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Abstract

We recently proposed a theoretical integration of analogical
transfer with causal learning and inference (Lee & Holyoak,
2008). A Bayesian theory of learning and inference based on
causal models (Lee, Holyoak & Lu, 2009) accounts for the
fact that judgments of confidence in analogical inferences are
partially dissociable from measures of the quality of the
mapping between source and target analogs. The integrated
theory postulates a dual role for causal relations, which can
guide both analogical mapping and also subsequent
inferences about the target. It follows that depending on
whether or not a mapping is structurally ambiguous, dropping
a preventive cause from the target can either decrease or
increase confidence in the same analogical inference. We
report an experiment that yielded data in close agreement
with predictions of the Bayesian theory. These results provide
further support for the importance of integrating analogical
transfer with the broader framework of causal models.

Keywords: analogical inference; causal models; mapping;
Bayesian modeling.

Introduction

Analogical transfer plays a key role in scientific reasoning
(Dunbar & Fugelsang, 2005). Indeed, in some areas of
science in which experimental research is impossible, such
as historical ethnography, analogy may provide the only
viable mechanism for evaluating hypotheses. Talalay (1987)
gives the example of interpreting the function of strange
clay fragments discovered in Neolithic Greek sites:
individual female legs, apparently never attached to torsos,
that had been manufactured in pairs and later broken apart.
The best clues to their function have come from other
cultures in which similar tokens are known to have served to
seal contracts and provide special evidence of the identity of
the bearer (in feudal China, for example, a valuable piece of
jade would be broken in two to mark a contract between a
master and his vassal, with each keeping one piece so they
could later be matched). Here the known function in a
source domain has a causal connection to the form of
relevant artifacts, and the ethnographer makes the analogical
inference that a similar cause may have operated in the
target domain (see Bartha, 2010).

The general question faced by a reasoner using analogy to
make inferences is: Given prior knowledge at various levels
of abstraction, including one or more examples that serve as
source analogs, what is the probability that any potential
inference about a target analog is true? For analogical
inferences that involve empirical claims about the world
(e.g., scientific hypotheses), answering this question
depends on at least two basic subprocesses: deciding how

the causally-relevant elements of the source analog(s) relate
to elements of the target (structure mapping), and using the
corresponding causal relations suggested for the target to
estimate the probabilities of potential inferences about the
target (causal inference). In the above ethnography example,
mapping is required to relate the two pieces of a broken jade
object to the two parts of a broken piece of pottery; causal
inference is required to evaluate the probability that the clay
fragments could achieve a function analogous to that
achieved by a divided jade object.

Both structure mapping and causal inference have
received considerable attention within cognitive science.
Mapping has been the central focus of many models of
analogical reasoning (e.g., Falkenhainer, Forbus & Gentner,
1989; Holyoak & Thagard, 1989; Hummel & Holyoak,
1997). Causal learning and inference have also been studied
extensively, with theoretical work largely based on the
framework of causal models (Pearl, 1988; Waldmann &
Holyoak, 1992; Waldmann, Holyoak & Fratianne, 1995).
The power PC theory (Cheng, 1997) provides a quantitative
explanation of how the strengths of probabilistic causal
relations can be learned from contingency data. More
recently, this theory has been extended based on a Bayesian
formulation (Griffiths & Tenenbaum, 2005; Lu et al., 2008).
Theories of category-based induction have also been
enriched by adopting the framework of causal models (e.g.,
Ahn, 1999; Kemp, Goodman & Tenenbaum, 2007; Sloman,
1994; Rehder, 2009).

Integrating analogical inference with causal models

We have proposed that a more complete understanding of
analogical transfer requires specifying the role played by
causal models (Lee & Holyoak, 2008; Lee, Holyoak & Lu,
2009). Figure 1 schematizes causal models for a source
(left) and target analog (right). The nodes represent variable
causes (C) and effects (E). The superscripts (%, ) indicate
the source and the target, respectively. The links represent
the causal structure (only linked nodes have direct causal
connections). The vectors w; represent the causal polarity
(generative or preventive) and the causal strength for links.
A key assumption is that analogical transfer involves using
causal knowledge of the source to develop a causal model of
the target, which can in turn be used to derive a variety of
inferences about the values of variables in the target. Causal
relations in Bayesian causal models can carry information
about existence of causal links (e.g., causal structure) and
distributions of causal strength, as well as about the
generating function by which multiple causes combine to
influence effects.
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Figure 1: Framework for analogical transfer based on integrating
mapping with causal models. Dotted lines indicate knowledge
transferred from source to target (see text).

In our theory, the first step in analogical inference is to
learn a causal model of the source. The source model is then
mapped to the initial (typically impoverished) representation
of the target. Based on the mapping, the causal structure and
strengths associated with the source are transferred to the
target, creating or extending the causal model of the latter.
The model of the target can then be “run”, using causal
reasoning to derive inferences about the values of
endogenous variables in the target. Accordingly, as
summarized in Figure 1, the four basic components in
analogical inference are: learning of a causal model for a
source (step 1); assessment of the analogical mapping
between the source and a target (step 2); transfer of causal
knowledge from the source to the target based upon the
analogical mapping to construct the causal model of the
target (step 3); and inference based on the causal model of
the target (step 4).

To generate predictive inferences (from causes to their
effect), let C° denotes the information that the source has a
background generative cause, BS, plus additional generative
and preventive causal factors. (In this paper, vectors are
indicated by bold font.) C" provides analogous information
about possible causes in the target. In predictive inference,
the model estimates the probability of an effect occurring in
the target, E" = 1, based on initial information about the
source, (C°, E®), and the target, C". The unknown causal
strength of the target is represented by w'. The basic
equation for predictive inference is

P(E" |CT,E®,C%)
— EP(ET,WT |CT’ES’CS)

= ZP(ET \WT,CT)E[P(WT |w,E,C*,CT)P(w* |C*,E")]

(Equation 1)
where the rightmost term on the right side of the equation,
P(W|C®, E®), captures the learning of a source model from
observed contingency data (step 1 in Figure 1). Recent
computational studies have developed detailed models that
estimate distributions of causal strength by combining priors
and observations (Griffiths & Tenenbaum, 2005; Lu et al.,

2008). The middle term, P(w' | w®, C% CT), quantifies
knowledge transfer based upon analogical mapping (steps 2
and 3 in Figure 1). We model the probability of transfer as

if ¢,/ matches C°

i

P(WiT Wis) =1,
P(w," =w)=0, otherwise
(Equation 2)
where C and C;T represent the ith cause variables in the
source and target, respectively. If the mapping of C;" to an
element in the source is ambiguous (as will be the case for
the materials we use in the experiment reported here), then
Eq. 2 will simply sum over the transfer result obtained when
C;" matches each of the alternative source elements,
weighted by the probabilities of each of these possible
matches.

The leftmost term, P(E"w", C"), uses knowledge from
analogical transfer and observations about the presence of
causal factors in the target to estimate the probability of the
effect in the target (step 4 in Figure 1). For binary variables,
this probability can be directly computed using the Bayesian
extension of the power PC theory (Cheng, 1997; Griffiths &
Tenenbaum, 2005; Lu et. al., 2008).

Mapping and Causal Inference

Although causal relations have sometimes been assumed to
have special importance in guiding mapping (Holyoak,
1985; Hummel & Holyoak, 1997; Winston, 1980), models
of analogical transfer have generally treated inference as a
direct extension of mapping. In contrast, our causal-model
approach postulates a deeper role for causal knowledge in
transfer (Lee & Holyoak, 2008).

The present study sought to demonstrate a direct
interaction between mapping and causal inference, which is
predicted by our Bayesian theory. According to the
integrated theory, a causal relation in the target potentially
plays a dual role: it first may guide structure mapping
between the source and target; then if mapping succeeds, it
will also guide causal inference based on the resulting
causal model of the target. In the present study we
investigated analogical transfer when the mapping between
the source and target was in some cases structurally
ambiguous (cf. Spellman & Holyoak, 1996).

More specifically, we examined how presence or absence
of a certain causal relation (preventive cause in this study)
in the target might increase or decrease inductive strength
depending on whether the structural mapping is clear or
ambiguous. The source analog included a preventive cause,
which might or might not be also included in the target.
When the mapping is clear, the expected effect of inclusion
of the preventive cause is evident in that presence of a
preventive cause will decrease inductive strength in target,
as shown in previous studies (e.g., Lee & Holyoak, 2008).
However, when the mapping is ambiguous, and if the
preventive cause is able to resolve the mapping ambiguity,
the expected result will be reversed. The materials were
designed so that when the mapping was ambiguous, the
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inclusion of the preventive cause in the target provided
sufficient structural information to resolve the ambiguity,
and hence allow transfer of causal structure from source to
target. Conversely, if the preventive cause were omitted
from the target, the mapping ambiguity would be left
unresolved, thereby impairing transfer of a causal model
from source to target. In such situations our Bayesian model
predicts that including the preventive cause in the target will
actually increase inductive support for the occurrence of the
effect that it actually tends to prevent. No previous analogy
model predicts this type of interactive impact of causal and
structural constraints on analogical transfer.

Experiment: Can a Preventive Cause Either
Decrease or Increase the Judged Strength of
the Same Analogical Inference?

Method

Participants Forty-five undergraduate students at the
University of California, Los Angeles participated in the
experiment to fulfill a course requirement. Each participant
was randomly assigned to one of eight different sets of
materials generated for counterbalancing purposes.

Design and materials The source story described a
biochemist’s findings about an imaginary liver disease
called “tibulosis”, found in rats. The disease had two
different subtypes, “Type A” and “Type B”, described as
being caused by different factors and exhibiting quite
different symptoms. The scientist had identified several
factors that determine whether or not rats might develop
either Type A or Type B tibulosis. For each type, certain
hormones, enzymes, and antibodies were involved.
Participants were asked to carefully study the biochemist’s
findings using a verbal description and diagram presented in
the booklet in order to determine what characteristics are
likely to produce or prevent the development of each type of
the disease. Participants were then given descriptions of
human patients with a liver disease, and asked to apply what
they had learned about tibulosis in rats to judge the
probability that the human patients had tibulosis Type A or
Type B.

In the source, the two disease subtypes were designed to
create a potential mapping ambiguity. The two types had
identical causal structures except for the names of causal
elements, but with one critical structural difference
involving a preventive cause. Each source included two
generative causes, one preventive cause, and an effect
(consistent with a common effect model; Waldmann &
Holyoak, 1992). The two generative causes were certain
types of hormones and enzymes and the preventive cause
was a certain type of antibody. In each case the preventive
cause was narrow in scope (Carroll & Cheng, 2009), in that
it served to stop the causal impact of one of the two
generative causes but not the other. The description of the
causal structure for Type A tibulosis was as follows:

Factors influencing development of Type A tibulosis
Hormone A tends to stimulate the production of enzyme
A, and vice versa.

Hormone A tends to PRODUCE Type A tibulosis.
Enzyme A also tends to PRODUCE Type A tibulosis.

The immune system sometimes PRODUCES antibody A
in response to enzyme A, but never in response to
hormone A.

Antibody A tends to PREVENT enzyme A from
producing Type A tibulosis. However, antibody A
provides no protection against the direct effect of
hormone A on Type A tibulosis.

To aid comprehension of the causal structure, a schematic
diagram was provided right below the description. Figure 2
depicts the causal structure for Type A, described above.
Hormone A and enzyme A are two generative causes that
both tend to produce the effect, type A tibulosis. Antibody
A is a preventive cause with narrow scope, which prevents
enzyme A (but not Hormone A) from producing the effect.
The B subtype was very similar to the A subtype described
above, except that the effect was “type B tibulosis” (rather
than type A), and the names of the hormone, enzyme and
antibody were also B. The critical structural difference
between the two sources was that in the B version, the
immune system was described as producing antibody B in
response to hormone B, but never in response to enzyme B
(opposite to the situation in the A version); furthermore,
antibody B tended to prevent the effect of hormone B (not
enzyme B).

In the target story, participants read reports about human
patients who might have a human form of Type A or Type
B tibulosis. Examination reports for seven patients were
constructed. Each examination report included information
about a hormone, an enzyme, and (in some versions) an
antibody found in each patient. A 2 x 2 within-subjects
design was employed, resulting in four basic versions of the
target descriptions. The first independent variable was
whether the target description was specific or generic. In the
specific condition, specific names of the hormone, enzyme,
and antibody (e.g., hormone A, enzyme A, antibody A)
were explicitly stated in the description of the patient report
provided in the target. Given that these names matched
those for one of the two subtypes described in the source,

tends to tends to
stimulate roduce .
Hormone A| &—— £S [Antibody A
tends to tends to
produce tends to

produce
prevent

Type A tibulosis

Figure 2: An example of a causal structure for one of two disease
subtypes included in the source analog used in the experiment.
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the mapping of the human case to Type A (or B) tibulosis as
described in the source was accordingly transparent.

In contrast, in the generic condition, specific names of
the hormone, enzyme, and antibody were not provided.
Instead, each was simply described by its general
categorical description (i.e., hormone, enzyme, and
antibody). Thus in the absence of additional structural
information, there was no basis for preferentially mapping
the description of the factors observed in the human patient
onto those related to Type A versus Type B tibulosis in rats.

The above manipulation of the target description was
crossed with a second independent variable, presence or
absence of the preventive cause (antibody) in the
description of the human patient. Recall that the critical
structural difference between Type A and Type B tibulosis
as described in the source was that for Type A, the enzyme
produced the antibody, which then acted to block the
enzyme’s impact; whereas for Type B, it was the hormone
that produced the antibody, which then acted to block the
hormone’s impact. In the P-present condition, the target
description included analogous information about the
human case. For example, in the specific, P-present
condition, the description might state:

Hormone A and enzyme A are present, and each

stimulates production of the other.

The immune system produced antibody A in response to

the enzyme (but not the hormone).

More critically, in the generic, P-present condition, the
description stated:

A hormone and an enzyme are present, and each

stimulates production of the other.

The immune system produced an antibody in response to

the enzyme (but not the hormone).

Note that even though no specific names are provided, the
above generic, P-present description (based on the second
statement in the description) provides structural information
sufficient to disambiguate the mapping between the human
case in the target and the disease descriptions for rats as
stated in the source. That is, only Type A tibulosis involves
an antibody produced in response to an enzyme, which then
blocked the enzyme’s effect. Any of the major models of
structure mapping (e.g., Falkenhainer et al., 1989; Hummel
& Holyoak, 1997) would be able to use the structural
information provided in the generic, P-present condition to
resolve the potential ambiguity and identify a determinate
mapping between the disease described in the target and one
of the two subtypes described in the source. Accordingly,
this condition would be essentially identical to the specific,
P-present condition if participants could resolve mapping
ambiguity using the preventive cause.

In the P-absent versions (both specific and generic), the
second statement in the relevant description was simply
replaced with “no antibody is present”. Critically, in the
generic, P-absent condition, no information was provided
that could possibly serve to resolve the structural ambiguity
inherent in the mapping; hence the target case could be
mapped to either Type A or Type B in the source. If a

preventive cause plays a dual role in analogical transfer, as
the integrated theory postulates, then in this experiment its
inclusion will have a paradoxical influence on the judged
probability of an effect in the target. Specifically, given a
specific description of the target, inclusion of the preventive
cause will decrease the judged probability of the effect (by
acting as a preventer within the causal model of the target);
but given a generic description of the target, its presence
will increase the judged probability of the same effect (by
serving to disambiguate the mapping so that a causal model
of the target can in fact be constructed).

For each condition except the generic, P-absent condition,
two patient reports were constructed, resulting in seven
patient reports in total. For each of the first three conditions,
one of the two patient reports supported mapping to type A,
and the other supported mapping to type B. Because the
generic, P-absent condition did not support mapping to one
type over the other, only one version of this patient report
could be constructed. Two different sets of materials were
constructed by counterbalancing whether the hormone or the
enzyme produced an antibody in type A and in type B.
Within each set, four different orders of targets were
constructed, resulting in eight versions of materials in total.
Procedure Participants were given a booklet that included
the source story, the target story, and a series of inference
tasks. First, participants read the source story about a
biochemist’s findings about a new liver disease found in rats,
and studied what factors were likely to produce or prevent
the development of two types of the disease based on the
verbal descriptions and diagrams.

In the generic conditions (but not in the specific
conditions), a mapping task was included before the
inference task to check if the potential mapping ambiguity
was resolved or not. This task required identifying the
generic hormone as “hormone A”, “hormone B”, or “can’t
tell”. The analogous question was also asked about the
generic enzyme. For the analogical inference task,
participants were given the examination reports for seven
different patients. For each, participants were asked to judge
how likely it was that the patient had each disease type. To
answer each question, they were to imagine there were 100
cases with the same known characteristics as for the specific
case, and judge how many of these 100 cases would be
expected to have each type of the disease.

Results and Discussion

On the mapping task, 33 of the 45 participants reported the
structurally-justified mappings for the hormone and enzyme
in the generic, P-present condition. The other 12 participants
gave a variety of responses in this critical condition. We
analyzed the results both including and excluding data from
those participants who made mapping errors. As the basic
pattern was the same in both sets of analyses, we will report
the analysis including all participants.

For each patient case, participants estimated both the
probability that the patient had Type A of the disease and
the probability that the patient had Type B. The format
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encouraged participants to treat the two types as mutually
exclusive, and assignments of Type A versus Type B were
fully counterbalanced across conditions. To code the
responses on the inference task, we defined the “correct”
disease type as that supported by the preferred mapping in
the three unambiguous conditions (specific, P-present;
specific, P-absent; and generic, P-present). This same
disease type (either A or B) was defined as “correct” in the
matched generic, P-absent condition (in which neither
answer was inherently preferred).

The mean rated probability of the correct effect for each
of the four conditions is shown in Figure 3 (left). These data
were analyzed using a 2x2 analysis of variance in which
both target description (specific vs. generic) and presence of
the preventive cause (P-present vs. P-absent) were within-
subjects variables. A significant main effect of specificity of
the target description was obtained, F(1, 44) = 123.09, MSE
= 302.52, p < .001, in that inference strength was
significantly higher when the description was specific (M =
83.03, SD = 16.09) than when it was generic (M = 54.26, SD
= 17.70). The main effect of presence of the preventive
cause was not significant, F < 1. Most importantly, a
significant interaction was obtained between target
specificity and presence of preventive cause, F(1, 44) =
79.66, MSE = 281.49, p < .001, implying that the presence
of a preventive cause had a different impact on analogical
inference depending on the ambiguity of the mapping.
When the description of the target was specific so that the
mapping to one of the disease types in the source was
transparent, participants gave significantly higher estimates
of the probability of the correct effect in the P-absent
condition (M = 92.42, SD = 13.99) than in the P-present
condition (M = 73.63, SD = 28.52), t(44) = 4.02, p = .001.
This result replicates previous findings (Lee & Holyoak,
2008; Lee et al., 2009), in that dropping a preventive cause
from the target increased the strength of a predictive
inference. In contrast, when the target description was
generic, the effect of including the preventive cause was
reversed. The estimated probability of the correct effect was
now higher in the P-present condition (M = 67.19, SD =
29.63), where the preventive cause served to disambiguate
the mapping, than in the P-absent condition, (M = 41.33, SD
= 23.89), where the mapping was structurally indeterminate,
t(44) = 4.28, p < .001.

Comparison of Bayesian Model to Human Data

We used our Bayesian model to provide a more quantitative
account of our findings. The basic model was identical to
that outlined by Lee et al. (2009), as summarized earlier. To
fit the specific causal structures used in the present
experiment, people were assumed to have no prior
knowledge about causal structure or strength of the source;
hence the stated causal relations were assigned a uniform
strength distribution ranging between 0 and 1. Because no
further information about the causal strengths was provided
in the source, these distributions remained uniform (no
updating based on examples), so that in effect only causal

structure, not strength, was available to be transferred to the
target. Based on Equation 2, causal links with uniform
strength distributions were directly transferred from the
source to the target analog when the mapping was
determinate. Thus in the three unambiguous conditions
(specific, P-present; specific, P-absent; and generic, P-
present), the causal model for the correct effect was
transferred to the target. In the ambiguous condition
(generic, P-absent), the model summed over predictions
made for each of the potential mappings to the two
alternative sources, weighting them equally.

Given the general assumptions of the Bayesian version of
the power PC theory (Lu et al., 2008), the predicted
probability of the correct effect in the target, given the
source, can be derived analytically without estimating any
free parameters. To do so, the functional form of the
preventive cause (a noisy-AND-NOT function) was applied
in a manner that reflected the appropriate narrow scope of
the preventer (Carroll & Cheng, 2009). The influences of
the causes were integrated sequentially. After applying a
noisy-AND-NOT function to integrate the influence of the
preventer with that of its related generative cause, a noisy-
OR function was applied to combine this intermediate result
with the influence of the other generative cause and an
assumed background cause. Figure 3 (right) depicts the
parameter-free predictions of the Bayesian model. The
quantitative fit was good, r(2) = .93. When data from just
those participants who solved the mapping task correctly
were modeled, the fit increased slightly, r(2) = .94. The
model captures the trade-off that arises in the generic, P-
present condition, where the presence of the preventer exerts
a positive influence on analogical transfer by guiding the
mapping, but then reduces transfer somewhat by acting to
prevent the effect within the causal model created for the
target. Also, the model makes identical predictions for the
specific, P-present and generic, P-present conditions. This
pattern is consistent with human response patterns in that
most participants gave the same ratings for these two
conditions. In the generic, P-absent condition, due to the
unresolved mapping ambiguity, the probability that the
effect occurs in the target is predicted by the sum of its

_ 100 B P-absent
3 90 OP-present
5 80
5 70
£ 60
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=
Human Data Model

Specificity of Target Description

Figure 3: Mean probability of the correct effect in each condition.
Left: human data; right: predictions derived from Bayesian model.
Error bars represent 1 standard error of the mean.
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probabilities based on each possible source, weighted by the
probability of the mapping between the target and each
source (equally weighted with probability of .5). Again, this
prediction appears to be consistent with human response
patterns, which primarily consisted of giving equal
probability ratings for the two alternatives (i.e., 50/50) in
this condition.

Conclusion

Our experiment demonstrated that the inclusion of a
preventive cause in the target had an opposite impact on the
judged probability of an effect in target, depending on
whether or not the source-target mapping was ambiguous in
the absence of the preventer. When the mapping was
transparent (because objects in the target were described in
the same specific terms as the corresponding objects in the
source), inclusion of the preventive cause in the target
decreased inference strength, as observed previously (Lee &
Holyoak, 2008). However, when the mapping was
potentially ambiguous (because objects in the target were
described in generic terms), and the preventive cause
provided structural information sufficient to disambiguate
the mapping, then inclusion of the preventive cause in the
target increased inference strength.

This pattern of interaction was predicted by our Bayesian
theory (Lee et al., 2009), adding to the empirical and
theoretical evidence supporting the importance of
integrating theories of structure mapping with the
framework provided by causal models (Waldmann &
Holyoak, 1992). This type of integrated theory may provide
deeper insight into many aspects of analogical inference,
including its role in both the generation and evaluation of
scientific hypotheses.
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