-values obtained from all three models after 300
steps in 3-dimensional Directional Gridworld. Shown is a
2-dimensional slice through the center of the state space.
Arrows in each state correspond to the four actions within
the plane. Darker arrows indicate greater Q-values.

allow subjects to learn to choose Action 1 so as to maximize
the probability of obtaining Stimulus 2a (the more valuable
mushroom). The key additional prediction of Q-ALCOVE
is that TD error will also drive learning of attention to the
more relevant dimension of Stimulus 1, to improve the
effectiveness of generalization among stimuli.

Results revealed that subjects who learned the first step of
the task also learned to selectively attend to the more
relevant dimension (see Cafias & Jones, 2010, for details).
Simulations of Q-ALCOVE corroborated this conclusion.
Q-ALCOVE and the fixed-generalization version of the
model were fit to the data of each subject using maximum
likelihood. Aggregating over all 150 subjects, Q-ALCOVE
fit reliably better, x*(150) = 1913.8, p = 0. The difference
between fits of the models was significant at the .05 level
for 55 individual subjects. These results support the central
hypothesis that attention learning, as embodied by Q-
ALCOVE, was involved in learning the task.

Actlon la imul Action 2a
St%mu us 2a > Reward
Action lb Stimulus 2b Action 2b
Stimulus 1

Figure 5. Structure of the Spores task.

Conclusions

Despite its computational power and neurological support,
the basic principles behind RL are inherently limited by the
representations it operates on. We argue here for a tight
linkage between RL and mechanisms of representation
learning established in other domains of psychology. Speci-
fically, TD error, the engine behind nearly all RL models,
can also drive updating of state representations. Representa-
tions thereby adapt so the pattern of generalization among
states is tuned to the structure of the task, which in turn
facilitates learning of optimal actions. RL’s capacity to auto-
nomously drive construction of representations that serve its
needs greatly increases its power and flexibility, and hence
its potential as a model of complex human learning.

The specific model proposed here draws on principles of
selective attention from category learning and related
domains (Nosofsky, 1986; Sutherland & Mackintosh, 1971).
Shifting attention away from irrelevant dimensions allows
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the learner to aggregate knowledge over states with similar
outcomes, while attention toward relevant dimensions
maintains  discrimination of meaningful differences.
Generalization in any learning task raises a bias-variance
dilemma, in that more generalization reduces variance in
parameter estimates but increases their bias. Selective
generalization as modeled by attention learning is an elegant
way of sidestepping this dilemma.

In a companion paper, we report empirical evidence
supporting attention learning via TD error as a
psychological mechanism (Cafias & Jones, 2010). Here we
show how such a mechanism can be formalized in a
mathematical model. Attention learning and RL in this
model bootstrap off of each other, in that the internal value
estimates generated by RL drive shifts of attention, and
selective attention in turn improves RL’s value estimates.
This synergistic relationship, together with the elegance of
the integration between the equations of Q-learning
(Watkins & Dayan, 1992) and ALCOVE (Kruschke, 1992),
suggests that RL and attention learning are similarly tightly
coupled in the brain. The simulation studies reported here
show that the unified model, Q-ALCOVE, is both
computationally powerful and psychologically plausible.

Investigating attention is a useful first step because it acts
to modify similarity directly, so that its effects on
generalization are transparent. In further work, we plan to
explore more complex psychologically supported
mechanisms, such as stimulus-dependent attention (Aha &
Goldstone, 1992), construction of new conjunctive features
(Love, Medin, & Gureckis, 2004), and analogical mapping
between structured stimulus representations (Markman &
Gentner, 1993).

Psychological models that generalize knowledge based on
pairwise similarity are closely related to kernel methods
developed in statistics (Jakel, Scholkopf, & Wichmann,
2007). Kernel methods add considerable flexibility to many
learning algorithms, by allowing them to be recast from the
raw stimulus space to a mathematical (Hilbert) space of
functions (e.g., Cristianini & Shawe-Taylor, 2000). Q-
ALCOVE can be viewed as a kernel method applied to RL.
Viewed from the perspective of kernel methods, an
important contribution of the present research is the
proposal for adaptively modifying the kernel (i.e.,
generalization gradient) to improve learning. Learning the
kernel has been a focus of recent research in machine
learning (e.g., Micchelli & Pontil, 2007), but results thus far
have been largely limited to existence theorems and global-
search algorithms that seem psychologically implausible.
Here we propose a simpler mechanism based on
psychological principles. The mathematical results on
kernel learning have been influential in guiding our design
of well-behaved models and in inspiring more sophisticated
mechanisms. Continuing to exploit this link to statistical
and machine-learning techniques, while maintaining
grounding in established psychological phenomena, seems
promising for advancing the power and flexibility of
psychological models.
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