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Abstract 

We recently proposed a theoretical integration of analogical 
transfer with causal learning and inference (Lee & Holyoak, 
2008). A Bayesian theory of learning and inference based on 
causal models (Lee, Holyoak & Lu, 2009) accounts for the 
fact that judgments of confidence in analogical inferences are 
partially dissociable from measures of the quality of the 
mapping between source and target analogs. The integrated 
theory postulates a dual role for causal relations, which can 
guide both analogical mapping and also subsequent 
inferences about the target. It follows that depending on 
whether or not a mapping is structurally ambiguous, dropping 
a preventive cause from the target can either decrease or 
increase confidence in the same analogical inference. We 
report an experiment that yielded data in close agreement 
with predictions of the Bayesian theory. These results provide 
further support for the importance of integrating analogical 
transfer with the broader framework of causal models.  

Keywords: analogical inference; causal models; mapping; 
Bayesian modeling. 

Introduction 

Analogical transfer plays a key role in scientific reasoning 

(Dunbar & Fugelsang, 2005). Indeed, in some areas of 

science in which experimental research is impossible, such 

as historical ethnography, analogy may provide the only 

viable mechanism for evaluating hypotheses. Talalay (1987) 

gives the example of interpreting the function of strange 

clay fragments discovered in Neolithic Greek sites: 

individual female legs, apparently never attached to torsos, 

that had been manufactured in pairs and later broken apart. 

The best clues to their function have come from other 

cultures in which similar tokens are known to have served to 

seal contracts and provide special evidence of the identity of 

the bearer (in feudal China, for example, a valuable piece of 

jade would be broken in two to mark a contract between a 

master and his vassal, with each keeping one piece so they 

could later be matched). Here the known function in a 

source domain has a causal connection to the form of 

relevant artifacts, and the ethnographer makes the analogical 

inference that a similar cause may have operated in the 

target domain (see Bartha, 2010). 

The general question faced by a reasoner using analogy to 

make inferences is: Given prior knowledge at various levels 

of abstraction, including one or more examples that serve as 

source analogs, what is the probability that any potential 

inference about a target analog is true? For analogical 

inferences that involve empirical claims about the world 

(e.g., scientific hypotheses), answering this question 

depends on at least two basic subprocesses: deciding how 

the causally-relevant elements of the source analog(s) relate 

to elements of the target (structure mapping), and using the 

corresponding causal relations suggested for the target to 

estimate the probabilities of potential inferences about the 

target (causal inference). In the above ethnography example, 

mapping is required to relate the two pieces of a broken jade 

object to the two parts of a broken piece of pottery; causal 

inference is required to evaluate the probability that the clay 

fragments could achieve a function analogous to that 

achieved by a divided jade object. 

Both structure mapping and causal inference have 

received considerable attention within cognitive science. 

Mapping has been the central focus of many models of 

analogical reasoning (e.g., Falkenhainer, Forbus & Gentner, 

1989; Holyoak & Thagard, 1989; Hummel & Holyoak, 

1997). Causal learning and inference have also been studied 

extensively, with theoretical work largely based on the 

framework of causal models (Pearl, 1988; Waldmann & 

Holyoak, 1992; Waldmann, Holyoak & Fratianne, 1995). 

The power PC theory (Cheng, 1997) provides a quantitative 

explanation of how the strengths of probabilistic causal 

relations can be learned from contingency data. More 

recently, this theory has been extended based on a Bayesian 

formulation (Griffiths & Tenenbaum, 2005; Lu et al., 2008). 

Theories of category-based induction have also been 

enriched by adopting the framework of causal models (e.g., 

Ahn, 1999; Kemp, Goodman & Tenenbaum, 2007; Sloman, 

1994; Rehder, 2009). 

Integrating analogical inference with causal models 

We have proposed that a more complete understanding of 

analogical transfer requires specifying the role played by 

causal models (Lee & Holyoak, 2008; Lee, Holyoak & Lu, 

2009). Figure 1 schematizes causal models for a source 

(left) and target analog (right). The nodes represent variable 

causes (C) and effects (E). The superscripts (
S
, 

T
) indicate 

the source and the target, respectively. The links represent 

the causal structure (only linked nodes have direct causal 

connections). The vectors wi represent the causal polarity 

(generative or preventive) and the causal strength for links. 

A key assumption is that analogical transfer involves using 

causal knowledge of the source to develop a causal model of 

the target, which can in turn be used to derive a variety of 

inferences about the values of variables in the target. Causal 

relations in Bayesian causal models can carry information 

about existence of causal links (e.g., causal structure) and 

distributions of causal strength, as well as about the 

generating function by which multiple causes combine to 

influence effects. 
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Figure 1: Framework for analogical transfer based on integrating 

mapping with causal models. Dotted lines indicate knowledge 

transferred from source to target (see text). 

  

In our theory, the first step in analogical inference is to 

learn a causal model of the source. The source model is then 

mapped to the initial (typically impoverished) representation 

of the target. Based on the mapping, the causal structure and 

strengths associated with the source are transferred to the 

target, creating or extending the causal model of the latter. 

The model of the target can then be “run”, using causal 

reasoning to derive inferences about the values of 

endogenous variables in the target. Accordingly, as 

summarized in Figure 1, the four basic components in 

analogical inference are: learning of a causal model for a 

source (step 1); assessment of the analogical mapping 

between the source and a target (step 2); transfer of causal 

knowledge from the source to the target based upon the 

analogical mapping to construct the causal model of the 

target (step 3); and inference based on the causal model of 

the target (step 4). 

To generate predictive inferences (from causes to their 

effect), let C
S
 denotes the information that the source has a 

background generative cause, B
S
, plus additional generative 

and preventive causal factors. (In this paper, vectors are 

indicated by bold font.) C
T
 provides analogous information 

about possible causes in the target. In predictive inference, 

the model estimates the probability of an effect occurring in 

the target, E
T 

= 1, based on initial information about the 

source, (C
S
, E

S
), and the target, C

T
. The unknown causal 

strength of the target is represented by w
T
. The basic 

equation for predictive inference is 

 

 

(Equation 1)       

where the rightmost term on the right side of the equation, 

P(w
S
|C

S
, E

S
), captures the learning of a source model from 

observed contingency data (step 1 in Figure 1). Recent 

computational studies have developed detailed models that 

estimate distributions of causal strength by combining priors 

and observations (Griffiths & Tenenbaum, 2005; Lu et al., 

2008). The middle term, P(w
T 

| w
S
, C

S
, C

T
), quantifies 

knowledge transfer based upon analogical mapping (steps 2 

and 3 in Figure 1). We model the probability of transfer as 

 

   

(Equation 2)          

where Ci
S
 and Ci

T
 represent the ith cause variables in the 

source and target, respectively. If the mapping of Ci
T
 to an 

element in the source is ambiguous (as will be the case for 

the materials we use in the experiment reported here), then 

Eq. 2 will simply sum over the transfer result obtained when 

Ci
T
 matches each of the alternative source elements, 

weighted by the probabilities of each of these possible 

matches.  

The leftmost term, P(E
T
|w

T
, C

T
),  uses knowledge from 

analogical transfer and observations about the presence of 

causal factors in the target to estimate the probability of the 

effect in the target (step 4 in Figure 1). For binary variables, 

this probability can be directly computed using the Bayesian 

extension of the power PC theory (Cheng, 1997; Griffiths & 

Tenenbaum, 2005; Lu et. al., 2008). 

Mapping and Causal Inference 

Although causal relations have sometimes been assumed to 

have special importance in guiding mapping (Holyoak, 

1985; Hummel & Holyoak, 1997; Winston, 1980), models 

of analogical transfer have generally treated inference as a 

direct extension of mapping. In contrast, our causal-model 

approach postulates a deeper role for causal knowledge in 

transfer (Lee & Holyoak, 2008). 

The present study sought to demonstrate a direct 

interaction between mapping and causal inference, which is 

predicted by our Bayesian theory. According to the 

integrated theory, a causal relation in the target potentially 

plays a dual role: it first may guide structure mapping 

between the source and target; then if mapping succeeds, it 

will also guide causal inference based on the resulting 

causal model of the target. In the present study we 

investigated analogical transfer when the mapping between 

the source and target was in some cases structurally 

ambiguous (cf. Spellman & Holyoak, 1996).  

More specifically, we examined how presence or absence 

of a certain causal relation (preventive cause in this study) 

in the target might increase or decrease inductive strength 

depending on whether the structural mapping is clear or 

ambiguous. The source analog included a preventive cause, 

which might or might not be also included in the target. 

When the mapping is clear, the expected effect of inclusion 

of the preventive cause is evident in that presence of a 

preventive cause will decrease inductive strength in target, 

as shown in previous studies (e.g., Lee & Holyoak, 2008). 

However, when the mapping is ambiguous, and if the 

preventive cause is able to resolve the mapping ambiguity, 

the expected result will be reversed. The materials were 

designed so that when the mapping was ambiguous, the 

(1) form causal 
model of source 

(2) mapping 

(4) “run” 
 target model 

(3) transfer structure and 
strength from source to 
develop causal model of target 
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inclusion of the preventive cause in the target provided 

sufficient structural information to resolve the ambiguity, 

and hence allow transfer of causal structure from source to 

target. Conversely, if the preventive cause were omitted 

from the target, the mapping ambiguity would be left 

unresolved, thereby impairing transfer of a causal model 

from source to target. In such situations our Bayesian model 

predicts that including the preventive cause in the target will 

actually increase inductive support for the occurrence of the 

effect that it actually tends to prevent. No previous analogy 

model predicts this type of interactive impact of causal and 

structural constraints on analogical transfer.  

Experiment: Can a Preventive Cause Either 

Decrease or Increase the Judged Strength of 

the Same Analogical Inference? 

Method 

Participants Forty-five undergraduate students at the 

University of California, Los Angeles participated in the 

experiment to fulfill a course requirement. Each participant 

was randomly assigned to one of eight different sets of 

materials generated for counterbalancing purposes.   

Design and materials The source story described a 

biochemist’s findings about an imaginary liver disease 

called “tibulosis”, found in rats. The disease had two 

different subtypes, “Type A” and “Type B”, described as 

being caused by different factors and exhibiting quite 

different symptoms. The scientist had identified several 

factors that determine whether or not rats might develop 

either Type A or Type B tibulosis. For each type, certain 

hormones, enzymes, and antibodies were involved. 

Participants were asked to carefully study the biochemist’s 

findings using a verbal description and diagram presented in 

the booklet in order to determine what characteristics are 

likely to produce or prevent the development of each type of 

the disease. Participants were then given descriptions of 

human patients with a liver disease, and asked to apply what 

they had learned about tibulosis in rats to judge the 

probability that the human patients had tibulosis Type A or 

Type B.  

In the source, the two disease subtypes were designed to 

create a potential mapping ambiguity. The two types had 

identical causal structures except for the names of causal 

elements, but with one critical structural difference 

involving a preventive cause. Each source included two 

generative causes, one preventive cause, and an effect 

(consistent with a common effect model; Waldmann & 

Holyoak, 1992). The two generative causes were certain 

types of hormones and enzymes and the preventive cause 

was a certain type of antibody. In each case the preventive 

cause was narrow in scope (Carroll & Cheng, 2009), in that 

it served to stop the causal impact of one of the two 

generative causes but not the other. The description of the 

causal structure for Type A tibulosis was as follows:  

 

Factors influencing development of Type A tibulosis 

Hormone A tends to stimulate the production of enzyme 

A, and vice versa.  

Hormone A tends to PRODUCE Type A tibulosis.  

Enzyme A also tends to PRODUCE Type A tibulosis. 

The immune system sometimes PRODUCES antibody A 

in response to enzyme A, but never in response to 

hormone A.  

Antibody A tends to PREVENT enzyme A from 

producing Type A tibulosis. However, antibody A 

provides no protection against the direct effect of 

hormone A on Type A tibulosis.  

 

To aid comprehension of the causal structure, a schematic 

diagram was provided right below the description. Figure 2 

depicts the causal structure for Type A, described above. 

Hormone A and enzyme A are two generative causes that 

both tend to produce the effect, type A tibulosis. Antibody 

A is a preventive cause with narrow scope, which prevents 

enzyme A (but not Hormone A) from producing the effect. 

The B subtype was very similar to the A subtype described 

above, except that the effect was “type B tibulosis” (rather 

than type A), and the names of the hormone, enzyme and 

antibody were also B. The critical structural difference 

between the two sources was that in the B version, the 

immune system was described as producing antibody B in 

response to hormone B, but never in response to enzyme B 

(opposite to the situation in the A version); furthermore, 

antibody B tended to prevent the effect of hormone B (not 

enzyme B).  

In the target story, participants read reports about human 

patients who might have a human form of Type A or Type 

B tibulosis. Examination reports for seven patients were 

constructed. Each examination report included information 

about a hormone, an enzyme, and (in some versions) an 

antibody found in each patient. A 2 x 2 within-subjects 

design was employed, resulting in four basic versions of the 

target descriptions. The first independent variable was 

whether the target description was specific or generic. In the 

specific condition, specific names of the hormone, enzyme, 

and antibody (e.g., hormone A, enzyme A, antibody A) 

were explicitly stated in the description of the patient report 

provided in the target. Given that these names matched 

those for one of the two subtypes described in the source,  

 

 
 

Figure 2: An example of a causal structure for one of two disease 

subtypes included in the source analog used in the experiment. 
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the mapping of the human case to Type A (or B) tibulosis as 

described in the source was accordingly transparent. 

 In contrast, in the generic condition, specific names of 

the hormone, enzyme, and antibody were not provided. 

Instead, each was simply described by its general 

categorical description (i.e., hormone, enzyme, and 

antibody). Thus in the absence of additional structural 

information, there was no basis for preferentially mapping 

the description of the factors observed in the human patient 

onto those related to Type A versus Type B tibulosis in rats. 

The above manipulation of the target description was 

crossed with a second independent variable, presence or 

absence of the preventive cause (antibody) in the 

description of the human patient. Recall that the critical 

structural difference between Type A and Type B tibulosis 

as described in the source was that for Type A, the enzyme 

produced the antibody, which then acted to block the 

enzyme’s impact; whereas for Type B, it was the hormone 

that produced the antibody, which then acted to block the 

hormone’s impact. In the P-present condition, the target 

description included analogous information about the 

human case. For example, in the specific, P-present 

condition, the description might state: 

Hormone A and enzyme A are present, and each 

stimulates production of the other.  

The immune system produced antibody A in response to 

the enzyme (but not the hormone). 

More critically, in the generic, P-present condition, the 

description stated: 

A hormone and an enzyme are present, and each 

stimulates production of the other.  

The immune system produced an antibody in response to 

the enzyme (but not the hormone). 

Note that even though no specific names are provided, the 

above generic, P-present description (based on the second 

statement in the description) provides structural information 

sufficient to disambiguate the mapping between the human 

case in the target and the disease descriptions for rats as 

stated in the source. That is, only Type A tibulosis involves 

an antibody produced in response to an enzyme, which then 

blocked the enzyme’s effect. Any of the major models of 

structure mapping (e.g., Falkenhainer et al., 1989; Hummel 

& Holyoak, 1997) would be able to use the structural 

information provided in the generic, P-present condition to 

resolve the potential ambiguity and identify a determinate 

mapping between the disease described in the target and one 

of the two subtypes described in the source. Accordingly, 

this condition would be essentially identical to the specific, 

P-present condition if participants could resolve mapping 

ambiguity using the preventive cause.   

In the P-absent versions (both specific and generic), the 

second statement in the relevant description was simply 

replaced with “no antibody is present”. Critically, in the 

generic, P-absent condition, no information was provided 

that could possibly serve to resolve the structural ambiguity 

inherent in the mapping; hence the target case could be 

mapped to either Type A or Type B in the source. If a 

preventive cause plays a dual role in analogical transfer, as 

the integrated theory postulates, then in this experiment its 

inclusion will have a paradoxical influence on the judged 

probability of an effect in the target. Specifically, given a 

specific description of the target, inclusion of the preventive 

cause will decrease the judged probability of the effect (by 

acting as a preventer within the causal model of the target); 

but given a generic description of the target, its presence 

will increase the judged probability of the same effect (by 

serving to disambiguate the mapping so that a causal model 

of the target can in fact be constructed). 

For each condition except the generic, P-absent condition, 

two patient reports were constructed, resulting in seven 

patient reports in total. For each of the first three conditions, 

one of the two patient reports supported mapping to type A, 

and the other supported mapping to type B. Because the 

generic, P-absent condition did not support mapping to one 

type over the other, only one version of this patient report 

could be constructed. Two different sets of materials were 

constructed by counterbalancing whether the hormone or the 

enzyme produced an antibody in type A and in type B. 

Within each set, four different orders of targets were 

constructed, resulting in eight versions of materials in total.  

Procedure Participants were given a booklet that included 

the source story, the target story, and a series of inference 

tasks. First, participants read the source story about a 

biochemist’s findings about a new liver disease found in rats, 

and studied what factors were likely to produce or prevent 

the development of two types of the disease based on the 

verbal descriptions and diagrams.  

In the generic conditions (but not in the specific 

conditions), a mapping task was included before the 

inference task to check if the potential mapping ambiguity 

was resolved or not. This task required identifying the 

generic hormone as “hormone A”, “hormone B”, or “can’t 

tell”. The analogous question was also asked about the 

generic enzyme. For the analogical inference task, 

participants were given the examination reports for seven 

different patients. For each, participants were asked to judge 

how likely it was that the patient had each disease type. To 

answer each question, they were to imagine there were 100 

cases with the same known characteristics as for the specific 

case, and judge how many of these 100 cases would be 

expected to have each type of the disease.  

Results and Discussion 

On the mapping task, 33 of the 45 participants reported the 

structurally-justified mappings for the hormone and enzyme 

in the generic, P-present condition. The other 12 participants 

gave a variety of responses in this critical condition. We 

analyzed the results both including and excluding data from 

those participants who made mapping errors. As the basic 

pattern was the same in both sets of analyses, we will report 

the analysis including all participants. 

For each patient case, participants estimated both the 

probability that the patient had Type A of the disease and 

the probability that the patient had Type B. The format 
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encouraged participants to treat the two types as mutually 

exclusive, and assignments of Type A versus Type B were 

fully counterbalanced across conditions. To code the 

responses on the inference task, we defined the “correct” 

disease type as that supported by the preferred mapping in 

the three unambiguous conditions (specific, P-present; 

specific, P-absent; and generic, P-present). This same 

disease type (either A or B) was defined as “correct” in the 

matched generic, P-absent condition (in which neither 

answer was inherently preferred).  

The mean rated probability of the correct effect for each 

of the four conditions is shown in Figure 3 (left). These data 

were analyzed using a 2x2 analysis of variance in which 

both target description (specific vs. generic) and presence of 

the preventive cause (P-present vs. P-absent) were within-

subjects variables. A significant main effect of specificity of 

the target description was obtained, F(1, 44) = 123.09, MSE 

= 302.52, p < .001, in that inference strength was 

significantly higher when the description was specific (M = 

83.03, SD = 16.09) than when it was generic (M = 54.26, SD 

= 17.70). The main effect of presence of the preventive 

cause was not significant, F < 1. Most importantly, a 

significant interaction was obtained between target 

specificity and presence of preventive cause, F(1, 44) = 

79.66, MSE = 281.49, p < .001, implying that the presence 

of a preventive cause had a different impact on analogical 

inference depending on the ambiguity of the mapping. 

When the description of the target was specific so that the 

mapping to one of the disease types in the source was 

transparent, participants gave significantly higher estimates 

of the probability of the correct effect in the P-absent 

condition (M = 92.42, SD = 13.99) than in the P-present 

condition (M = 73.63, SD = 28.52), t(44) = 4.02, p = .001. 

This result replicates previous findings (Lee & Holyoak, 

2008; Lee et al., 2009), in that dropping a preventive cause 

from the target increased the strength of a predictive 

inference. In contrast, when the target description was 

generic, the effect of including the preventive cause was 

reversed. The estimated probability of the correct effect was 

now higher in the P-present condition (M = 67.19, SD = 

29.63), where the preventive cause served to disambiguate 

the mapping, than in the P-absent condition, (M = 41.33, SD 

= 23.89), where the mapping was structurally indeterminate, 

t(44) = 4.28, p < .001.  

Comparison of Bayesian Model to Human Data 

We used our Bayesian model to provide a more quantitative 

account of our findings. The basic model was identical to 

that outlined by Lee et al. (2009), as summarized earlier. To 

fit the specific causal structures used in the present 

experiment, people were assumed to have no prior 

knowledge about causal structure or strength of the source; 

hence the stated causal relations were assigned a uniform 

strength distribution ranging between 0 and 1. Because no 

further information about the causal strengths was provided 

in the source, these distributions remained uniform (no 

updating based on examples), so that in effect only causal 

structure, not strength, was available to be transferred to the 

target. Based on Equation 2, causal links with uniform 

strength distributions were directly transferred from the 

source to the target analog when the mapping was 

determinate. Thus in the three unambiguous conditions 

(specific, P-present; specific, P-absent; and generic, P-

present), the causal model for the correct effect was 

transferred to the target. In the ambiguous condition 

(generic, P-absent), the model summed over predictions 

made for each of the potential mappings to the two 

alternative sources, weighting them equally.  

Given the general assumptions of the Bayesian version of 

the power PC theory (Lu et al., 2008), the predicted 

probability of the correct effect in the target, given the 

source, can be derived analytically without estimating any 

free parameters. To do so, the functional form of the 

preventive cause (a noisy-AND-NOT function) was applied 

in a manner that reflected the appropriate narrow scope of 

the preventer (Carroll & Cheng, 2009). The influences of 

the causes were integrated sequentially. After applying a 

noisy-AND-NOT function to integrate the influence of the 

preventer with that of its related generative cause, a noisy- 

OR function was applied to combine this intermediate result 

with the influence of the other generative cause and an 

assumed background cause. Figure 3 (right) depicts the 

parameter-free predictions of the Bayesian model. The 

quantitative fit was good, r(2) = .93. When data from just 

those participants who solved the mapping task correctly 

were modeled, the fit increased slightly, r(2) = .94. The 

model captures the trade-off that arises in the generic, P-

present condition, where the presence of the preventer exerts 

a positive influence on analogical transfer by guiding the 

mapping, but then reduces transfer somewhat by acting to 

prevent the effect within the causal model created for the 

target. Also, the model makes identical predictions for the 

specific, P-present and generic, P-present conditions. This 

pattern is consistent with human response patterns in that 

most participants gave the same ratings for these two 

conditions. In the generic, P-absent condition, due to the 

unresolved mapping ambiguity, the probability that the 

effect occurs in the target is predicted by the sum of its 

 
Figure 3: Mean probability of the correct effect in each condition. 

Left: human data; right: predictions derived from Bayesian model. 

Error bars represent 1 standard error of the mean. 
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probabilities based on each possible source, weighted by the 

probability of the mapping between the target and each 

source (equally weighted with probability of .5). Again, this 

prediction appears to be consistent with human response 

patterns, which primarily consisted of giving equal 

probability ratings for the two alternatives (i.e., 50/50) in 

this condition. 

Conclusion 

Our experiment demonstrated that the inclusion of a 

preventive cause in the target had an opposite impact on the 

judged probability of an effect in target, depending on 

whether or not the source-target mapping was ambiguous in 

the absence of the preventer. When the mapping was 

transparent (because objects in the target were described in 

the same specific terms as the corresponding objects in the 

source), inclusion of the preventive cause in the target 

decreased inference strength, as observed previously (Lee & 

Holyoak, 2008). However, when the mapping was 

potentially ambiguous (because objects in the target were 

described in generic terms), and the preventive cause 

provided structural information sufficient to disambiguate 

the mapping, then inclusion of the preventive cause in the 

target increased inference strength. 

This pattern of interaction was predicted by our Bayesian 

theory (Lee et al., 2009), adding to the empirical and 

theoretical evidence supporting the importance of 

integrating theories of structure mapping with the 

framework provided by causal models (Waldmann & 

Holyoak, 1992). This type of integrated theory may provide 

deeper insight into many aspects of analogical inference, 

including its role in both the generation and evaluation of 

scientific hypotheses. 
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