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Abstract 
Hubel Weisel models of the cortex describe visual 
processing as a hierarchy of increasingly sophisticated 
representations. While several models exist for image 
processing, little work has been done with Hubel Weisel 
models out of the domain of object recognition. In this 
paper, we describe how such models can be extended to 
the representation of concepts, resulting in a model that 
shares several properties with the PDP model of 
semantic cognition. The model that we propose is also 
capable of incremental learning, in which the knowledge 
is stored in the strength of the neuron connections. 
Degradation of old knowledge occurs as new knowledge 
is introduced to the system in a fashion that simulates 
decay theory in short term memory. The simulation 
model therefore captures several properties of cognitive 
conceptual memory, including generalization patterns, 
the role of rehearsal and, hierarchical representation. 

Introduction 
There exist several bottom-up approaches to 

hierarchical models of object recognition that are based 
on the visual cortex. They make use of Mountcastle’s 
(1978) theory of uniformity and hierarchy in the 
cortical column and the model of simple to complex 
cells of Hubel and Weisel (1965), modeling how simple 
cells from neighboring receptive fields feed into the 
same complex cell, meaning that the complex cell has 
phase invariant response.  

In this paper, we consider the following question. If 
the structure of the cortical column is uniform and 
hierarchical in nature and if the model of simple to 
complex cells can be used to model the visual cortex as 
discussed in prior works, then can such a model also be 
used to represent other modalities of information such 
as the concepts derived from text? We are therefore 
aiming to design a bottom up hierarchical memory for 
the representation of concepts, much the same way as it 
is designed for the representation of images. In this 
paper, we will define a concept as being a keyword in a 
document.  

To deal with the dynamic nature of concept inputs, 
we look at incremental learning of concepts from two 
aspects relevant to concept representation from text – (a) 
with respect to new incoming features and (b) training 
of hierarchies. To perform this, we apply a set of 
geometric approximations to the incremental inputs and 

the existing memory, such that the new memory can be 
acquired without damage to the old ones.  

 

Related work 

Mountcastle (1978) showed that parts of the cortical 
system are organized in a hierarchy and that some 
regions are hierarchically above others. In general, 
neurons in the higher levels of the visual cortex 
represent more complex features with neurons in the IT 
representing objects or object parts (Hubel and Weisel, 
1965).  Hubel Weisel models have therefore been 
developed for object recognition (Cadieu et al., 2007; 
Fukushima, 2003) proposing a hierarchy of feature 
extracting simple (S) and complex (C) cells that allow 
for positional invariance. The combination of S-cells 
and C-cells, whose signals propagate up the hierarchy 
allows for scale and position invariant object 
recognition.   

The idea of feature based concept acquisition has 
been well studied in psychological literature. Sloutsky 
(2003) discusses how children group concepts based on, 
not just one, but multiple similarities, which tap the fact 
that those basic level categories have correlated 
structures (or features). This correlation of features is 
also discussed in McClelland and Rogers (2003) who 
argue that information should be stored at the individual 
concept level rather than at the super ordinate category 
level allowing properties to be shared by many items. 

Our model is related to Hubel Weisel approaches in 
that it implements a hierarchical modular architecture 
for bottom-up propagation of conceptual information. 
To our knowledge, however, this is the first 
implementation of a Hubel Weisel approach to non- 
natural medium such as text, and has attempted to 
model hierarchical representation of keywords to form 
concepts.  

System architecture 
The system that we describe here is organized in a 
bottom up hierarchy. This means that the component 
features are represented before the representation of 
concept objects. Our learning algorithm exploits the 
property of this hierarchical structure. Each level in the 
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hierarchy has several modules. These modules model 
cortical regions of concept memory. The modules are 
arranged in a tree structure, having several children and 
one parent. In our paper, we call the bottom most level 
of the hierarchy level 1, and the level increases as one 
moves up the hierarchy. The keywords from a 
document form the inputs to the system. These are 
directly fed to level 1. Level 1 modules resemble simple 
cells of the cortex, in that they receive their inputs from 
a small patch of the input space. Several level 1 
modules tile the input space, possibly with overlap. A 
module at level 2 covers more of the input space when 
compared to a level 1 module. It represents the union of 
the input space of all its children level 1 modules. 
However, a level 2 module obtains its inputs only 
through its level 1 children. This pattern is repeated in 
the hierarchy. Thus, the module at the tree root (the top 
most level) covers the entire input space, but it does so 
by pooling the inputs from its child modules. In the 
visual cortex, the level 1 can be considered analogous 
to the area V1 of the cortex, level 2 to area V2 and so 
on.  

Learning the first batch of information 
To understand how the model learns, let us consider 

the inputs and outputs of a single module mk,i in level k 
of the system as shown in Figure 1a. Let x, representing 
connections {xj} be the input pattern to the module mk,i. 
x is the output of the child modules of mk,i from the 
level k-1, and a represent the weights of the competitive 
network. The vector a is used to represent the 
connections {aj} between x and the cells in the module 
mk,i. The output of a neuron in the module mk,i is given 
by ݑ ൌ ∑ ௝ܽݔ௝௝ . 

 

 
 

(a) (b) 
Figure 1a.  Inputs and outputs to a single module mk,i. b. The 
concatenation of information from the child modules of the 

hierarchy to generate inputs for the parent module 

During learning, each neuron in mk,i competes with 
other neurons in the vicinity. Of the large number of 
inputs to a given module, a neuron is activated by a 
subset of them. The neuron then becomes the spatial 
center of these patterns. To ensure that there are no 
garbage neurons, we adopt in our creation of the 
module, a model of Growing SOM (GSOM) 
(Alahakhoon et al., 2000). 

When all the modules at level k finish training, the 
second stage of learning occurs. This comprises the 

process by which the parent modules learn from the 
outputs of the child modules. Here, consider the case 
shown in Figure 1b where the module 3 is the parent of 
modules 1 and 2. Let x(1) be the output vector of 
module 1 and x(2) be the output vector of module 2. x(i) 
represents the Euclidean distance from the input pattern 
to the each output neuron i of the child modules. The 
input to module 3, ۷ሺ૜ሻ ൌ ሺ૛ሻܠ||ሺ૚ሻܠ , is the 
concatenation of the outputs of modules 1 and 2. A 
particular concatenation represents a simultaneous 
occurrence of a combination of concepts in the child 
module. Depending on the statistics of the input data, 
some combinations will occur more frequently, while 
others will not. During the second stage of learning, the 
parent module learns the most frequent combinations of 
concepts in the levels below it. A GSOM is again used 
in the clustering of such combinations. The learning 
process thus defined can be repeated in a hierarchical 
manner.  

 Incremental learning 
In this and the subsequent sections of the paper, we 

will use the terms batch 0 to represent the first batch of 
documents. Batch 1 refers to the subsequent set of 
documents. Once the system learns the documents in 
batch i, only the hierarchical structure and the neuron 
architecture are retained. All other information 
regarding the documents presented is discarded.  

Incremental learning poses a challenge in Hubel 
Weisel based computational models due to three 
reasons. (1) Damage to the knowledge represented by 
old neurons which is fundamental in competitive 
learning. (2) Propagation of information in the 
hierarchical architecture. The number of output neurons 
of each child node increases with the introduction of the 
incremental batch. The input dimensions of the parent 
node are therefore changed and incompatible with the 
dimensions of the previous batch.  (3) The irregularity 
in the input data dimensions. Where keywords are 
defined as concepts to be processed by the system, the 
keywords in an incremental batch will not be a subset 
of those in the previous batch. The architecture 
therefore has to provide rules for the generation and 
growth of new modules with respect to incoming 
incremental data. 

   
Preventing Damage to Old Memories: This problem 
is tackled using a sampling method using pseudo data 
inspired from Liu et al (2008). The algorithm 
implemented summarizes data distribution in a cluster 
map. Given neuron a in a GSOM of N neurons, 
consider the closest neuron b, a,b Є N , their midpoint 
is given by ܉ ൅ ܊

2ൗ . We generate a random set of 
vectors around neuron a, bounded on both sides by 
܉ ൅ ܊

2ൗ . These pseudo vectors generated during the 
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training of batch k implicitly reconstruct the data used 
to train batches 0 to k-1. 

Incremental learning in a hierarchy Let us consider 
Figure 2, where the modules ߙ and ߚ are child modules 
of  ߛ.. At batch 0, the training sets xα and xβ, consisting 
of p0 patterns each are used to generate the neurons yα 
and yβ.  

ܑ,઻ܠ ,iЄp0 ׊ ൌ ൣหܠહ,ܑ െ ܑ,઺ܠહห||หܡ െ  ઺ห൧   (1)ܡ

is passed to node ߛ. The vectors xα, xβ and ܠ઻ are then 
discarded.  

  

(a)  (b) 

Figure 2. (a) Incremental learning stages. At batch 0, the training 
patterns at level 1, ܠહ and ܠ઺ cluster to form the neurons ܡહ ܌ܖ܉  
 ઺. For simplicity, we consider that only one neuron is generatedܡ
after training batch 0. (b) Batch 1 and the approximation of the 

pseudo vectors ܠહෞ, ܠ઺ෞ and ܠ઻ෞ 

When batch 1, consisting of p1 vectors is now 
introduced, ܠહෞ and ܠ઺ෞ are approximated from ܡહ and ܡ઺ 
respectively and used along with the new batch to train 
the GSOM modules α and β. After training, the neurons 
of the level 1 nodes ݕఈ  and ݕఉ  adapt to ݕఈ

′ and ݕఉ
′. A 

set of pseudo data ܠ઻ෞ are approximated from the neuron 
 .઻ܡ

From equation 2, ܠ઻ෞ represents the Euclidean of ܠહෞ 
and ܠ઺ෞ from ܡહ and ܡ઺ respectively, i.e, for a set of p0’ 
pseudo data, 

iЄp0 ׊
઻,଍ෞܠ ,’ ൌ ൣหܠહ,଍ෞ െ ઺,଍ෞܠહห||หܡ െ  ઺ห൧  (2)ܡ

However, during the training of batch 1, the measure 
for  ܠ઻ෞ  should be the distance to ݕఈ

′  and ݕఉ
′ , the 

updated neuron vectors. A set of adapted pseudo 
vectors ܠ઻ෞ′ should therefore be approximated.  

In Euclidean space, we can we can visualize the 
problem as shown in Figure 3,   

 

 

 
 

Figure 3. Approximation of incremented pseudo vector for levels 
2 and above in the hierarchy 

We consider two cases, (a) y’ is not the winning 
neuron for the pattern x. (b) y’ is the winning neuron.  

Case (a). ࢟Ԣࢻ is not the winning neuron, i.e, R<<d 

For ease of analysis, assume that d=1 

ܦ ؆
1
ߨ නห࢟′ሺࣂሻ െ ࢞ห

గ

଴

 ߠ݀

ܦ ؆
1
ߨ නหܡ′ሺߠሻ െ หܠ ൅ หܡ′ሺߨ െ ሻߠ െ หܠ

గ
ଶ

଴

 ߠ݀

Where ݂ሺߠሻ ൌ หܡ′ሺીሻ െ หܠ ൅ หܡ′ሺૈ െ ીሻ െ   ,หܠ

ܦ ؆ ଵ
గ ׬ ݂ሺߠሻ

ഏ
మ

଴      (3) 

݂ሺߠሻ ൌ ඥሺ1 െ ሻଶܴߠݏ݋ܿ ൅ ሺܴߠ݊݅ݏሻଶ

൅ ඥሺ1 ൅ ሻଶܴߠݏ݋ܿ ൅ ሺܴߠ݊݅ݏሻଶ 

Let ܽ ൌ ห࢟′ሺࣂሻ െ ࢞ห and ܾ ൌ ห࢟′ሺ࣊ െ ሻࣂ െ ࢞ห 

We obtain  

݂ሺߠሻ ൌ √2√1 ൅ ܴଶ ൅ ܾܽ       (4) 

Where ܧ଴ ൌ ܾܽ,, 

଴ܧ ൌ
ඥሺ1 െ ሻଶܴߠݏ݋ܿ ൅ ሺܴߠ݊݅ݏሻସ ൅ sinଶሺܴߠሻሾ2 ൅ ሿߠଶݏ݋2ܿ  
(11) 

      ؆ 1 െ ௖௢௦మሺఏோሻ
ଶ

൅ ଷୱ୧୬మ ሺఏோሻ
ଶ

   (5) 

Substituting (5) into (4), we obtain 

݂ሺߠሻ ൌ 2 ቀ1 െ ோమ

଼
൅ ଵ

ଶ
 ሻቁ  (6)ܴߠଶሺ݊݅ݏ

Substituting (6) into (3), we obtain 

ܦ ൌ  ൌ 1 ൅ ோమ

଼
൅ ோమ

గ ׬ ଶ݊݅ݏ
ഏ
మ

଴  (7)  ߠ݀ߠ

Solving (7), we have  

ܦ ൌ 1 ൅ ଷோమ

଼
  (8) 

Based on Figure 3, if we approximate a ߨ = ߠ 2ൗ , we 

obtain ܦ ൌ 1 ൅ ோమ

ଶ
. In implementation, to satisfy (8) we 

use the inequality (9) to assign the value of ߠ. 
ସగ
ଽ

൏ ߠ ൏ ߨ
2ൗ   (9) 

We can therefore conclude that, a ߠ value specified 
by inequality (9) can be used to re-generate the dataset 
઻,଍ෞܠ ሾ0,1, … , ݆, … ݇ఈሿ, where ܠ઻,଍ෞ ሾ࢐ሿ હ,଍ෞܠห ؠ െ  હ′ܡ હห and′ܡ
is not the winning neuron. 

Case (b): ࢟Ԣࢻ is the winning neuron 

If y’ is the winning neuron, a random value of ߠ, 
0 ൏ ߠ ൏ ߨ  can be used to regenerate ܠ઻,଍ෞ ሾ݆ሿ હ,଍ෞܠห ؠ െ
  .હ|, where y′α is the winning neuron′ܡ

x  y 

y' 

d 

θ  R

D 

θ 
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Dealing with the problem of new input dimensions: 
A rule based approach of creating a new module to 
process the new keywords is preliminarily proposed to 
deal with the dynamically increasing input dimensions. 
A module is trained and connected to parents only if the 
number of concepts that it represents increases above a 
predefined threshold. In order to avoid overcrowding, 
heuristic rules have been put into place such that a 
parent has atmost three children.  

Experimental results 
To illustrate the cognitive properties of the training 

model, we train the system using 21 concepts from 200 
documents. The concepts included ideas such as “birds”, 
“animals”, “flowers”, “trees” etc, same as the ones used 
by McClelland and Rogers (2003). The following 
preprocessing was performed to the documents. First, 
the contents were analyzed and the stopwords removed. 
The concept terms were stemmed and grouped using 
Wordnet (Fellbaum, 1998) before a tf.idf weighing 
scheme was used to select the most relevant concepts to 
the batch. For visualization purposes,  

 
Hierarchical identification of concepts from wiki 
documents 

   

 
Figure 4. The number of concept neurons at the top of the 

hierarchy vs. the number of features per bottom level module 

In this section we observe how our hierarchical model 
captures the properties of semantic cognition outlined 
by McClelland and Rogers (2003, 2008). The training 
data used by McClelland and Rogers is intuitively 
designed based on common sense knowledge. Our 
system, on the other hand is trained using information 
from 200 text descriptors of the concepts from 
wikipedia. The snippets varied in length from 50 word 
descriptions to 500 word descriptions. Figure 4 
illustrates the number of concept neurons at the top 
level as a function of the ratio of the number of features 
to each level 1 module and the total number of features. 
When there are only two layers in the hierarchy, a 
larger number of concept neurons (16) are generated. 
The number of concept neurons converges to between 6 
and 8 for all other architectures. Typically, for a six 

concept cluster, the concept of penguin is separate from 
that of other clusters. This is shown in Figure 6. 

 
Figure 5. Euclidean distance between various concepts vs. the 

number of training epochs 

In Figure 5, we observe the evolution of the 
Euclidean distance between concepts. The training 
shows empirical properties of convergence. The 
distances between the various concepts are stable after 
500 epochs of training. We can also observe promising 
results from the concept representation point of view. 
For instance, the Euclidean distance between “pine” 
and “oak”, for instance, is larger than the Euclidean 
distance between “birch” and “oak”, which belong to 
the same family.    

Figure 6.a shows the top two levels of a five level 
hierarchy of hierarchy of concepts obtained (10 
concepts per GSOM module and 160 concepts used in 
training). We observe, as is the result in McClelland 
and Rogers that similar concepts tend to be near each 
other in space. For instance, “canary” and “sparrow” 
tend to be closer to each other, but far from “penguin”. 
In some cases, super ordinate terms, such as “bird”, 
“tree” etc are mined as part of the hierarchy. There are 
some interesting observations that can be made here. 
We can see that the highest level (level 5) shows 
general concepts while level 4 shows the concepts one 
level lower. i.e., while the neuron 1 refers to “animals”, 
the neuron box “2” refers to more detailed 
differentiation of neuron 1. Further to this, the system 
also shows some intermediate level categorization 
characteristics that taps item frequency effects. In 
McClelland and Rogers’ paper, they describe it as the 
process by which certain descriptive terms such as 
“tree”, “bird” and “dog” tend to be acquired earlier than 
the super ordinate terms such as “plant” or “animal” or 
more specific terms such as canary, pine or poodle. The 
general consensus for this is that parents use certain 
intermediate level words more frequently when 
speaking to children. As such, intermediate concepts, 
based on their frequency of usage, are also clustered 
more tightly into intermediate groups within super 
ordinate concepts.  
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and “betula”, and the Euclidean distance between the 
concepts reduces to 0 at batch 7. However, at batch 10, 
when the concept of birch is reintroduced, the 
Euclidean distance between the two terms increases 

before gradually decreasing to 0 once again. A similar 
result is also observed in the relationship between terms 
“canary” and “islands”.  

 

Figure 8. Evolution of the hierarchical and Euclidean relationship between the concepts (a)“birch” and “betula” vs “canary” and 
“islands” (b) “Birch” and “cod” vs. “birch” and “dog” (c) “dog” and “flounder” vs. “goat” and “dog” 

Figure 8b shows the representation of the concept 
“birch” with respect to the concepts “dog” and “cod”. 
“Birch” is introduced to the system at batch 0, “cod” at 
batch 1 and “dog” at batch 4. The differentiation 
between the concepts “birch” and “cod” is at level 4 
and converges to level 3. By batch 8, the concepts of 
“dog” and “cod” are of the same distance from “birch”. 
At this juncture, the system at level 3 no longer 
distinguishes between “birch”, “cod” and “dog”, but 
makes a distinction between “plant” and “animal”. 
Figure 8c  shows a similar relationship of concepts “dog” 
with the concepts “flounder” and “goat”. The flounder-
dog distinction converges to level 2 (from Figure 8b, 
we can see that the plant-animal distinction occurred at 
level 3) while the dog-goat distinction converges to 
level 1. The Euclidean distance between the concept 
terms “dog” and “goat” converges to approximately 
700 which is close to the value that is obtained through 
batch learning (from Figure 5). 

Conclusions and further work 
In summary, our model attempts to propose a 

hierarchical Hubel Weisel model for the acquisition of 
concepts from text such that the concepts are 
represented in a hierarchical connectionist network. The 
result is a new framework that we have applied in two 
scenarios. The first is concept acquisition where we 
have shown that the system is able to represent 
everyday concepts in a hierarchical fashion, in a 
manner similar to the PDP model. The system was 
interestingly also able to perform chain retrieval, in that 
when “red” was given as a probe to the system, it was 
able to retrieve “robin” and by association “sparrow”. 
Secondly, we have modeled information approximation 
and incremental learning, which models some 
properties of short term memory.  

There are several directions for further work in this 
area. In addition to the pertinent issues of improving 
computation time and processing algorithms to make 
the system able to handle large sets of data, one 
important direction is the incorporation of semantic 
information into the hierarchical architecture. As of 

now, this information is ignored and only the statistical 
properties of keywords are taken into consideration in 
the generation of the concept hierarchy. Work is under 
process to integrate semantic information into the 
model. Work is also under progress to include common 
sense knowledge in the model. We expect that these 
additions will make the model more cognitively 
accurate. In addition to this, we are also incorporating 
other aspects of cognition such as attention; interest etc 
to study the generation and behavior of the cognitive 
map.  
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