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Abstract

We present  a  model  of  symbol  manipulation  implemented 
using spiking neurons and closely tied to the anatomy of the 
cortex, basal ganglia, and thalamus.  The model is a general-
purpose neural controller which plays a role analogous to a 
production system.  Information stored in cortex is used by 
the basal ganglia as the basis for selecting between a set of 
inferences.  When an inference rule is selected, it commands 
the  thalamus  to  modify  and  transmit  information  between 
areas  of  the  cortex.   The system supports  special-case  and 
general-purpose inferences, including the ability to remember 
complex statements and answer questions about them.  The 
resulting  model  suggests  modifications  to  the  standard 
structure of production system rules, and offers a neurological 
explanation for the 50 millisecond cognitive cycle time.

Keywords: decision  making;  neural  production  system; 
neural engineering; cognitive architectures

Introduction
The primary goal of our ongoing research is the creation of 
a biologically realistic neural cognitive architecture.  Such 
an architecture would provide an explicit  and quantitative 
connection  between  cognitive  science  and  neuroscience. 
Bridging  these  fields  leads  to  benefits  in  both  directions; 
aspects of a cognitive theory can predict and be constrained 
by neurological details, and the neurological details can in 
turn identify important modifications to cognitive theory.

In this paper, we present a model of sequential symbolic 
reasoning  implemented  using  373,000  simulated  spiking 
neurons.   The  connectivity  of  these  neurons,  their  neural 
parameters, and their associated neurotransmitters are fixed 
based  on  neurological  evidence  from  the  basal  ganglia, 
thalamus, and cortex.  By adjusting the synaptic connections 
of neurons at the inputs and outputs of the basal ganglia, we 
can define the inferences that the system will follow.  Since 
these rules can be adjusted for a wide variety of IF-THEN 
symbol manipulation tasks, we believe that our model is the 
first biologically realistic general-purpose neural controller 
that can play a role analogous to a production system.

The model involves the basal ganglia, the thalamus, and 
various  cortical  areas.   The  cortex  holds  a  variety  of 
information about the current situation, such as visual input 
and the contents  of  working memory.   The basal  ganglia 
performs  action  selection,  taking  information  from  the 
cortex to determine which of the rules is most appropriate to 
use  in  the  current  situation.   This  choice  is  sent  to  the 
thalamus, which acts as a routing system, implementing the 
effects  of  those rules by transferring information between 

cortical  areas.   As  the  information  stored  in  the  cortical 
areas  changes,  different  actions  will  be  selected  in  turn, 
allowing for controlled and organized sequences of actions.

To present this model, we first provide a brief description 
of the Neural Engineering Framework (NEF; Eliasmith and 
Anderson, 2003), a general method for organizing realistic 
spiking  neuron  models  so  as  to  represent  and  transform 
information.   This  is  used  to  derive  the  optimal  synaptic 
connections (under neurological constraints) for creating our 
model.  Next, we introduce Vector Symbolic Architectures 
(VSAs;  Gayler,  2003),  a  method for  efficiently  encoding 
symbolic  structures  as  high-dimensional  fixed-length 
vectors.  This is used to encode structured information in the 
cortex and to represent the IF-THEN rules themselves.  

Given  these  tools,  we then  define  the  three  anatomical 
components  of  our  model  (cortex,  basal  ganglia,  and 
thalamus).   This  includes  specifying  the  neurological 
parameters  of  the  neurons  involved,  such  as  the 
neurotransmitters  used.   This  is  important  for  providing 
accurate  timing predictions from our model, since various 
neurotransmitters have varying characteristic time constants.

We  demonstrate  our  model  performing  three  separate 
tasks: repeating the alphabet, repeating the alphabet starting 
from  a  particular  letter,  and  answering  questions  using 
working memory.  For each of these tasks we use exactly 
the same neural model; the only differences are the sensory 
inputs to the system.  

Finally,  we  provide  two  conclusions  that  connect 
cognitive  theory  and  neuroscience.   First,  we  show  that 
particular  types  of  IF-THEN  rules  are  more  efficient  to 
implement  in  spiking  neurons,  leading  to  a  possible 
modification of standard production system-based theories. 
Second, we show that the time needed to select an action is 
determined  primarily  by  the  re-uptake  rate  of  the 
neurotransmitter GABA in the basal ganglia, thus providing 
a neurological explanation for the 50-millisecond cognitive 
cycle time commonly found in behavioural results.

Neural Engineering Framework
To build a  complex neural  model,  we need a method for 
determining  how  neurons  can  represent  and  transform 
information.   We use the Neural  Engineering  Framework 
(NEF;  Eliasmith  and  Anderson,  2003),  which  generalizes 
established  findings  on  how  sensory  and  motor  neurons 
represent multidimensional information.  This allows us to 
treat a group of neurons as representing a single vector of 
arbitrary  length.   By  adjusting  the  connectivity  between 
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groups  of  neurons,  we  can  indicate  how  these 
representations should be changed over time.

The basic assumption of the NEF is that within a neural 
group, each neuron has a preferred value e (for encoding) to 
which it responds most strongly (i.e. fires most quickly).  As 
the difference  between the actual  value and the preferred 
value increases, this firing rate will decrease.  If the value to 
be represented by the neurons is  x,  this behaviour can be 
captured in terms of the amount of ionic current  J flowing 
into the neuron given by Equation 1.  Adjusting the neuron 
gain α, the background input current Jbias, and the preferred 
direction  vector  e allows  us  to  capture  a  wide  range  of 
known neural tuning curves.

J= e⋅xJbias (1)
In  the  simplest  case,  100  neurons  could  represent  a  100 
dimensional vector  x by having each  e be a different unit 
vector in each of the 100 dimensions.  This would provide a 
completely local representation of each value in the vector. 
More realistically, 100 neurons could represent  one or two 
dimensions  by  having  e values  chosen  randomly  (i.e. 
uniformly  distributed  around  the  unit  hypersphere  in  that 
many dimensions).   This  approach  has  been  observed  in 
numerous  areas  of  visual  and  motor  cortex  (e.g. 
Georgopoulos et al., 1986).  The advantage of having more 
neurons  than  there  are  dimensions  is  that  the  amount  of 
representational error can be controlled.  Neurons are highly 
stochastic devices,  but we have previously shown that the 
overall  error  is  inversely  proportional  to  the  number  of 
neurons per dimension (Eliasmith & Anderson, 2003). 

Using Equation 1 to set the amount of input current to a 
particular neuron to represent a particular value, we can use 
existing  models  of  neuron  behaviour  to  determine  the 
resulting spike times.  There are an extremely wide variety 
of  suitable  neuron  models,  from  Hodgkin-Huxley-type 
models  up  to  extremely  detailed  compartmental  models. 
For this model, we use a standard Leaky Integrate-and-Fire 
model, where input current causes voltage inside the neuron 
to gradually build up until it reaches a threshold, at which 
point it  fires, producing a spike.  Thus, given a particular 
vector, we can determine the resulting sequence of spikes.

We  can  also  perform  the  opposite  operation:  given  a 
sequence of spikes we can estimate the original vector.  As 
shown elsewhere (Eliasmith & Anderson, 2003), this can be 
done by deriving the decoding vectors d as per Equation 2, 
where ai is the average firing rate for neuron i with a given 
vector x, and the integration is over all values of x.

d=
−1
  ij=∫ ai a jdx  j=∫a j xdx (2)

The  resulting  vectors  d can  be  used  to  determine  an 
estimate of the represented value using Equation 3, where 
h(t) is the current produced in a post-synaptic neuron by the 
pre-synaptic neuron firing at time t=0, and ti,n is the time that 
the ith neuron fired for the nth time.  

x t =∑
i ,n

t−t i ,n∗h it d i=∑
i ,n

ht−ti , nd i (3)

This  is  an  estimate  that  varies  over  time based  on  the 
individual  spikes.   Importantly,  it  is  the  optimal estimate 

when under the constraint that the estimate must be built by 
linearly  adding  the  effects  of  the  post-synaptic  currents 
caused  by  each  spike.   This  is  the  constraint  for  other 
neurons  receiving  these  spikes,  so  Equation  3  gives  the 
optimal reconstruction of the vector by another neuron.

As a consequence of this, the decoding vectors d provide 
an extremely important tool that is at the heart of the Neural 
Engineering  Framework.   We  can  use  d and  e to  derive 
optimal  synaptic  connection weights to perform particular 
mathematical manipulations on the encoded information.  If 
one  group  of  neurons  represents  x and  we  want  another 
group to represent some particular linear transformation of 
this  value  (i.e.  y=Mx),  then  we  simply  set  the  synaptic 
connection weights w as per Equation 4.

w ij= j e j M d i (4)
For  nonlinear  functions,  we  can  modify  Equation  2  to 

produce  decoding  vectors  df(x) that  optimally  approximate 
any nonlinear function f(x), as shown in Equation 5.

d f x=−1  ij=∫ai a j dx  j=∫ a j f x dx  (5)

This approach allows us to create  complex neural  models 
where we directly derive the necessary synaptic connection 
weights, rather than relying on a particular learning rule.

Vector Symbolic Architectures
While the NEF provides a method for representing vectors, 
in  order  to  implement  a  cognitive  model  we  need  to 
represent complex symbol-like structures.  That is, while we 
might be able to say that one particular vector represents the 
concept of a square, another vector represents a triangle, and 
another represents a particular colour, this does not address 
the question of how we can represent “a blue circle and a 
red square”.

A general  approach  to  this  problem is  to  use  a  Vector 
Symbolic  Architecture  (VSA;  Gayler,  2003).   There  are 
three  core  ideas  for  all  VSAs.   First,  each  symbol  is 
represented  by  a  particular  high-dimensional  vector.   For 
our purposes, we randomly choose these vectors, but they 
could  also  be  selected  based  on  semantic  and  sensory 
knowledge.   Second,  two  vectors  can  be  combined  by 
superposition () to produce a new vector that is similar to 
both  of  the  original  vectors.   Third,  two  vectors  can  be 
combined by binding () to produce a new vector that is 
dissimilar to both of the original vectors. 

This binding operation can be reversed by binding with 
the inverse of a vector (*), such that  ABB*A.  These 
operations  are  similar  to  standard  addition  and 
multiplication in terms of being associative,  commutative, 
and distributive.  

For  our  model,  we  chose  a  particular  VSA  known  as 
Holographic Reduced Representations (HRRs; Plate, 2003). 
For this, superposition is performed by vector addition and 
the  binding  operation  is  circular  convolution.   These 
operations  can  be  efficiently  implemented  in  spiking 
neurons  using  synaptic  connections  calculated  using  the 
NEF (Eliasmith, 2005) and Equations 4 and 5, above.
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With  such  a  system we can  represent  symbol  trees  by 
combining superposition and binding.  For example, we can 
find a vector to represent “a blue circle and a red square” by 
performing the following calculation:

bluecircle     redsquare
The result is a single vector of the same dimensionality as 
the vectors for the basic symbols (blue, red, square, etc.). 
This one vector can be interpreted as a representation of the 
entire structure because it is possible to extract the original 
components.  For example, to determine which object is red, 
we take the whole vector  and bind it  with the inverse of 
red.

  (bluecircle +redsquare)red*

= bluecirclered* +redsquarered*

bluecirclered* +square

The result is a vector that is similar to  square, but is not 
exactly the same since it has an additional term superposed 
on  it.   Due  to  the  properties  of  the  binding  operation, 
however, bluecirclered* will be a vector that is highly 
dissimilar to all of the original symbols, and can be treated 
as randomly distributed noise.  We have previously shown 
how spiking neuron models can remove this noise (Stewart, 
Tang, & Eliasmith, 2009).

The Model

Basal Ganglia
The  basal  ganglia  is  generally  believed  by  both 
neuroscientists  (e.g.  Redgrave  et  al.,  1999)  and  cognitive 
scientists (e.g. Anderson et al., 2004) to be responsible for 
action selection.  That is, given a wide variety of possible 
options as to what to do next, a single one must be chosen. 
This can be thought of as a winner-take-all mechanism: each 
option will have a numerical value indicating how relevant 
(or how beneficial) each action is in the current context, and 
the best of these should be chosen.  Although winner-take-
all mechanisms are common in neural models, there are few 
that adhere to the biological constraints of the basal ganglia, 
and none we are aware of that use realistic spiking neurons. 

Figure 1: Basal ganglia model with three possible actions. 
Light lines are excitatory connections. Dark lines are 
inhibitory (based on Gurney et al., 2001, Figure 5).

While  we  have  previously  investigated  simple  mutual 
inhibition  approaches  for  winner-take-all  (Stewart  & 
Eliasmith, 2009), for our current model we adapt work by 
Gurney, Prescott, and Redgrave (2001).  As shown in Figure 
1, the D1 cells in the striatum inhibit corresponding cells in 
the  globus  pallidus  internal  (GPi)  and  substantia  nigra 
reticulata (SNr), while the subthalamic nucleus (STN) sends 
a broad excitatory signal to the GPi/SNr and globus pallidus 
external (GPe).  The GPe and the D2 cells in the striatum 
act  as  a  control  signal  on  the  excitation  from  the  STN, 
adjusting  it  so  that  the  correct  amount  of  excitation  is 
provided to select a single action.  Each of these connections 
is well-documented anatomically, and the model's behaviour 
matches neurological results in rats and monkeys both with 
and without particular lesions (Gurney et al., 2001).

However,  the  Gurney  et  al.  model  uses  idealized 
piecewise-linear non-spiking neurons that respond instantly 
without  any  random variation  to  changes  in  their  inputs. 
We thus adapt  their  model,  replacing individual  idealized 
neurons  with  groups  of  realistic  leaky-integrate-and-fire 
(LIF) spiking neurons.  For our neurons, the membrane time 
constant (τRC; controlling the amount of current leaking out 
of the neuron) was fixed at 20ms, and the α and Jbias values 
were randomly chosen constrained by the reported response 
properties  given  by  Gurney  et  al.,  including  background 
firing rates of 60-80Hz and maximum firing rates of 400Hz. 
All  synaptic  connections  were  derived  using  Equation  4. 
We use 20 neurons to replace one ideal  neuron (circle  in 
Figure 1), so 100 neurons are needed per possible action.

The behaviour of this model is shown in Figure 2.  The 
inputs  to  the  model  (top)  are  the  desirability  of  three 
different actions.  The firing response of the output of the 
basal ganglia (bottom) is shown as these inputs change over 
time.  As in the actual basal ganglia, the output is inhibitory, 
so an action is selected by turning off the appropriate output 
neurons, stopping them from performing their inhibition.  It 
should be noted that this output lags behind the input due to 
the time constants  of  the post-synaptic  current  caused  by 
different  neurotransmitters.   In  this  case,  the  excitatory 
connections  use  glutamate  with  AMPA  receptors  (2ms; 
Spruston et  al.,  1995),  and the inhibitory connections  use 
GABA (10ms; Gupta et al., 2000).

Figure 2: Inputs and outputs (GPi) of our basal ganglia 
model.  The largest valued input consistently causes the 

corresponding output neurons to stop spiking.
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Cortex
For the tasks under consideration in this paper, we need a 
visual  area  (for  representing  the  current  visual  scene),  a 
motor area (for producing outputs from the model), and a 
working memory (for storing a statement and questions to 
be  answered).   Each  of  these  is  implemented  as  10,000 
spiking neurons, storing a 250 dimensional VSA vector as 
per the NEF.  We present stimuli to our model by injecting 
current into the visual area (V in Figure 3) using Equation 1. 
We can examine the contents of any area of the cortex by 
decoding  the  activation  (Equation  3)  and  measuring  the 
similarity (dot product) between the resulting vector and an 
ideal calculated vector.  The closer this value is to 1.0, the 
more accurate the representation.

To  perform  general  purpose  tasks  (such  as  question 
answering), our model contains two working memory areas: 
A and B.  In order to maintain information over time, these 
areas  contain  connections  back  to  themselves  as  per 
Equation 4 where M is the identity matrix.  This forms the 
basis  of  an  integrator  model  of  memory,  which  has 
previously  been  used  to  model  somatosensory  working 
memory (Singh & Eliasmith, 2006).  Areas A and B are also 
connected  to  two other  neural  groups  C and  D such  that 
C=AB and D=AB*.  These connection weights are defined 
using Equation 5, where f(x) is the circular convolution (see 
Eliasmith,  2005  for  details).   This  allows  the  system  to 
compute  the  VSA operations  that  are  needed  to  perform 
symbol manipulation.

Thalamus
The  only  mechanism  in  our  model  for  modifying  the 
contents of the working memory areas and the motor areas 
is the thalamus.  If the thalamic areas are all zero then no 
information  is  transferred  between  cortical  areas.   If  the 
thalamic area corresponding to working memory A is set to 
some value (via the basal ganglia), then this value will be 
sent  to  cortical  area  A,  using  synaptic  connections  from 
Equation 4  with  M as  the  identity  matrix.   Crucially  for 
information  transfer,  if  the  thalamic  area  controlling  the 
connection between V and A is set to X, then the value VX 
will be sent to A.

Figure 3: Thalamus and cortex model.  Circles are 10,000 
neurons representing 250 dimensional vectors (V=vision; 

M=motor; A,B,C,D=working memory).  are 40,000 
neurons computing the binding operation.

Modelled Tasks

Fixed Sequences of Actions
The simplest task to perform with this model is sequentially 
going  through  a  list  of  items,  such  the  alphabet.   We 
implement this by defining 25 rules of the following form:

IF working memory contains letterA
THEN set working memory to letterB

We create the IF portion of a rule by setting the synaptic 
connections  between  the  working  memory  area  of  cortex 
and the striatum and sub-thalamic nucleus.  Each component 
of the basal ganglia has a group of neurons corresponding to 
each rule (the dark circles in Figure 1).  We set the input 
synaptic weights using Equation 4, where  M is the vector 
corresponding to the IF portion of the rule (letterA).

To implement the THEN portion of the rule, we set the 
synaptic connections at the output of the basal ganglia.  In 
this case, we create a group of neurons that connect to the 
thalamic neurons that feed to working memory. We again 
use Equation 4 to set these weights, with  M set to be the 
vector  corresponding  to  letterB.   We  then  connect  the 
group of neurons in the GPi that correspond to this rule to 
these  new  neurons.   Because  GPi  is  inhibitory,  this 
connection  will  cause  the  new neurons  to  not  fire  at  all, 
except  in  the case  that  the action selection system in the 
basal ganglia chooses this particular action.  In that case, the 
inhibition will be turned off (as those GPi neurons will stop 
spiking), allowing letterB to be sent to working memory. 
This in turn will cause the next rule to be selected, and so 
on.  It should be noted that our model does not yet include 
the phonological loop, so any timing influence it may have 
on producing this sequence is not taken into account.

To test the model, we initialize it by forcing current into 
the working memory neurons as per Equation 1 such that 
they  will  represent  letterA.   After  this,  all  subsequent 
activity  is  due  to  the  interconnections  between  neurons. 
Figure 4 shows the model correctly following the alphabet 
sequence.  From the spiking pattern we see that the correct 
action for each condition is successfully chosen by turning 
off the appropriate inhibitory neurons in the GPi.

Figure 4: Contents of working memory (top) and spiking 
output from GPi indicating the action to perform (bottom). 

1103



Variables and Generic Rules
The previous section demonstrated that our model is capable 
of implementing rules where a specific pattern is sent to a 
specific  part  of  cortex.   While  these  sorts  of  rules  may 
account  for  some  kinds  of  highly  specialized  behaviour, 
most  symbolic  cognitive  architectures  assume  that  it  is 
possible to have general-purpose rules.  That is, these rules 
can  contain  variables,  such  as  the  following,  where  ?X 
represents an unknown variable:

IF visual cortex contains letter?X
THEN set working memory to letter?X

The presence of this sort of rule in addition to the ones in 
the previous section would allow the model to start going 
through the alphabet  starting from any letter.   We would 
simply present the particular letter we wanted it to start from 
to the visual cortex (letterF) and it would copy this value 
to working memory and continue from there.

While  the  above  method  is  the  standard  approach  for 
expressing this sort of rule, in order to implement it in our 
model, we need to slightly reformulate it as the following:

IF visual cortex contains letter?X
THEN copy visual cortex to working memory

This rule has exactly the same effect as the first one.  To 
implement it, we use the same approach as in the previous 
section.  The synaptic connection weights for the inputs to 
the basal  ganglia  are set  using Equation 4 with  M as  the 
vector for  letter.  For the output, instead of connecting to 
the parts of the thalamus which send information directly to 
cortical areas, we connect to the neural group which gates 
connections between these cortical areas.  If we set this to 
the identity vector I, then working memory will now contain 
VI=V.  This has the effect of routing information between 
cortical areas.

The result  of  this  model  when  letterF is  placed in  the 
visual  cortex is  shown in Figure 5.   The model correctly 
starts repeating the alphabet from F.  Changing the visual 
stimulus  to  some  other  letter  will  start  from  there, 
demonstrating that the rule can apply to multiple situations.

Figure 5: Contents of working memory (top) and spiking 
output from GPi indicating the action to perform (bottom). 

The look action takes information from visual cortex (in this 
case, letterF) and routes it to working memory.

Question Answering
For  the  final  task,  we  consider  question  answering.   We 
perform this by first presenting the model with a symbolic 
statement such as the following:

statement    bluecircle    redsquare
This would indicate a blue triangle and a red square are all 
in  the  visual  field.   The  statement  is  presented  to  visual 
cortex for 50ms, and it will use the following rule to move it 
into working memory, as in the previous section:

IF visual cortex contains statement?X
THEN copy visual cortex to working memory

After the statement is shown for 50ms, we stop stimulating 
visual cortex for another 50ms.  This means that the system 
must  successfully  keep the statement  in  working memory 
over this time.  After this time, we present a question to the 
visual cortex, such as the following:

question     red
A separate rule is defined for dealing with this situation: 

IF visual cortex contains question?X
THEN copy visual cortex to working memory B and 

         also copy from working memory D to motor cortex
This rule copies the question to a separate area of working 
memory (B).  As described previously (see Figure 3), this 
area  allows  a  vector  to  be  combined  with  the  current 
contents of working memory.  Furthermore,  this rule also 
copies  information from a third area  of working memory 
(D) to the motor cortex.  Since area D is connected to A and 
B  so  as  to  store  the  result  of  convolving  area  A  (the 
statement)  with  the  inverse  of  area  B  (the  question),  it 
should contain the answer to the question.

The  results  of  this  model  answering  two  different 
questions from the same remembered statement are given in 
Figure 6.  These two generic rules can answer any question 
provided in this format.  Previous work on the capabilities 
of  neural  implementations  of  VSAs  (Stewart,  Tang,  & 
Eliasmith, 2009) indicates that this system will scale well to 
8 or more terms in a statement, out of a total vocabulary of 
100,000 possible terms.

Figure 6: Answering two different questions starting from 
the same statement.  The similarity between the contents of 
motor cortex and 7 possible answers is shown.  The correct 

answer is chosen in both cases.
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Implications
The model presented here helps to bridge the gap between 
cognitive  science  and  neuroscience.   It  allows  us  to 
transform symbolic  rules  (the  basis  of  much of  cognitive 
theory)  into  specifications  for  the  synaptic  connectivity 
between  neurons  in  cortex,  basal  ganglia,  and  thalamus. 
The  resulting  models  give  detailed  predictions  about  the 
timing of events and the spiking behaviour of the neurons 
involved.   With  such  models,  we  can  also  predict 
performance  accuracy  and the  effects  of  various  types  of 
neurological damage.  

The  model  also  addresses  a  long-standing  concern  in 
cognitive science as to how neurons can possibly support 
the rich  cognitive  capabilities  that  seem clearly  based  on 
symbols and symbol manipulation.  Specifically, we suggest 
that  a  VSA  approach  to  representing  symbols  can  be 
implemented  in  spiking  neurons,  and  that  these 
representations  can  be  manipulated  in  a  controlled  and 
generic  manner.   We are aware of no other neural  model 
with  this  flexibility,  scalability,  and  connection  to  the 
underlying neurophysiology.

Rule types
Bridging cognitive science and neuroscience provides more 
than a mere neural implementation of cognitive theory.  For 
our model, it has also suggested possible modifications to 
cognitive  theory.   When  implementing  the  rules,  we 
changed  them  from  including  explicit  variables  into 
commands to transform and copy the information currently 
represented in various parts of visual and working memory. 
If our future applications of this model continue to find this 
approach to rule definition sufficient for a wide variety of 
cognitive tasks, then we would argue this may be a more 
suitable framework for expressing cognitive rules than the 
standard variable-binding approach.

Timing
Our model is also highly constrained by known neurological 
data;  the characteristics  of the neurons involved and their 
connectivity are based on empirical  results.   As such, we 
can predict results that were previously derived purely by 
parameter fitting.  For example, in most production system 
models of cognition (Soar, GOMS, EPIC, ACT-R, etc.), a 
certain  amount  of  time  is  needed  to  select  and  apply  an 
action.  Based on empirical evidence, this is normally fixed 
to be 50 milliseconds (e.g. Anderson et al., 1995).

As  can  be  seen  in  Figure  4  and  Figure  5,  our  model 
requires just under 50 milliseconds to select and apply an 
action.  While the median time needed is 44 milliseconds, 
the mean time for our current model is 48 milliseconds, due 
to the model occasionally repeating a step.  These times are 
not affected by the size of our model, but can be changed by 
adjusting  the  time  constant  for  the  inhibitory 
neurotransmitter GABA in the basal ganglia.  We currently 
use a value of 10ms (Gupta et al., 2000), and are seeking 
more detailed results from this area of the basal ganglia.

Conclusion
We presented a large-scale (373,000 spiking neuron) model 
capable of exhibiting rule-like behaviours such as question 
answering.   By  representing  the  conditions  for  applying 
inference  rules  as  VSA  vectors,  and  by  representing  the 
effects  of  those  rules  as  vector  transformations  between 
cortical  areas,  we  have  shown  a  generic  method  for 
controlling neurally realistic cognitive systems.

Our ongoing work explores the broader capabilities of this 
model, including scaling up the number of rules (only 100 
neurons  need  to  be  added  per  rule),  and  exploring  the 
accuracy of the question answering as the vocabulary size 
increases.  Other neural areas can also be added, including 
full vision and motor systems, as well as long-term memory.
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