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Abstract 

We hypothesized that causal conditional reasoning reflects 
judgment of the conditional likelihood of causes and effects 
based on a probabilistic causal model of the scenario being 
judged. Although this proposal has much in common with 
Cummins’ (1995) theory based on the number of disabling 
conditions and alternative causes, it takes more variables into 
account and therefore makes some differing predictions. To 
test this idea we collected judgments of the causal parameters 
of the conditionals and used them to derive predictions from a 
model with zero free parameters. We compared these 
predictions to Cummins’ acceptability ratings and to 
analogous likelihood judgments that we also collected. The 
hypothesis was borne out for Affirming the Consequent and 
the analogous diagnostic likelihood judgments, where the 
model obtained close fits to both data sets. However, we 
found a surprising dissociation between Modus Ponens and 
judgments of predictive likelihood leading to a relatively poor 
fit to the Modus Ponens acceptability ratings. We propose an 
explanation for this in the discussion.  

Key Words: Causal Conditional Reasoning, Conditional 
Probability, Reaction Time, Probabilistic Model, Modus 
Ponens, Affirming the Consequent 

Causal Conditional Reasoning 
When reasoning about deductive arguments people are 
biased to accept conclusions that are consistent with their 
beliefs and reject those that are inconsistent, regardless of 
argument validity (Evans, 2007). In a set of seminal papers, 
Cummins (1995; Cummins et al., 1991) showed that these 
belief biases follow systematic principles when people 
reason about conditional arguments with causal content. 
People judged the validity of four argument schemata: 
Modus Ponens (MP), Modus Tollens (MT), Denying the 
Antecedent (DA) and Affirming the Consequent (AC), 
though we focus on just MP and AC in this paper.  
 Despite MP being deductively valid and AC invalid 
regardless of content, Cummins predicted that for arguments 
where the antecedent is a cause of the consequent, 
acceptance rates for MP would be affected by the number of 
disabling conditions while AC would be affected by the 
number of alternative causes for the effect.  
 In the case of MP, thinking of a disabling condition 
provides a counterexample to the argument and hence may 
lead people to reject it. An example is given below.  
Cummins’ predicted that (a) would be judged more 
acceptable than (b) because the conditional in (a) has fewer 
disablers; reasons why one could put fertilizer on plants and 
not have them grow quickly are more available than reasons 
why one could jump into a pool and not get wet. 

(a) If Mary jumped into the swimming pool then she got wet. 
 Mary jumped into the swimming pool. 
 Therefore she got wet. 

(b) If fertilizer was put on the plants then they grew quickly. 
 Fertilizer was put on the plants. 
 Therefore they grew quickly. 

In the case of AC, alternative causes provide an alternative 
explanation for the effect and hence make the antecedent 
seem less necessary. For example Cummins predicted that 
(c) would be judged more acceptable than (d). It is hard to 
think of alternative causes for a gun firing besides the 
trigger being pulled but it is relatively easy to think of 
causes of wetness besides jumping into a swimming pool.  
(c) If the trigger was pulled then the gun fired. 

 The gun fired. 
 Therefore the trigger was pulled. 

(d) If Mary jumped into the swimming pool then she got wet. 
Mary got wet 
Therefore she had jumped into the swimming pool.   

 To test these ideas Cummins’ asked one group of 
participants to spontaneously generate alternative causes 
and disabling conditions for a host of conditionals and then 
divided the conditionals into four groups of four 
conditionals each based on the number of alternatives and 
disablers (many alternatives, many disablers; many 
alternatives, few disablers; few alternatives, many disablers; 
few alternatives, few disablers). A different group was given 
the arguments based on the 16 conditionals and asked to 
judge the extent to which the conclusion could be drawn 
from the premise. Responses were on a 6 point scale from 
“very sure that the conclusion cannot be drawn” (-3) to 
“very sure that the conclusion can be drawn” (3). The results 
provided good support for both predictions.  

A Causal Model Theory 
Following Oaksford, Chater and Larkin (2000), if the 
conditional schemata are interpreted in terms of conditional 
probability, the acceptability of MP maps onto 
P(Effect|Cause) and AC to P(Cause|Effect). Throughout the 
paper, we refer to P(Effect|Cause) as a predictive likelihood 
judgment and to P(Cause|Effect) as a diagnostic judgment. 
 By assuming the conditional scenarios approximate a 
noisy-or common effect model (Cheng, 1997) the 
expressions in (1) and (2) can be derived for MP and AC 
respectively (Fernbach & Darlow, 2009; Waldmann et al., 
2008). The noisy-or model assumes that there are multiple 
independent causes for a given effect, each of which may or 
may not be effective on a given trial.  
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€ 

MP ≈ P(Effect |Cause) =Wc +Wa −WcWa                             (1)   

€ 

AC ≈ P(Cause | Effect) =1− (1− Pc )
Wa

PcWc +Wa − PcWcWa

        (2) 

 Wc is the causal power of the cause, the probability that 
the cause successfully brings about the effect (e.g. the 
probability that pulling the trigger causes the gun to fire), 
Wa is the combined strength of all alternative causes, 
equivalent to the probability of the effect in the absence of 
the cause (e.g. the probability of the gun firing given the 
trigger wasn’t pulled) and Pc is the prior probability of the 
cause (e.g. the probability of the trigger being pulled).  
 According to the full probabilistic model MP increases 
with both the causal power of the cause and the strength of 
alternatives (because alternative causes raise the probability 
of the effect). However, in previous work, we have found 
that people are not sensitive to the strength of alternative 
causes when judging predictive likelihood despite its 
relevance (Fernbach, Darlow & Sloman, 2010). Thus, like 
Cummins we predicted no effect of Wa and our model for 
MP is given in (3). 

€ 

MP ≈ P(Effect |Cause,~ Alternatives) =Wc                           (3) 
 AC is a function of all three parameters. It increases with 
Pc and Wc and decreases with Wa.                                                            

Relation Between Cummins’ Analysis and Model 
According to the causal model the determinants of causal 
inferences, and hence MP and AC acceptability, are causal 
power, strength of alternatives and prior probability of the 
cause. The number of disablers and number of alternatives 
are factors in the first two parameters, respectively. Causal 
power is inversely related to the number of disablers. All 
else being equal, as the number of disablers increases, the 
probability that the cause fails to bring about the effect 
increases, corresponding to a decrease in causal power. 
Thus the model is consistent with the decrease in MP as 
number of disablers increases, as predicted and found by 
Cummins. However, not all disablers are equally likely or 
equally effective in preventing the effect. A single strong 
disabler could lead to a lower causal power than several 
weaker disablers, making number of disablers an imperfect 
predictor of causal power. 
 Similarly, the number of alternatives is a factor in 
strength of alternatives. All else being equal, as the number 
of alternatives increases so does the probability that they 
will bring about the effect. Therefore, the model predicts 
that AC will decrease with number of alternatives. As with 
disablers though, number of alternatives is only a partial 
predictor of strength of alternatives. 
 Despite these similarities, the model suggests that 
Cummins’ analysis is incomplete because it only takes a 
single parameter into account for each judgment. The 
implication for MP is that its acceptability should increase 
with the strength of alternative causes but as discussed 
above we predicted no effect of alternative causes on MP. 
Our prediction for MP only differs from Cummins in that 

we expected Wc to provide a better fit than number of 
disablers.  
 The model identifies three factors relevant to the 
acceptability of AC arguments. First, according to the model 
the prior probability of the cause plays an important role in 
diagnostic strength. For instance, a cause that is very 
improbable is unlikely to have occurred relative to other 
more likely causes and is therefore not as good an 
explanation for the effect. The second factor is the overall 
strength of alternatives. This differs from the number of 
alternatives because not all alternative causes are created 
equal. In the causal model the strength of alternatives 
reflects the probability of the effect in the absence of the 
cause and thus is a joint function of the prior probabilities 
and causal powers of alternatives. For instance, even a large 
number of highly improbable or weak alternatives should 
have less effect on the judgment then a single probable, 
strong cause. Finally, causal power -- and hence disablers -- 
should have some influence on AC.  All else being equal, if 
the causal power of the cause is higher, the cause is more 
likely responsible for the effect.  Table 1 summarizes how 
our predictions differ from Cummins’ theory.  

Table 1: Best Predictors for MP and AC judgments and 
Predictive and Diagnostic Likelihood Judgments According 

to Cummins (1995) and According to our Model 
 MP AC 
Cummins’ Theory No. of Disablers No. of Alternatives  
Causal Model Causal Power (Wc) Full Diagnostic Model  

 Predictive Likelihood Diagnostic Likelihood 
Cummins’ Theory No Prediction No Prediction 
Causal Model Causal Power (Wc) Full Diagnostic Model  

Qualitative Support for Causal model 
Some trends appear in Cummins’ (1995) data that are not 
predicted by her theory. One is that acceptability ratings of 
AC for conditionals with many alternative and few disablers 
were lower than those with many alternatives and many 
disablers. Both groups had many alternatives and thus 
should have yielded similar AC judgments according to 
Cummins. The difference was replicated by De Neys, 
Schaeken and D’ydewalle (2002) who found lower AC 
ratings for all few disabler items compared to many disabler 
items.  

De Neys et al. (2002) proposed that when there are many 
disablers, they interfere with searching memory for 
alternatives, leading to the observed difference. A perusal of 
the individual conditionals suggests an alternative 
explanation based on the causal model. The two groups 
appear to vary not just in number of disablers but also in 
some of the factors that the probabilistic analysis says 
should affect diagnostic judgments. Specifically, the items 
that obtain low acceptability scores share the property that 
the cause is weak or improbable relative to the strength of 
alternatives (see Table 2). For instance, jumping into a 
swimming pool is improbable relative to other causes of 
wetness. Likewise, pouring water onto a fire is not the most 
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common cause of a campfire going out. On the contrary, the 
high ratings obtain for arguments in which the cause is 
strong and probable relative to alternatives. There may be 
many alternatives for a car slowing, but braking is likely the 
dominant cause. Likewise, studying hard is probably the 
strongest cause of doing well on a test. Thus, number of 
alternatives may be equated across groups, but diagnostic 
strength is not. 

Table 2: Mean Acceptability of AC arguments for Two 
Groups of Conditionals from Cummins’ (1995) Exp.1 

Conditional Acceptability 
(-3 to 3) 

Many Alternatives, Many Disablers 
 If fertilizer was put on the plants, then they grew quickly 1.00 
 If the brake was depressed, then the car slowed down 1.00 
 If John studied hard, then he did well on the test 1.50 
 If Jenny turned on the air conditioner, then she felt cool 1.08 
Many Alternatives, Few Disablers 
 If Alvin read without his glasses, then he got a headache 0.75 
 If Mary jumped into the swimming pool, then she got wet 0.25 
 If the apples were ripe, then they fell from the tree 1.00 
If water was poured on the campfire, then the fire went out -0.08 

 Another trend unexplained by her analysis is that few 
alternative conditionals obtained slightly higher MP 
judgments than many alternative conditionals despite being 
equated across number of disablers. Again, the probabilistic 
analysis suggests why this may be so. Several of the many 
alternative items have somewhat low causal powers (e.g. ‘if 
the apples were ripe then they fell from the tree’) while 
virtually all of the few alternative items have very high 
causal powers (e.g. ‘if the gong was struck then it 
sounded.’). Thus, while number of disablers was equated 
across groups, causal power may have varied leading to 
differing MP judgments. 

Experiment 
To test whether the causal model accounts for the causal 
conditional acceptability ratings we collected judgments of 
the relevant parameters: the prior probability of the cause 
(Pc), the causal power of the cause (Wc) and the strength of 
alternatives (Wa) for Cummins’ (1995) conditionals. Using 
these judgments we derived predictions with zero free 
parameters to which we compared Cummins’ acceptability 
ratings.  
 Another implication of our argument is that judgments of 
the conditional probability of effects and causes should be 
similar to Cummins’ acceptability ratings and should also be 
accounted for by the causal model. Thus, we collected 
predictive and diagnostic conditional probability judgments 
from a second group of participants. We also collected 
reaction times for these judgments. De Neys et al. (2002) 
showed that reaction times for causal conditionals basically 
supported Cummins’ analysis. Collecting reaction times 
with materials phrased in conditional likelihood language 
allowed us to verify and extend these findings.  

 

 

Method 
Participants 133 Brown University students were 
approached on campus and participated voluntarily or 
participated through the psychology research pool in return 
for class credit.  

Design, materials and procedure All experimental 
conditions used questions based on the 16 conditionals from 
Cummins’ (1995) experiment 1. We therefore adopted 
Cummins’ 2 (number of alternatives; few/many) X 2 
(number of disablers; few/many) design with four 
conditionals in each condition. Judgments were on a 0 
(‘impossible’) to 100 (‘definite’) scale.  
 17 Participants provided judgments of the prior 
probabilities (Pc) and strength of alternatives (Wa) for the 16 
conditionals. The questions were split onto two pages with 
all of the Pc questions on the first page and all of the Wa 
questions on the second page. The order of questions was 
randomized on each page. For each question we first stated 
the conditional and then asked the relevant likelihood 
question. Examples of Pc and Wa questions are given in (e) 
and (f) respectively.  
(e) If John studied hard then he did well on the test. 

 How likely is it that John studied hard?  

(f) If John studied hard then he did well on the test. 
John did not study hard. How likely is it he did well on the 
test?  

A minority of participants interpreted the conditional 
statement in the Pc questions as indicating that the cause was 
present and therefore gave ratings of 100 for all of the Pc 
questions. We removed these responses from the dataset for 
all subsequent analyses.  
 An additional 21 participants judged causal power (Wc). 
Methods were identical except that there was just one page 
of questions. An example of a Wc question is given in (g).  
(g) How likely is it that John studying hard for the test causes 

him to do well? 
 95 participants provided predictive and diagnostic 
likelihood judgments, fully within-participant. Each of these 
participants therefore answered 32 questions, one predictive 
and one diagnostic for each conditional. In order to avoid 
any reaction time differences due to reading time, the 
wordings of the questions were modified such that each had 
between 13 and 15 words and between 65 and 75 characters 
and such that the mean number of words and characters was 
equated across the four groups of conditionals. Examples of 
predictive and diagnostic questions are given in (h) and (i): 
(h) John studied hard. How likely is it that he did well on the 

test?  
(i) John did well on the test. How likely is it that he studied 

hard? 
This part of the experiment was administered on a computer 
in the lab. For each question, participants input their answer 
using the number keys and hit ‘return’ to move to the next 
question. Reaction times were measured from the moment 
the question appeared on the screen to when the participant 

1090



hit ‘return’. Order of questions was randomly determined 
for each participant.   

Parameter Judgments and Modeling Results 

For the following tests we collapsed over conditionals and 
compared participant means, using Bonferroni correction to 
control family-wise error rate. As expected, Wa was judged 
higher for many alternative items compared to few 
alternative items (t(16)=13.4, p<0.001) and didn’t vary 
across few and many disablers (t(16)=1.4, ns).  
 Wc also varied across the number of alternatives 
manipulation; Wc was judged higher for few alternative 
items (M=83.4) compared to many alternative items 
(M=73.9), t(20)=4.8, p<0.001). This was not intended by 
Cummins, but confirmed our intuitions about the 
unexplained trend in MP; weak alternative items seemed to 
have lower causal powers despite being equated across 
number of disablers. Surprisingly, Wc did not vary across the 
many/few disablers manipulation (t(20)=1.2, ns) suggesting 
that number of disablers and causal power were not as 
closely linked as we expected. The low correlation between 
number of disablers and Wc (r=-0.11, ns) also supported this 
conclusion. Pc did not vary across either manipulation.  

Applying the Model Simply computing Equations 2 and 3 
using item means would have been inappropriate because 
the parameter judgments were collected between 
participants. We therefore used a sampling procedure to 
generate model predictions. For each conditional we took 
10,000 samples each of Wa, Pc and Wc uniformly and 
randomly from participant responses, and calculated 
Equations 2 and 3 for each set of samples. We therefore 
generated 10,000 samples of each probability for each 
conditional and then took the mean over samples for each 
conditional as the output of the model. Reruns of the model 
yielded only negligible differences.  
Fits to AC and Diagnostic Judgments Figure 1a depicts 
Cummins’ acceptability ratings for AC on the X-axis plotted 
against model fits (Equation 2) on the Y-Axis for each of 
the 16 conditionals, along with the least squares regression 
line. Figure 1b shows diagnostic judgments plotted against 
model fits. The model predictions were highly correlated 
with both Cummins’ acceptability ratings (AC) (r=0.87, 
p<0.001) and the diagnostic judgments (D) (r=0.93, 
p<0.001). To test whether the model is a better predictor of 
AC and D than the number of alternatives, we performed 
hierarchical multiple regression analyses of AC and D 
responses using the model predictions and the number of 
alternatives as predictors. The model accounted for a 
significant amount of unique variance beyond what number 
of alternatives accounted for, both for AC (F(1,14)=10.7, 
p<0.01) and for D (F(1,14)=38.4, p<0.001). Number of 
alternatives did not account for any unique variance for AC 
(F(1,14)=0.24, ns) or for D (F(1,14)=0.46, ns).  

Fits to MP and Predictive Judgments Figure 1c depicts 
Cummins’ acceptability ratings for MP plotted against 

model fits (equal to Wc according to Equation 3). Figure 1d 
shows predictive judgments plotted against model fits. 
Surprisingly, MP ratings and predictive judgments were not 
highly correlated (r=0.30, ns), and each was correlated with 
a different independent variable. MP ratings were 
significantly correlated with number of disablers (r=0.53, 
p=0.035)but not with the model (r=0.39, ns). Conversely, 
predictive judgments were highly correlated with the model 
(r=0.81, p<0.001) but not with number of disablers (r=0.04, 
ns). As predicted, alternative strength did not add any 
explanatory power; the full model was poorer than Wc at 
accounting for both MP and predictive judgments. 

 
Figure 1: (a) Model fits against Cummins’ AC acceptability 

ratings. (b) Model fits against diagnostic likelihood 
judgments. (c) Model fits against Cummins’ MP 

acceptability ratings. (d) Model fits against predictive 
likelihood judgments. 

Reaction Time Results 
For the sake of concision, the analyses of the predictive and 
diagnostic judgments are described in the appendix and only 
the reaction times results are presented in this section.  All 
statistical tests on reaction times used a log transform to 
normalize the data. Outliers were removed by eliminating 
all trials that fell more than four standard deviations above 
or below the participant’s mean reaction time. Additionally 
any trial faster than 1 second was removed.  
 The reaction time results are depicted in Figure 2. The 
cleaned data were subjected to a 2 (direction of inference) X 
2 (number of alternatives) X 2 (number of disablers) 
repeated measures ANOVA. There was a main effect of 
direction of inference; prediction (M=5.88 s) was faster than 
diagnosis (M=6.21 s), F(1,95)=25.1, p<0.001. There was 
also a significant interaction between number of alternatives 
and direction of inference, F(1,95)=4.0, p<0.05. No other 
main effects or interactions were significant.  
 The interaction between strength of alternatives and 
direction of inference was driven by diagnostic judgments 
being faster for items with few alternatives (M = 6.09 s) 
than for items with many alternatives (M=6.32 s), 
t(94)=1.95, p=0.05. Predictive judgments showed no 
difference in reaction time across the number of alternatives 
manipulation, t(94)=0.61, ns. 
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 Number of disablers had no effect on reaction times for 
predictive judgments (t(94)=1.2, ns). Since Wc accounted for 
the predictive judgments better than number of alternatives, 
we suspected it might also yield reaction time differences. 
To test this we split the conditionals at the median based on 
Wc and compared reaction times. Confirming the prediction, 
predictive judgments were faster for items with high Wc 
(M=5.71 s) than for items with low Wc (M=6.05 s), 
t(94)=4.19, p<0.0001.  

 
Figure 2: Reactions Times for Predictive and Diagnostic 
Judgments by (a) number of alternatives, (b) number of 

disablers and (c) strength of Wc  
General Discussion 

Summary and Interpretation of Results 
Model Fits The diagnostic model achieved very good fits to 
both Cummins’ AC data and our diagnostic likelihood 
judgments with zero free parameters. It also explained more 
variance than the single parameter number of alternatives. 
This confirmed the qualitative analysis indicating that AC 
judgments were sensitive not just to number of alternatives, 
but also to the other factors in the causal model in 
approximately the right way. The model also accounted for 
the previously unexplained trend in Cummins’ AC data for 
higher AC ratings with more disablers. Altogether, it seems 
that when judging AC for causal conditionals, people are 
actually judging the likelihood of the cause (premise) given 
the effect (conclusion). 
 The model also matched the predictive judgments closely 
and differences in Wc explained the previously unexplained 
trend in Cummins’ MP judgments for higher MP judgments 
with fewer alternatives, a pattern that also showed up in the 
predictive likelihood judgments (see appendix). But the 
model didn’t match the MP data that well and in fact was 
slightly worse than the number of disablers at accounting 
for the variance. Additionally, number of disablers was a 
remarkably poor predictor of Wc judgments. This was 
surprising because we expected causal power to vary 
inversely with number of disablers.  

Reaction Times The reaction time data yielded three 
noteworthy findings: First, predictive judgments were faster 
than diagnostic ones. This corroborates De Neys et al. 
(2002) who found that MP was faster than AC and it 
supports the claim that reasoning from cause to effect is 
easier in general than reasoning from effect to cause 
(Tversky & Kahneman, 1982). This difference likely 
reflects the time it takes to consider alternative causes and 
prior probability in diagnostic judgment.  

Second, diagnostic judgments were faster with few 
alternatives. This also corroborates De Neys et al. (2002). It 

implies that searching for alternative causes takes time. It 
could also reflect the fact that when alternative causes are 
very weak the judgment is very high and may not require as 
much thought to calculate. Predictive judgments showed no 
reaction time differences across number of alternatives. This 
is more evidence that people don’t think of alternatives 
when making predictions (Fernbach, Darlow & Sloman, 
2010).  

Finally, we found no reaction time differences for many 
versus few disablers. This failed to corroborate De Neys et 
al. (2002) who found that MP was faster for few versus 
many disablers.  We did however find an effect of Wc on 
reaction times. Prediction was faster for high versus low Wc.  

Explaining MP 
  Both the model fitting and reaction times imply 
dissociation between how people judged MP and how they 
judged predictive likelihood. Predictive likelihood 
judgments and reaction times were explained by differences 
in Wc but were uncorrelated with number of disablers. 
Conversely, number of disablers was slightly better at 
accounting for Cummins’ (1995) MP acceptability ratings 
than Wc and also yielded reaction time differences for MP in 
De Neys et al.’s (2002) study.  This leaves three open 
questions: First, why is number of disablers such a poor 
predictor of Wc? Second, why is Wc better at accounting for 
predictive likelihood judgments and reaction times? Third, 
why is it worse at accounting for MP?  
 A speculative answer to the first two questions comes 
from the possibility that when making predictive likelihood 
judgments people represent causal systems in terms of their 
normal, common or prototypical components. If asked to list 
disablers they may be able to come up with a relatively large 
number, some of them being very uncommon or atypical. 
But when asked to judge causal power or make a prediction 
they think only of the most important disablers. The 
‘depressed brake’ provides a good example. It is not too 
hard to come up with disablers for why brakes would fail to 
slow a car (e.g. cut brake lines) but none of them is 
common. Thus, while number of disablers is relatively high, 
many of those disablers make a small impact on actual 
causal power and may have no effect on people’s estimates 
of causal power. On this account, low causal power might 
still correlate with slower reaction time on the assumption 
that examples with a greater number of typical or high 
probability disablers yield lower Wc judgments, lower 
predictive judgments, and take longer to reason about.  

This leaves the question of why Wc fails to account for 
MP judgments and reaction times, while number of 
disablers is somewhat better. We don’t have a conclusive 
answer to this question, but we suspect it may be due to 
people using a mixture of strategies when judging MP. In a 
deductive context, people reason about MP more naturally 
than other conditional schemata (Johnson-Laird & Byrne, 
2002). This suggests that some participants may be 
engaging in a different kind of thinking when judging MP in 
comparison to the other schemata. Perhaps more abstract 
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thinking leads to rejection of MP based on the ability to 
think of specific counterexamples without regard to their 
probability, in which case the number of disablers may be 
more important than Wc. This is consistent with work by 
Verschueren, Schaeken and d’Ydewalle (2005) showing two 
processes in causal conditional reasoning: A relatively 
quicker intuitive process that arrives at judgments that are 
highly correlated with conditional probability and a 
relatively slower, analytic process that correlates with 
number of alternatives or disablers. Of course, it’s important 
not to jump to firm conclusions on the basis of so few 
examples (the poor fit to MP was primarily driven by 4 data 
points). Future work should aim to corroborate the 
differences in ratings and reaction times for MP versus 
predictive likelihood with a larger number of well-
controlled items.  

Conclusions 
Our work provides some evidence in favor of the 
conditional probability approach to conditional reasoning 
(Oaksford & Chater, 2001, 2003; Over et al., 2007). One 
caveat to this is that the causal model we propose is 
incorrect in some important senses. People tend to neglect 
the strength of alternatives when making predictions, and 
while aggregate data are fit really well by the diagnostic 
model, individual data are less consistent. This suggests that 
people are not actually computing probabilities. It is more 
natural to think of the model as a computational solution 
that people only approximate. The literature on probabilistic 
causal reasoning tends to focus primarily on computational 
models like this to the detriment of process level 
implementations. The focus on semantic memory models in 
the causal conditional reasoning literature is admirable, but 
the downside of these models is that, as our work shows, 
people are sophisticated causal reasoners. Simple memory 
models based on the number of alternatives or disablers 
won’t suffice. A complete model requires mechanisms for 
judging prior probability, for integrating over the strengths 
and probabilities of alternative causes, for judging causal 
power and for combining these various pieces of 
information in a reasonable way. These processes 
undoubtedly rely on retrieval from semantic memory – our 
reaction time data is strong evidence of that – but no current 
memory model can accommodate the balance of empirical 
evidence. Exploring how people construct their causal 
models from remembered alternatives, disablers and other 
parameters thus offers a promising avenue for future 
research.  
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Appendix 
The predictive and diagnostic judgments were subjected to a 2 (direction of 
inference) X 2 (number of alternatives) X 2 (number of disablers) repeated 
measures ANOVA. All of the main effects and two-way interactions were 
significant (p<0.01). 
 Further post hoc tests were performed on predictive and diagnostic 
judgments separately. Diagnostic judgments were sensitive to number of 
alternatives with higher judgments for the items with few alternatives 
(M=90.7) than for the items with many alternatives (M=57.3), t(94)=27.9, 
p<0.001. Diagnostic judgments also varied across number of disablers, 
with higher judgments for many disablers (M=78.1) than few disablers 
(M=70.1), t(94)=8.9, p<0.001.  
 As suggested by the differing Wc judgments, predictive judgments also 
varied across the number of alternatives; Few alternative items (M=87.8) 
yielded higher diagnostic judgments than those with many alternatives 
(M=76.3), t(94)=6.0, p<0.001. Predictive judgments did not vary with the 
number of disablers (t<1, ns). We also tested whether predictive judgments 
varied with the strength of Wc by dividing the 16 conditionals into two 
equal groups based on Wc and comparing predictive judgments. As 
expected, conditionals with high Wc obtained higher predictive judgments 
(M=89.1) than those with low Wc (M=75.2), t(94)=7.0, p<0.001. 
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