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Abstract 
Reinforcement learning (RL) shows great promise as a model 
of learning in complex, dynamic tasks, for both humans and 
artificial systems.  However, the effectiveness of RL models 
depends strongly on the choice of state representation, 
because this determines how knowledge is generalized among 
states.  We introduce a framework for integrating 
psychological mechanisms of representation learning that 
allows RL to autonomously adapt its representation to suit its 
needs and thereby speed learning.  One such model is 
formalized, based on learned selective attention among 
stimulus dimensions.  The model significantly outperforms 
standard RL models and provides a good fit to human data. 
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Introduction 
Most challenging tasks people face are inherently dynamic 
and interactive.  Choices affect not just immediate outcomes 
but also future events, and hence subsequent decisions that 
must be made.  Normative and descriptive theories of 
learning in dynamic environments have advanced 
dramatically in recent years with the development of 
Reinforcement Learning (RL), a mathematical and 
computational theory drawing on machine learning, 
psychology, and neuroscience (e.g., Schultz, Dayan, & 
Montague, 1997; Sutton & Barto, 1998). 

However, RL currently faces a fundamental challenge 
relating to the issue of knowledge representation.  Dynamic 
tasks tend to be highly complex, with an enormous number 
of possible states (situations) that can arise.  Therefore, 
efficient learning must rely on generalization from past 
states that are similar to the current one.  Similarity, in turn, 
depends on how states are represented, including the 
features by which they are encoded and the relative attention 
allocated to those features (Medin, Goldstone, & Gentner, 
1993).  Thus representation is critical to the effectiveness of 
RL algorithms, because representation determines the 
pattern of generalization by which past experience is used to 
make new decisions. 

Although there has been little research on representation 
in the context of RL, representation and representation 
learning have long been topics of psychological study.  
Empirical research in a number of domains, including 
perceptual learning, attention, categorization, object 
recognition, and analogy, has uncovered principles and 
mechanisms by which people learn to modify how they 
encode objects and situations in the service of learning, 
inference, and decision making.  Here we describe a 
framework for a natural synthesis of these ideas with RL 
algorithms, which leads to models that learn representations 
for dynamic tasks.  A specific model is presented that is 

based on principles of attention learning from the 
categorization literature (Kruschke, 1992; Nosofsky, 1986).  
Two sets of simulation studies are reported, which 
demonstrate both the power and the psychological validity 
of this approach. 

Reinforcement Learning 
RL comprises a family of algorithms for learning optimal 
action in dynamic environments.  RL models characterize a 
task as a Markov Decision Process, in which the 
environment at any moment exists in one of a set of states, 
each associated with a set of actions available to the learner.  
The chosen action determines both the immediate reward 
received, if any, and the state of the environment on the next 
time step.  This general framework encompasses most tasks 
of psychological interest (Sutton & Barto, 1998). 

The key insight behind most RL algorithms is to learn a 
value for each possible state or action.  This value represents 
the total future reward that can be expected starting from 
that point.  Formally, given any state s and action a, the 
state-action value is defined as 

€ 

Q(s,a) = E γ krt+k
k≥0
∑ st = s,at = a
 

 
 

 

 
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where t is the current timestep; s, a, and r are the state, 
action, and received reward on each step; and γ ∈ [0, 1] is a 
discount factor representing the relative value of immediate 
versus delayed rewards.  This approach allows action 
selection to be based directly on the Q-values.  Here we use 
a Luce-choice or Gibbs-sampling rule, with inverse-
temperature parameter θ. 

€ 

P(at = a)∝ eθ⋅Q(st ,a)  (2) 

Once an action is selected, its value is updated according 
to the immediate reward and the values associated with the 
state that follows.  One of the best-studied algorithms for 
learning action values, Q-learning (Watkins & Dayan, 
1992), uses the update rule 

€ 

ΔQ(st ,at ) = εval ⋅δ , (3) 

where εval ∈ (0, 1] is a learning rate, and δ is the temporal-
difference (TD) error, defined as 

€ 

δ = rt + γ ⋅max
a

Q(st+1,a){ }−Q(st ,at ) . (4) 

The TD error represents the difference between the 
original action-value estimate, Q(st, at), and a new estimate 
based on the immediate reward and ensuing state.  The 
expression maxa{Q(st+1, a)} represents an estimate of the 
value of the new state, st+1, based on the best action that 
could be performed in that state. 
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The simplest implementations of Q-learning and other RL 
algorithms use a tabular (i.e., lookup-table) representation, 
in which a different set of action values is learned separately 
for every possible state that can occur. Tabular 
representations are impractical for most realistic tasks, 
because the number of states grows exponentially with the 
number of state variables.  Therefore, most implementations 
of RL utilize some form of generalization, whereby 
knowledge about one state is extended to other, similar 
states.  This approach dramatically speeds learning by 
reducing the amount of information that must be retained 
and updated, and by allowing the learner to draw on a richer 
set of past experiences when making each new decision. 

Central to the success of generalization in all learning 
tasks (not just RL) is the choice of representation.  In order 
for generalization to be effective, states (or stimuli in 
general) must be encoded so that stimuli that are perceived 
or treated as similar tend to be associated with similar 
outcomes or appropriate actions (Shepard, 1987).  Such a 
representation facilitates generalization, and hence learning, 
because it leads the learner to draw on precisely those past 
experiences that are most relevant to the current situation. 

Unfortunately, the choice of representation is a 
notoriously difficult problem, and the field of machine 
learning is far from having automated algorithms that 
discover useful representations for learning novel tasks.  
Successful applications of RL have instead tended to rely on 
hand-coded human knowledge for encoding states.  For 
example, the state representation in Tesauro’s (1995) 
celebrated backgammon program, TD-gammon, was based 
on complex features (configurations of pieces) suggested by 
expert human players.  Likewise, psychological research in 
RL generally avoids the problem of representation by using 
small sets of stimuli with clearly defined features, so that 
the subject’s representation can be confidently assumed by 
the modeler and is unlikely to change during the course of 
learning (e.g., Fu & Anderson, 2006).  Arguably, 
representation is where the real challenge often lies, and 
therefore starting a model with a hand-coded representation, 
or using experimental stimuli with unambiguous features, 
presupposes the most difficult and interesting aspects of 
learning (Schyns, Goldstone, & Thibaut, 1998). 

Selective Attention in Category Learning 
One behavioral domain in which generalization and 
representation have been extensively studied is category 
learning.  Much of the research on category learning has 
aimed to understand the internal representations that humans 
develop to facilitate classification of objects and inference 
of unobserved features.  All of these models serve, in one 
way or another, to allow generalization of category 
knowledge from previously encountered to novel stimuli.   

The most direct mechanism for generalization in 
categorization is embodied by exemplar models (Medin & 
Schaffer, 1978).  In these models, the psychological 
evidence (E) in favor of classifying a stimulus (s) into a 
given category (c) is given by summing its similarity to all 

previously encountered exemplars (s'), weighting each 
exemplar by its association to c. 

€ 

E(s,c) = sim(s, s' ) ⋅w(s' ,c)
s '
∑  (5) 

The property of exemplar models most relevant to the 
current investigation is the similarity function.  Rather than 
being fixed, a large body of evidence indicates that 
similarity changes during the course of learning as a 
consequence of shifts of attention among the stimulus 
dimensions (e.g, Nosofsky, 1986).  This flexibility is 
modeled by expressing similarity as a decreasing function of 
distance in psychological space, with each stimulus 
dimension, i, scaled by an attention weight, αi (Nosofsky, 
1986).  Here we assume an exponential similarity-distance 
function, in accord with empirical evidence and normative 
Bayesian analysis (Shepard, 1987). 

€ 

sim(s, ′ s ) = e− αi si − ′ s ii∑  (6) 

The effect of attention on similarity is to alter the pattern 
of generalization between stimuli so as to fall off more 
rapidly with differences along dimensions with greater 
attention weights.  When stimuli differ only on unattended 
dimensions, their differences are unnoticed and hence 
generalization between them is strong.  This adaptation of 
generalization leads to improved performance when 
attention is shifted to task-relevant dimensions, because the 
learner generalizes between stimuli that have common 
outcomes while discriminating between stimuli that are 
meaningfully different. 

The influence of attention on generalization has extensive 
support, both theoretically (Medin et al., 1993) and 
empirically (Jones, Maddox, & Love, 2005; Nosofsky, 
1986).  An important question suggested by this research is 
how attention can be learned.  One proposal is that attention 
weights are updated in response to prediction error 
(Kruschke, 1992).  In a classification task, prediction error 
(δ) is simply the difference between the category evidence, 
E(s, c), and the actual category membership given as 
feedback to the learner (e.g., +1 if s ∈ c and -1 otherwise).  
The updating rule for attention is then based on gradient 
descent on this error, squared and summed over categories. 

€ 

Δα i = −εatt ⋅
∂
∂α i

1
2 δc

2

c
∑

 

 
 

 

 
 . (7) 

This mechanism for attention learning has been 
implemented in ALCOVE, a highly successful model of 
human category learning (Kruschke, 1992).  ALCOVE 
learns to shift attention to stimulus dimensions that are most 
relevant to predicting category membership and away from 
dimensions that are non-diagnostic.  This leads to adaptation 
of generalization, which in turn speeds learning. 

Attention Learning in RL 
Because of the strong empirical support for attention 

learning in the categorization literature, we believe it is a 
potentially fruitful topic for study in the context of RL.  

1259



Selective attention may be especially relevant in this domain 
because most interesting RL tasks have complex state 
spaces of high dimensionality, and learning to distinguish 
relevant from irrelevant dimensions should be expected to 
greatly speed learning in such tasks. 

The present investigation addresses two questions 
regarding the relationship between attention learning and 
RL.  The first question is a psychological one, of whether 
attention learning as observed in supervised tasks such as 
categorization also operates in the dynamic tasks modeled 
by RL.  This extrapolation is not trivial, because RL relies 
on TD error, which is an internally generated signal based in 
part on the learner’s own value estimate of the ensuing state 
(see Eq. 4).  It is an empirical question whether this internal 
signal can drive attention shifts and other forms of 
representation learning in the same way that external 
feedback does.  A companion paper (Cañas & Jones, 2010) 
reports a behavioral experiment that supports an affirmative 
answer to this question, and the data from that experiment 
are modeled below. 

The second question is a computational one, of whether 
the formal equations that describe RL and attention learning 
can be coherently integrated, and whether the resulting 
model will exhibit efficient learning. This normative 
question is important psychologically because computation-
al power constitutes a significant motivation for expecting 
attention learning to play a role in human RL.  If the two are 
computationally compatible, then the potential significance 
of RL is greatly increased, in that RL is capable of auto-
nomously adapting the representations on which it operates. 

Comparison of the equations describing Q-learning and 
attention learning reveals there is indeed a natural, highly 
complementary integration.  The strength of Q-learning, and 
RL algorithms in general, is in the sophisticated updating 
signals they compute, which take into account both external 
reward and internal consistency of value estimates (Eq. 4).  
The updating itself is fairly trivial, consisting of adjusting 
the existing estimate by a proportion of the error (Eq. 3).  
Attention learning, and models of category learning more 
generally, have the opposite character.  Their updating 
signals are fairly trivial (prediction error relative to external 
feedback), but the updates themselves are complex, driving 
adaptation of sophisticated internal representations.  This 
complementary relationship suggests the solution of using 
the TD error signal from RL to drive representation 
learning, and in particular to update attention weights. 

We refer to the model resulting from this integration as Q-
ALCOVE.  Q-ALCOVE estimates action values via 
similarity-based generalization among states, directly 
analogous to ALCOVE (Eq. 5).   

€ 

Q(s,a) = sim(s, s' ) ⋅w(s' ,a)
s '
∑  (8) 

The Q-values are used to generate action probabilities 
according to the response-selection rule used by both Q-
learning and ALCOVE (Eq. 2).  The w parameters, which 
act as pre-generalization action values, are updated 

analogously to both Q-learning (Eq. 3) and ALCOVE, using 
the same TD error signal as in Q-learning (Eq. 4). 

€ 

Δw(st ,at ) = εval ⋅δ  (9) 

Similarity between states in Q-ALCOVE is defined 
identically to stimulus similarity in ALCOVE (Eq. 6), 
except that a normalization term is included that fixes the 
total similarity (i.e., the integral of the generalization 
gradient) to 1.  We have found that attention learning in 
tasks requiring continuous prediction only functions well 
when normalization is included. 

Learning of attention weights follows the same rule as in 
ALCOVE, except for the critical substitution of 
classification error with TD error.  In addition, we only 
differentiate δ with respect to Q(st, at) and not Q(st+1, a), 
because the motivation behind Q-learning is to use Q(st+1, ⋅) 
to adjust Q(st, ⋅).  Nevertheless, changing α also affects 
Q(st+1, ⋅), and further analytical work is needed to 
understand the impacts of this fact on model behavior and 
predictions.  The resulting rule for attention learning is 

€ 

Δαi = εatt ⋅δ ⋅
∂
∂αi

Q(st ,at )  (10) 

The intuition behind attention learning in Q-ALCOVE is 
that, after feedback, the model adjusts attention weights to 
reduce generalization from states that contributed to error 
and to increase generalization from states that suggested 
more correct predictions.  Over the course of experience, 
attention should shift to those dimensions that are most 
diagnostic of correct actions and their values. 

Simulation Studies 
Two sets of simulations were carried out to evaluate the 

behavior of Q-ALCOVE.  The first set was based on 
Gridworld, a common benchmark task for RL models.  
These simulations aimed to test whether the attention-
learning mechanism in Q-ALCOVE operates as predicted, 
to shift attention toward relevant dimensions and away from 
irrelevant dimensions.  If so, a second question was whether 
selective attention leads to significant improvements in 
learning speed, and how such a potential advantage depends 
on the dimensionality of the task.  The second set of 
simulations was based on a human behavioral experiment 
(Cañas & Jones, 2010) designed to test whether humans can 
learn selective attention using internal value estimates (i.e., 
TD error) as feedback, as proposed here.  These simulations 
aimed to evaluate Q-ALCOVE’s viability as a psychological 
model. 

Directional Gridworld 
Gridworld is a class of tasks with a long tradition as a 
benchmark for RL algorithms (e.g., Sutton & Barto, 1998).  
The states of a Gridworld task form a rectangular lattice of 
dimensionality D.  We call the present task Directional 
Gridworld, because it was set up in such a way that one 
dimension was relevant and the others were irrelevant. 
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Before After

 
Figure 1.  State space for 3-dimensional Directional 
Gridworld task.  Grey states are goal states.  Black cloud 
depicts Q-ALCOVE’s generalization gradient, at the start of 
learning (left) and after 300 time steps (right). 

 
Figure 1 illustrates the Directional Gridworld task for the 

case of D = 3 (the generalization gradients in the figure are 
discussed below).  Each dimension has 7 levels, for a total 
of 7D states.  In each state, the learner has 2D available 
actions, corresponding to motion in either direction along 
any dimension.  For simplicity, we assume that actions are 
deterministic and move the learner by 1 step in the chosen 
direction.  Actions on the boundaries that would take the 
learner outside the space have no effect. 

States are encoded as vectors corresponding to their 
values on the D dimensions.  Other than this, the model has 
no prior knowledge of the topology of the environment or of 
the meanings or effects of actions.  The spatial interpretation 
is only a convenient metaphor, and the task is not meant as a 
model of spatial navigation that might involve specialized 
psychological mechanisms.  The stricter interpretation is as 
an abstract problem space (e.g., Newell & Simon, 1972). 

The highlighted states (Fig. 1) spanning the center of the 
space are goal states.  Whenever the learner reaches a goal 
state, a reward of 10 is provided.  On the next step, the 
learner is taken to a random state maximally distant from 
the goal region.  All actions that do not lead to a goal 
produce a reward of -1.  The learner’s task is to choose 
actions so as to maximize total temporally discounted 
reward (Eq. 1, with γ set to .5).  Thus, optimal behavior 
consists of repeatedly moving in a straight line from the 
boundary to the nearest goal state. 

For all values of the dimensionality D, the goal states 
form a hyperplane through the center of the space.  The 
dimension perpendicular to the goal region is relevant to 
optimal action selection, as the learner needs to move in 
opposite directions depending on which side of the goal 
region it is on.  All other dimensions are irrelevant.  Indeed, 
it can easily be shown that the optimal Q-values for any 
state depend only on the state’s position on the relevant 
dimension.  Therefore, the most efficient generalization 
strategy for learning Q-values is to average over all states at 
each level of the relevant dimension but to learn separate 
values for each level.  This strategy can be achieved by 
strong attention to the relevant dimension and zero attention 
to all other dimensions.  A primary question was whether Q-
ALCOVE would learn such an attention distribution. 
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Figure 2.  Learning curves in Directional Gridworld for Q-
ALCOVE and version with fixed generalization. 
 

Two models were simulated in addition to Q-ALCOVE.  
The first was tabular Q-learning, which learns actions values 
independently for all states.  The second was a fixed-
generalization model obtained from Q-ALCOVE by setting 
the attention-learning rate, εatt, to 0.  Q-ALCOVE was run 
using εatt = .01.  All models were run with value-learning 
rate εval = 1 and choice parameter θ = .5.  The models’ value 
estimates (w or Q) were initialized at 0 at the start of each 
run.  The initial values for attention weights were set to .4 
for both Q-ALCOVE and the fixed-generalization model.  
This value was chosen so as to maximize performance of 
the fixed-generalization model on 3 dimensions. 

Figure 2 shows average learning curves for Q-ALCOVE 
and the fixed-generalization model for Directional 
Gridworlds of 3 to 8 dimensions.  Performance for tabular 
Q-learning was poor enough, especially at higher 
dimensionalities, that it is omitted.  Each curve indicates 
reward rate, smoothed with a rectangular window of 100 
time steps, and averaged over 4 separate runs of the model.  
As can be seen, Q-ALCOVE learns more quickly with 
attention learning than without, and the magnitude of this 
advantage grows rapidly with the number of dimensions.  
This result suggests that attention plays an indispensable 
role in natural tasks of much higher dimensionality. 

Figures 1 and 3 illustrate how Q-ALCOVE’s attention-
learning mechanism facilitates learning, in the case of three 
dimensions.  Figure 3 shows the attention weights for a 
single run, which increase for the relevant dimension and 
decrease toward 0 for the irrelevant dimensions.  This shift 
of attention leads to the change in the generalization 
gradient depicted in Figure 1.  The initial gradient (left) is 
spherical, reflecting the model’s lack of knowledge of the 
dimensions’ predictive validities.  After 300 time steps 
(right), the gradient has been reshaped so that there is strong 
generalization between states as long as they match on the 
relevant dimension and very little generalization otherwise.  
Thus the model has learned the anisotropy of the task, which 
allows it essentially to estimate a common set of Q-values 
for all the states at each stratum (as an average over all the 
ws), while keeping the values for different strata separate. 
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Figure 3.  Dynamics of attention weights for one run of Q-
ALCOVE in 3-dimensional Directional Gridworld. 

 
The consequences of all three models’ patterns of 

generalization are illustrated in Figure 4, which shows a 
two-dimensional slice through the center of the three-
dimensional state space.  Within each state, the four arrows 
indicate the model’s estimated Q-values for the four actions 
within the plane.  These values are from a single run of each 
model, after 300 time steps.  Darker arrows indicate greater 
Q-values.  The values for tabular Q-learning are irregular, 
reflecting the fact that they were learned separately for each 
state.  In most states there has not been enough experience 
to obtain reliable estimates.  The Q-values estimated by the 
fixed-generalization model are more accurate, because each 
draws on knowledge from neighboring states, so experience 
is used more efficiently.  However, there is still irregularity 
among states at a given stratum (insufficient generalization 
across the irrelevant dimension) and too much smoothing 
(excess generalization) along the relevant dimension.  Q-
ALCOVE’s estimated Q-values are much more accurate, 
allowing the model to select correct actions more reliably. 

The Spores Task 
Psychologically, the core assumption of Q-ALCOVE is that 
attention learning can be driven by internally generated TD-
error signals, not just overt feedback.  A behavioral experi-
ment, reported by Cañas and Jones (2010), tested this 
hypothesis using a two-step task, in which Action 1 deter-
mined Stimulus 2, but reward was not received until after 
Action 2.  The basic question was whether selective atten-
tion to the dimensions of Stimulus 1 could be learned, when 
the only immediate feedback was the identity of Stimulus 2. 

Figure 5 illustrates the design of the task.  Stimulus 1 (a 
cartoon mushroom spore) varied along two dimensions and 
was sampled from a circular set.  This set was probabil-
istically divided into two regions, which had different 
consequences for the outcome of Action 1 (two options for 
how to grow the spore).  The border between regions was 
oriented so that one dimension was more relevant than the 
other.  The second step was designed so that the two 
possibilities for Stimulus 2 (two colors of mushrooms) each 
had a different optimal choice for Action 2 (selling the 
mushrooms to a troll or a goblin).  Under these optimal 
actions, Stimulus 2a led to more reward than Stimulus 2b. 

RL models in general predict subjects will learn internal 
values for Stimuli 2a and 2b (or their pairings with choices 
of Action 2), and these values will be used to generate 
internal  feedback  (TD  error)  for  Action  1.   This  will  in  turn 

Tabular Q-Learning Fixed Gen. Q-ALCOVE

 
Figure 4.  Q-values obtained from all three models after 300 
steps in 3-dimensional Directional Gridworld.  Shown is a 
2-dimensional slice through the center of the state space.  
Arrows in each state correspond to the four actions within 
the plane.  Darker arrows indicate greater Q-values. 

 
allow subjects to learn to choose Action 1 so as to maximize 
the probability of obtaining Stimulus 2a (the more valuable 
mushroom).  The key additional prediction of Q-ALCOVE 
is that TD error will also drive learning of attention to the 
more relevant dimension of Stimulus 1, to improve the 
effectiveness of generalization among stimuli. 

Results revealed that subjects who learned the first step of 
the task also learned to selectively attend to the more 
relevant dimension (see Cañas & Jones, 2010, for details). 
Simulations of Q-ALCOVE corroborated this conclusion.  
Q-ALCOVE and the fixed-generalization version of the 
model were fit to the data of each subject using maximum 
likelihood.  Aggregating over all 150 subjects, Q-ALCOVE 
fit reliably better, χ2(150) = 1913.8, p ≈ 0.  The difference 
between fits of the models was significant at the .05 level 
for 55 individual subjects.  These results support the central 
hypothesis that attention learning, as embodied by Q-
ALCOVE, was involved in learning the task. 

 

 
Figure 5.  Structure of the Spores task. 

Conclusions 
Despite its computational power and neurological support, 
the basic principles behind RL are inherently limited by the 
representations it operates on.  We argue here for a tight 
linkage between RL and mechanisms of representation 
learning established in other domains of psychology.  Speci-
fically, TD error, the engine behind nearly all RL models, 
can also drive updating of state representations.  Representa-
tions thereby adapt so the pattern of generalization among 
states is tuned to the structure of the task, which in turn 
facilitates learning of optimal actions. RL’s capacity to auto-
nomously drive construction of representations that serve its 
needs greatly increases its power and flexibility, and hence 
its potential as a model of complex human learning. 

The specific model proposed here draws on principles of 
selective attention from category learning and related 
domains (Nosofsky, 1986; Sutherland & Mackintosh, 1971).  
Shifting attention away from irrelevant dimensions allows 
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the learner to aggregate knowledge over states with similar 
outcomes, while attention toward relevant dimensions 
maintains discrimination of meaningful differences.  
Generalization in any learning task raises a bias-variance 
dilemma, in that more generalization reduces variance in 
parameter estimates but increases their bias.  Selective 
generalization as modeled by attention learning is an elegant 
way of sidestepping this dilemma. 

In a companion paper, we report empirical evidence 
supporting attention learning via TD error as a 
psychological mechanism (Cañas & Jones, 2010).  Here we 
show how such a mechanism can be formalized in a 
mathematical model.  Attention learning and RL in this 
model bootstrap off of each other, in that the internal value 
estimates generated by RL drive shifts of attention, and 
selective attention in turn improves RL’s value estimates.  
This synergistic relationship, together with the elegance of 
the integration between the equations of Q-learning 
(Watkins & Dayan, 1992) and ALCOVE (Kruschke, 1992), 
suggests that RL and attention learning are similarly tightly 
coupled in the brain.  The simulation studies reported here 
show that the unified model, Q-ALCOVE, is both 
computationally powerful and psychologically plausible.  

Investigating attention is a useful first step because it acts 
to modify similarity directly, so that its effects on 
generalization are transparent.  In further work, we plan to 
explore more complex psychologically supported 
mechanisms, such as stimulus-dependent attention (Aha & 
Goldstone, 1992), construction of new conjunctive features 
(Love, Medin, & Gureckis, 2004), and analogical mapping 
between structured stimulus representations (Markman & 
Gentner, 1993). 

Psychological models that generalize knowledge based on 
pairwise similarity are closely related to kernel methods 
developed in statistics (Jäkel, Schölkopf, & Wichmann, 
2007).  Kernel methods add considerable flexibility to many 
learning algorithms, by allowing them to be recast from the 
raw stimulus space to a mathematical (Hilbert) space of 
functions (e.g., Cristianini & Shawe-Taylor, 2000).  Q-
ALCOVE can be viewed as a kernel method applied to RL.  
Viewed from the perspective of kernel methods, an 
important contribution of the present research is the 
proposal for adaptively modifying the kernel (i.e., 
generalization gradient) to improve learning.  Learning the 
kernel has been a focus of recent research in machine 
learning (e.g., Micchelli & Pontil, 2007), but results thus far 
have been largely limited to existence theorems and global-
search algorithms that seem psychologically implausible.  
Here we propose a simpler mechanism based on 
psychological principles.  The mathematical results on 
kernel learning have been influential in guiding our design 
of well-behaved models and in inspiring more sophisticated 
mechanisms.  Continuing to exploit this link to statistical 
and machine-learning techniques, while maintaining 
grounding in established psychological phenomena, seems 
promising for advancing the power and flexibility of 
psychological models. 
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