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Abstract

In some eyewitness situations, a group of individuals might
have witnessed the same sequence of events. We consider the
problem of aggregating eyewitness testimony, trying to
reconstruct the true sequence of events as best as possible. We
introduce a Bayesian model which incorporates individual
differences in memory ability, as well as informative prior
knowledge about event sequences, as measured in a separate
experiment. We show how adding prior knowledge leads to
improved model reconstructions, especially in small groups of
error-prone individuals. This Bayesian aggregation model
also leads to a “wisdom of crowds” effect, where the model's
reconstruction is as good as some of the best individuals in
the group.

Keywords: Eyewitness Testimony; Wisdom of Crowds;
Rank Ordering; Bayesian Modeling; Serial Recall.

Introduction

Studies of eyewitness testimony have shown that human
memory can be incomplete and unreliable (e.g., Loftus,
1975). In real world situations, there might be multiple
eyewitnesses, all of whom witnessed the same set of events.
This raises the possibility of recovering the true account of
events by analyzing the similarities in the recalled memories
across individuals. Different individuals might also recall
different aspects of the events, such that an aggregate
narrative, based on the group’s memory, would be closer to
the true sequence of events than that of any one individual.
An investigator might try to manually reconstruct the
aggregate narrative, or witnesses might be allowed to
discuss the events in order to develop the group narrative.
Communication between witnesses however, has been
shown to lead to much worse performance (Gagnon and
Dixon, 2008), and humans have been shown to be
inconsistent in assessing group information from multiple
sources (Stasser & Titus, 1985). To avoid these problems,
we propose a model of aggregation that can integrate the
recalled memories from a number of independent
individuals, while also taking in other important factors,
such as individual differences and prior knowledge, into
account.

Research on the “Wisdom of Crowds" (WoC) has shown
that an aggregation of independent judgments often leads to
a group estimate that is closer to the ground truth than that
of most of the individuals (Surowiecki, 2004). These group

estimates are often simply found by taking the mean,
median, or mode of responses (Galton, 1907; Surowiecki,
2004). Much of the previous literature on aggregation of
judgments has focused on tasks where individuals estimate
numerical quantities and probabilities (Budescu, Yu, 2007;
Hogarth, 1978; Wallsten, Budescu, Erev, & Diederich,
1997). It is, however, often that case that eyewitness have to
retrieve information more complex than single numerical
estimates.

The WoC effect can also be demonstrated with more
complex problem sets. For example, the WoC effect has
been demonstrated with solutions to problem-solving
situations such as finding minimum spanning trees for a set
of nodes (i, Steyvers, Lee & Dry, in press). Steyvers, Lee,
Miller, and Hemmer (2009) showed that order information
from semantic memory can also be combined across
individuals to give high accuracy in reconstructing the true
order of items along some physical or temporal dimension;
when individuals recalled the order of US presidents, or the
order of rivers according to length, many of the individual
orderings were error-prone, but the aggregate orderings
were more accurate, on average. In Steyvers et al. (2009), a
number of aggregation models for order information were
tested. It was found that using Bayesian models that
incorporated psychologically plausible representations,
cognitive processes and individual differences outperformed
basic heuristic aggregation approaches, such as taking the
mode.

When errors across individuals are uncorrelated (as they
tend to be when individuals independently give their
judgments) the errors will cancel out in the aggregate.
Therefore, one expects the best results in WoC experiments
with a large number of individuals. In eyewitness situations
however, there is rarely a "crowd" available to witness the
same set of events. In these cases, we have to rely on a small
number of individuals (in many cases, just one) and
significant errors might not cancel. Therefore, it might not
be sufficient to just analyze the commonalities across the
witness reports. We propose that it is better to combine the
witness reports along with prior knowledge about the
particular event sequence. Combining prior knowledge with
noisy information has been shown in other domains to
improve the recovered estimate (Hemmer & Steyvers, 2008;
Konkle & Oliva, 2007; Kan, Alexander, Verfaelle, 2009).

We focus in this research on the problem of
reconstructing event sequences. The goal is to reconstruct
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the true ordering of a set of events by aggregating the
recalled orderings from a small number of individuals, all of
whom witnessed the same event sequence. The novelty of
the current approach is that we incorporate informative prior
knowledge in an aggregation model for order information in
order to improve the aggregate estimate. This is especially
helpful when aggregating across a small number of error-
prone individuals.

We present our results as follows. We first report on
behavioral experiments wherein we tested people’s ability to
reconstruct, from episodic memory, the order of stereotyped
events (e.g., getting up in the morning), or random events
(e.g., clay animation without a clear story line). We also
report on experiments where we measured prior knowledge
for the same set of events. We then describe a Bayesian
approach that aggregates the orderings across individuals
while taking prior knowledge into account.

Empirical Study on Serial Recall

Much research on serial recall has been done on random
word and letter sequences that do not have any obvious
organization. In such experiments, individuals are shown a
sequence of words or letters, and the task is to recall the
original temporal order as best as possible during a later test.
Typical errors in the recalled orderings are transposition
errors where the orderings are locally perturbed (Estes,
1997; Nairne, 1992) -- two events nearby in time tend be
reconstructed as occurring nearby but the amount of
perturbation noise depends on many factors such as time
elapsed between study and test, stimulus characteristics and
individual differences. Similar patterns have been observed
in more naturalistic experiments, such as naming the day of
the week an event occurred (Huttenlocher, Hedges, &
Prohaska, 1990), as well as for autobiographical memory,
such as ordering the events of September 11" (Altmann,
2003). With more naturalistic event sequences, prior

knowledge about the event sequences can influence episodic
memory. People have clear expectations for routine
activities and are sensitive to the ordering of actions within
an activity (Bower, Black & Turner, 1979).

We conducted a series of behavioral experiments using
two types of event sequences. We used a number of
stereotyped event sequences, such as getting up in the
morning, or jumping on a bus, for which people have clearly
defined expectations, and a number of random event
sequence, such as clay animation sequences or Japanese
pizza commercials, for which the temporal organization
might be less structured. To assess the prior knowledge
people have about these types of events, we first conducted
a prior knowledge study where we asked participants to
order the events in the most natural order possible without
actually showing them the original, true event sequence.
This allows us to estimate a model for the prior probability
of each sequence.

In a separate experiment, we assessed serial recall for
each of event sequences. It should be noted that our
definition of serial recall differs from the standard use of the
term in that our task only involves ordering the events, not
recalling the items to be ordered, as in a standard serial
recall task. In our task, we first showed a video of the
original event sequence which was followed by a serial
recall test in which individuals ordered image stills from the
video as best as possible according to the original temporal
sequence in which the events appeared. No communication
between individuals was allowed in any of our tasks, and
therefore the data consists of independent recollections from
individuals.

Methods

Participants were undergraduate students at the University
of California, Irvine. There were 16 participants in the prior
knowledge experiment and 28 participants in the serial
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Figure 1. The sequence A-J shows the 10 images from the ‘bus’ video sequence in the correct temporal order. The two
tables show the participant orderings in the prior knowledge and serial recall experiment. The first row is the participant
id. The second row is the Kendall’s tau distance between the true ordering and the recalled order for that participant.
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recall experiment.

Materials. We sampled 6 videos from YouTube.com.
Three videos depicted stereotyped events sequences (getting
up in the morning, a wedding, getting on the school bus).
Three videos depicted more random event sequences (a
Japanese yogurt commercial, a Japanese pizza commercial,
and a clay animation sequence). For each of the 6 videos 10
still images of individual scenes were drawn. See Figure 1
for an example.

Prior Knowledge Experiment. Participants were shown
10 image stills from a given event sequence (e.g., Wedding)
and asked to order the 10 images based on their prior
expectation of how the event in the slides might unfold.
Importantly, in this experiment, participants were never
shown the original video sequence from which the image
stills were drawn. They responded using an interactive
interface in which the images were randomly ordered on the
screen and the instruction was to order the images in any
way to make the sequence as natural as possible.

Serial Recall Experiment. Participants first viewed the
original video sequence. Participants were then presented
with the same interface as in the prior knowledge
experiment. They were shown 10 image stills that they had
to order in the original temporal order. For both the prior
knowledge and memory experiment, the initial ordering of
the 10 image stills, as well as the order of the 6 video
sequences, was randomized across participants.

Results and Discussion

To evaluate the performance of participants, we measured
the distance between the reconstructed and the correct
ordering. A commonly used distance metric for orderings is
Kendall’s 7 (Marden, 1995). This distance metric is the
minimum number of adjacent pairwise swaps necessary to
resolve any disagreements between the two orderings being
compared. Values of rrange from 0 <t < (N—1)/2, where
N is the number of items in the order: N=10 for all of our
event sequences. In our experiment, a 7=0 indicates that the
participant responded with the exact correct ordering. A
=1 indicates that one adjacent pair of items was swapped.
When participants are using a random guessing strategy,
their expected mean expected distance is 7 =(N—-1)/4 =
22.5.

Figure 1 shows the raw data collected for the "bus" video
sequence — a stereotyped event sequence. In the prior
knowledge experiment, participants produced orderings that
were much better than chance, suggesting that a priori, it is
possible to guess the true ordering of events in these types
of event sequences. In the memory experiment, 2
participants produced the correct ordering, and 15 more
were within one swap of the true order. Note that very few
identical orderings are produced between participants. We
found that for all 3 random events, in both the prior
knowledge experiment and the memory experiment, each
participant produced a unique ordering. For the 3
stereotyped event sequences however, only one sequence
led to unique orderings across all participants.
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Figure 2. Distributions of Kendall z distances.

Figure 2 shows the distributions of the Kendall r
distances for the serial recall and prior knowledge
experiment. The top panel shows the distances for
stereotyped event sequences and the bottom panel shows the
distances for random event sequences. The dashed line
shows the distribution of distances that can be expected
from a random guessing strategy (this distribution can be
calculated exactly, see Marden, 1995). For both the
stereotyped and random event sequences, the distances are
lower for the memory task than for the prior knowledge
task. The distances are also lower for the stereotyped event
sequences than for the random event sequences. Even when
participants did not study the videos (the prior knowledge
condition), they performed better than chance in the
stereotyped condition, as compared to the random condition
where prior knowledge performance led to a distribution of
distances very similar to distances expected from chance
performance. These results demonstrate that general
knowledge about events can greatly contribute to the
accuracy of recalling these events.

Modeling

We can conclude from our empirical study that prior
knowledge can lead to improved average performance in
recall. When ordering scenes from an event with strong
prior expectations, the resulting orderings are relatively
close to the true ordering. Of course, performance improves
on average after observing the true event sequence and later
recalling the sequence from memory. This raises the
question of how one might incorporate an informative prior
in a model for aggregating rank-ordered recall. Such priors
might guard against errors from a small number of poorly
performing individuals. In this paper, we explore very
simple models to aggregate the orderings of individuals. The
goal of the modeling is not to build a comprehensive model
of recall that specifies all the representations and processes
involved in storing and retrieving information from
memory. Instead, we will focus on simple probabilistic
models such as a Mallows model (e.g. Steyvers et al., 2009)
that allow us to aggregate the retrieved orderings from a
number of individuals using Bayesian inference. The current
model incorporates two important differences to the
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(prior knowledge data)
Figure 3. The graphical model representations for the
Mallows model with an uninformative prior (a) and an
informative prior about the group knowledge (b).

previous work by Steyvers et al. (2009). First, we generalize
the model to allow for individual differences in memory
performance. These individual differences are estimated by
the model in a purely unsupervised fashion and do not
require knowledge of past performance in other tasks or
access to a known ground truth. With the individual
differences, the model finds aggregates that are weighted
towards solutions provided by the individuals that are
estimated to have good memory performance.

Second, we develop a simple extension of Mallows
models that allows for informative priors. This prior is
estimated from the orderings produced in the prior
knowledge experiment.

Mallows Model with an Uninformative Prior

In a basic Mallows model (Marden, 1995), all individuals
are assumed to derive their orderings from a single
underlying ordering, that we will refer to as the group
knowledge. The group knowledge is a latent variable in the
model that can be estimated from the data. Importantly,
Mallows model assumes that each individual produces
orderings centered on the group ordering with distant
orderings less likely than orderings close to the group
ordering. Although Mallows-type models have often been
used to analyze preference rankings (Marden, 1995), they
have not been applied, as far as we are aware, to ordering
data from serial recall experiments. In our first extension of
the standard model we allow for individual differences in
memory performance. We evaluated this aggregation model
by comparing the estimated group ordering to the ground
truth. If the model is able to tap into the collective wisdom
of a group of individuals, the estimated group ordering
should be close to the true ordering.

Specifically, let y; represent the ordering from individual
j, and w the latent group ordering. In a Mallows model, the

25
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Figure 4. Calibration results for the two models for one
event sequence.

probability of each individual ordering given the group
ordering is given by

p(yj| 6) e~40j.@)0; (1)
where for simplicity we have omitted the normalization
constant. The function d returns the Kendall 7 distance
between two orderings. The scaling parameter 6; determines
how close the observed order for individual j is to the group
ordering. It can be interpreted as an individual (inverse)
noise parameter -- good individuals tend to closer to the
group consensus (high 8) whereas poor performing
individuals return more idiosyncratic orderings further away
from the group knowledge (low 6). We will assume a
Gamma prior on the individual noise levels:
68, ~Gamma(6y4,1/1), where A is a hyperparameter that
sets the overall level of cohesion expected from the group.
Notably, in this first model, we have assumed a uniform
prior over group orderings, @~Uniform(Q), where Q is the
set of all orderings. Therefore, a priori, the model assumes
no preference for a particular group ordering.

Figure 3, panel a, shows a graphical representation of the
model. Shaded nodes represent observed variables while
nodes without shading represent latent variables. The arrows
indicate the conditional dependencies between the variables
and the plate represents the repeated sampling steps across
M subjects in the memory experiment.

Mallows Model with an Informative Prior

We now introduce a simple variant of this model that
allows for an informative prior. The idea is that the group
knowledge is itself sampled from a Mallows model:

p(w|w®,8°) e—d(ww%)8” )
where w?® is the prior ordering from which the group
ordering is derived, and 6~ is a scaling parameter. This prior
stage in Mallows model at first might not seem to gain any
additional information because it is not clear how the prior
ordering can be constrained. However, we have data in the
prior knowledge experiment in which N participants tell us
what orderings they expect from certain scenes. Let y]‘.’
represent the prior ordering given by individual j in the prior
knowledge experiment. We assume that these are produced
by a Mallows model with w? as the "center":
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Figure 5. Performance of individuals and model (with
informative prior) averaged over six event sequences.
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Figure 3, panel b, shows the corresponding graphical
model. With this model, we are setting a prior on the group
ordering -- when there is only data available from a few
individual in the memory experiment, the group ordering
will be influenced by the data from the prior knowledge
experiment leading to group orderings that are a priori
deemed likely. When data from more individual becomes
available in the memory experiment, the prior knowledge
data will have a diminishing influence on the group ordering
which will be mostly determined by the memory data.

Modeling Results

All latent variables in the model were estimated using a
MCMC procedure, separately for each event sequence. The
result of the inference procedure is a probability distribution
over group orderings, of which we take the mode as the
single answer for a particular problem. Note that the
inferred group ordering does not have to correspond to an
ordering of any particular individual. The model just finds
the ordering that is close to all of the observed memory
orderings.

Figure 4 shows the calibration for the two models on a
single event sequence (the clay animation video). Each
panel shows the relationship between the inferred 6 (related
to the distance of each individual to the group ordering) and
the Kendall’s t distance of the individual’s answer to the
ground truth. The plots show that individuals who are close
to the group ordering tend to be closer to the ground truth.
This means that the models can calibrate the performance
levels of individuals, even in the absence of any explicit
feedback or access to the ground truth.

Figure 5 shows the Kendall’s t distance for each
individual in the memory experiment averaged over the six
event sequences. Note that there are substantial individual
differences with some individuals coming relatively close to
the ground truth. The figure also shows the average model
performance. Comparison between individual and model

performance reveals a WoC effect: The model performs as
well as some of the best individuals, with only one
individual outperforming the model. Therefore, we can
conclude there is a weak WoC effect (a strong WoC effect
would correspond to a situation where the model
outperforms all individuals in the group).

We now focus on applying the model to subsets of
participants to mimic eyewitness situations that typically
involve only small number of individuals. In the first
analysis, we select a random set of K individuals from the
original set of 28 individuals. We then apply the two
models to the subset of individuals. Figure 6 shows model
results for the model with the informative and uninformative
prior separated for stereotyped and random event sequences.
For random event sequences, where the prior is weak, there
is no improvement in the aggregation between the two
models (if anything, there is a small performance decrement
for the model with the informative prior). For stereotyped
event sequences however, people have strong prior
expectations about the true ordering of events and there is a
marked improvement in the aggregate response in the model
with the informative prior. This improvement is most
pronounced with low sample sizes (K=1 and K=2) when the
prior can still exert an influence on the inferred group
orderings. Note that when K=1, the model with the
uninformative prior has no information other than the
ordering given by a single individual — therefore, the
aggregate solution given by the model is equivalent to the
ordering provided by the individual. This results in an
average tau of around 15. However, performance for the
model with the informative prior is much better resulting in
a tau of around 8, because the aggregate solution combines
the single remembered ordering with the a priori likely
orderings.

To better highlight the benefit of the prior information, we
also conducted a model analysis where we selected the
worst performing individuals in the sample. In this sampling
procedure, we sample the K worst individuals where we
vary K from 1 (the single worst performing individual) to 28
(all individuals combined). Figure 7 shows model results for
both models separated for stereotyped and random event
sequences. The relative performance benefits can be seen
most clearly for the stereotyped event sequences for low
sample sizes (K=1 and K=2). In these cases, the worst
individuals recall event sequences that are a priori unlikely
and the prior "corrects for" the noise in the available data.

Therefore, these analyses suggest that an aggregation
model with informative priors can be used to guard against
the most egregious errors committed by the worst
individuals in the memory task.

Conclusions

We have presented two approaches for aggregating recalled
sequences of events in order to reconstruct the true event
sequence as best as possible. Individuals are likely to differ
in their ability to recall event sequences and pay attention to
different parts on an event sequences. Therefore, by
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Figure 6. Results from the models with an uninformative
prior (model 1) and informative prior (model 2) for
random subsets of K individuals from the memory task.

analyzing the consistencies in orderings across individuals,
we can extract the collective wisdom in the group. We
presented two aggregation approaches based on Mallows
model that allow for individual differences. The models
combine information at the group level with information at
the individual level to explain orderings given by an
individual. In the first approach, the model uses only the
data from the individuals who all witnessed an event
sequence. In the second approach, the model uses an
additional source of data based on the prior knowledge
about the events extracted from another group of
individuals.

We demonstrated a weak WoC effect, where the average
performance of the model was better than every individual,
save one. We have also shown that a Mallows model with
informative priors has a markedly improved ability to
reconstruct the ground truth in cases where the event
sequences are highly stereotyped and a small sample of
poorly performing individuals is used for aggregation. This
is particularly important in eyewitness situations where we
typically have only a small number of individuals available.
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