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Abstract

We hypothesized that causal conditional reasoning reflects
judgment of the conditional likelihood of causes and effects
based on a probabilistic causal model of the scenario being
judged. Although this proposal has much in common with
Cummins’ (1995) theory based on the number of disabling
conditions and alternative causes, it takes more variables into
account and therefore makes some differing predictions. To
test this idea we collected judgments of the causal parameters
of the conditionals and used them to derive predictions from a
model with zero free parameters. We compared these
predictions to Cummins’ acceptability ratings and to
analogous likelihood judgments that we also collected. The
hypothesis was borne out for Affirming the Consequent and
the analogous diagnostic likelihood judgments, where the
model obtained close fits to both data sets. However, we
found a surprising dissociation between Modus Ponens and
judgments of predictive likelihood leading to a relatively poor
fit to the Modus Ponens acceptability ratings. We propose an
explanation for this in the discussion.
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Causal Conditional Reasoning

When reasoning about deductive arguments people are
biased to accept conclusions that are consistent with their
beliefs and reject those that are inconsistent, regardless of
argument validity (Evans, 2007). In a set of seminal papers,
Cummins (1995; Cummins et al., 1991) showed that these
belief biases follow systematic principles when people
reason about conditional arguments with causal content.
People judged the validity of four argument schemata:
Modus Ponens (MP), Modus Tollens (MT), Denying the
Antecedent (DA) and Affirming the Consequent (AC),
though we focus on just MP and AC in this paper.

Despite MP being deductively valid and AC invalid
regardless of content, Cummins predicted that for arguments
where the antecedent is a cause of the consequent,
acceptance rates for MP would be affected by the number of
disabling conditions while AC would be affected by the
number of alternative causes for the effect.

In the case of MP, thinking of a disabling condition
provides a counterexample to the argument and hence may
lead people to reject it. An example is given below.
Cummins’ predicted that (a) would be judged more
acceptable than (b) because the conditional in (a) has fewer
disablers; reasons why one could put fertilizer on plants and
not have them grow quickly are more available than reasons
why one could jump into a pool and not get wet.

(a) If Mary jumped into the swimming pool then she got wet.
Mary jumped into the swimming pool.
Therefore she got wet.

(b) If fertilizer was put on the plants then they grew quickly.

Fertilizer was put on the plants.

Therefore they grew quickly.
In the case of AC, alternative causes provide an alternative
explanation for the effect and hence make the antecedent
seem less necessary. For example Cummins predicted that
(c) would be judged more acceptable than (d). It is hard to
think of alternative causes for a gun firing besides the
trigger being pulled but it is relatively easy to think of
causes of wetness besides jumping into a swimming pool.
(c) If the trigger was pulled then the gun fired.

The gun fired.

Therefore the trigger was pulled.

(d) If Mary jumped into the swimming pool then she got wet.
Mary got wet
Therefore she had jumped into the swimming pool.

To test these ideas Cummins’ asked one group of
participants to spontaneously generate alternative causes
and disabling conditions for a host of conditionals and then
divided the conditionals into four groups of four
conditionals each based on the number of alternatives and
disablers (many alternatives, many disablers; many
alternatives, few disablers; few alternatives, many disablers;
few alternatives, few disablers). A different group was given
the arguments based on the 16 conditionals and asked to
judge the extent to which the conclusion could be drawn
from the premise. Responses were on a 6 point scale from
“very sure that the conclusion cannot be drawn” (-3) to
“very sure that the conclusion can be drawn” (3). The results
provided good support for both predictions.

A Causal Model Theory

Following Oaksford, Chater and Larkin (2000), if the
conditional schemata are interpreted in terms of conditional
probability, the acceptability of MP maps onto
P(Effect/Cause) and AC to P(CauselEffect). Throughout the
paper, we refer to P(Effect/Cause) as a predictive likelihood
judgment and to P(CauselEffect) as a diagnostic judgment.

By assuming the conditional scenarios approximate a
noisy-or common effect model (Cheng, 1997) the
expressions in (1) and (2) can be derived for MP and AC
respectively (Fernbach & Darlow, 2009; Waldmann et al.,
2008). The noisy-or model assumes that there are multiple
independent causes for a given effect, each of which may or
may not be effective on a given trial.
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MP =~ P(Effect |Cause) =W +W_ -WW, (D

AC ~ P(Cause | Effect) =1-(1- P.) W, 2
PW +W, -PWW,

W, is the causal power of the cause, the probability that
the cause successfully brings about the effect (e.g. the
probability that pulling the trigger causes the gun to fire),
W, is the combined strength of all alternative causes,
equivalent to the probability of the effect in the absence of
the cause (e.g. the probability of the gun firing given the
trigger wasn’t pulled) and P, is the prior probability of the
cause (e.g. the probability of the trigger being pulled).

According to the full probabilistic model MP increases
with both the causal power of the cause and the strength of
alternatives (because alternative causes raise the probability
of the effect). However, in previous work, we have found
that people are not sensitive to the strength of alternative
causes when judging predictive likelihood despite its
relevance (Fernbach, Darlow & Sloman, 2010). Thus, like
Cummins we predicted no effect of W, and our model for
MP is given in (3).

MP = P(Effect | Cause,~ Alternatives) =W, (3)

AC is a function of all three parameters. It increases with
P_.and W, and decreases with W,.

Relation Between Cummins’ Analysis and Model

According to the causal model the determinants of causal
inferences, and hence MP and AC acceptability, are causal
power, strength of alternatives and prior probability of the
cause. The number of disablers and number of alternatives
are factors in the first two parameters, respectively. Causal
power is inversely related to the number of disablers. All
else being equal, as the number of disablers increases, the
probability that the cause fails to bring about the effect
increases, corresponding to a decrease in causal power.
Thus the model is consistent with the decrease in MP as
number of disablers increases, as predicted and found by
Cummins. However, not all disablers are equally likely or
equally effective in preventing the effect. A single strong
disabler could lead to a lower causal power than several
weaker disablers, making number of disablers an imperfect
predictor of causal power.

Similarly, the number of alternatives is a factor in
strength of alternatives. All else being equal, as the number
of alternatives increases so does the probability that they
will bring about the effect. Therefore, the model predicts
that AC will decrease with number of alternatives. As with
disablers though, number of alternatives is only a partial
predictor of strength of alternatives.

Despite these similarities, the model suggests that
Cummins’ analysis is incomplete because it only takes a
single parameter into account for each judgment. The
implication for MP is that its acceptability should increase
with the strength of alternative causes but as discussed
above we predicted no effect of alternative causes on MP.
Our prediction for MP only differs from Cummins in that

we expected W, to provide a better fit than number of
disablers.

The model identifies three factors relevant to the
acceptability of AC arguments. First, according to the model
the prior probability of the cause plays an important role in
diagnostic strength. For instance, a cause that is very
improbable is unlikely to have occurred relative to other
more likely causes and is therefore not as good an
explanation for the effect. The second factor is the overall
strength of alternatives. This differs from the number of
alternatives because not all alternative causes are created
equal. In the causal model the strength of alternatives
reflects the probability of the effect in the absence of the
cause and thus is a joint function of the prior probabilities
and causal powers of alternatives. For instance, even a large
number of highly improbable or weak alternatives should
have less effect on the judgment then a single probable,
strong cause. Finally, causal power -- and hence disablers --
should have some influence on AC. All else being equal, if
the causal power of the cause is higher, the cause is more
likely responsible for the effect. Table 1 summarizes how
our predictions differ from Cummins’ theory.

Table 1: Best Predictors for MP and AC judgments and
Predictive and Diagnostic Likelihood Judgments According
to Cummins (1995) and According to our Model
MP AC

No. of Disablers
Causal Power (W,)

No. of Alternatives
Full Diagnostic Model

Cummins’ Theory
Causal Model
Predictive Likelihood
No Prediction

Causal Power (W,)

Diagnostic Likelihood

No Prediction
Full Diagnostic Model

Cummins’ Theory
Causal Model

Qualitative Support for Causal model

Some trends appear in Cummins’ (1995) data that are not
predicted by her theory. One is that acceptability ratings of
AC for conditionals with many alternative and few disablers
were lower than those with many alternatives and many
disablers. Both groups had many alternatives and thus
should have yielded similar AC judgments according to
Cummins. The difference was replicated by De Neys,
Schaeken and D’ydewalle (2002) who found lower AC
ratings for all few disabler items compared to many disabler
items.

De Neys et al. (2002) proposed that when there are many
disablers, they interfere with searching memory for
alternatives, leading to the observed difference. A perusal of
the individual conditionals suggests an alternative
explanation based on the causal model. The two groups
appear to vary not just in number of disablers but also in
some of the factors that the probabilistic analysis says
should affect diagnostic judgments. Specifically, the items
that obtain low acceptability scores share the property that
the cause is weak or improbable relative to the strength of
alternatives (see Table 2). For instance, jumping into a
swimming pool is improbable relative to other causes of
wetness. Likewise, pouring water onto a fire is not the most
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common cause of a campfire going out. On the contrary, the
high ratings obtain for arguments in which the cause is
strong and probable relative to alternatives. There may be
many alternatives for a car slowing, but braking is likely the
dominant cause. Likewise, studying hard is probably the
strongest cause of doing well on a test. Thus, number of
alternatives may be equated across groups, but diagnostic
strength is not.

Table 2: Mean Acceptability of AC arguments for Two
Groups of Conditionals from Cummins’ (1995) Exp.1

Conditional Acf_zpfsl;‘;‘ty

Many Alternatives, Many Disablers

If fertilizer was put on the plants, then they grew quickly 1.00
If the brake was depressed, then the car slowed down 1.00
If John studied hard, then he did well on the test 1.50
If Jenny turned on the air conditioner, then she felt cool 1.08
Many Alternatives, Few Disablers

If Alvin read without his glasses, then he got a headache 0.75
If Mary jumped into the swimming pool, then she got wet 0.25
If the apples were ripe, then they fell from the tree 1.00
If water was poured on the campfire, then the fire went out -0.08

Another trend unexplained by her analysis is that few
alternative conditionals obtained slightly higher MP
judgments than many alternative conditionals despite being
equated across number of disablers. Again, the probabilistic
analysis suggests why this may be so. Several of the many
alternative items have somewhat low causal powers (e.g. ‘if
the apples were ripe then they fell from the tree’) while
virtually all of the few alternative items have very high
causal powers (e.g. ‘if the gong was struck then it
sounded.’). Thus, while number of disablers was equated
across groups, causal power may have varied leading to
differing MP judgments.

Experiment

To test whether the causal model accounts for the causal
conditional acceptability ratings we collected judgments of
the relevant parameters: the prior probability of the cause
(P.), the causal power of the cause (W,) and the strength of
alternatives (/,) for Cummins’ (1995) conditionals. Using
these judgments we derived predictions with zero free
parameters to which we compared Cummins’ acceptability
ratings.

Another implication of our argument is that judgments of
the conditional probability of effects and causes should be
similar to Cummins’ acceptability ratings and should also be
accounted for by the causal model. Thus, we collected
predictive and diagnostic conditional probability judgments
from a second group of participants. We also collected
reaction times for these judgments. De Neys et al. (2002)
showed that reaction times for causal conditionals basically
supported Cummins’ analysis. Collecting reaction times
with materials phrased in conditional likelihood language
allowed us to verify and extend these findings.

Method

Participants 133 Brown University students were
approached on campus and participated voluntarily or
participated through the psychology research pool in return
for class credit.

Design, materials and procedure All experimental
conditions used questions based on the 16 conditionals from
Cummins’ (1995) experiment 1. We therefore adopted
Cummins’ 2 (number of alternatives; few/many) X 2
(number of disablers; few/many) design with four
conditionals in each condition. Judgments were on a 0
(‘impossible’) to 100 (‘definite’) scale.

17 Participants provided judgments of the prior
probabilities (P.) and strength of alternatives () for the 16
conditionals. The questions were split onto two pages with
all of the P, questions on the first page and all of the W,
questions on the second page. The order of questions was
randomized on each page. For each question we first stated
the conditional and then asked the relevant likelihood
question. Examples of P, and W, questions are given in (e)
and (f) respectively.

(e) If John studied hard then he did well on the test.
How likely is it that John studied hard?

(f) If John studied hard then he did well on the test.
John did not study hard. How likely is it he did well on the
test?

A minority of participants interpreted the conditional
statement in the P.questions as indicating that the cause was
present and therefore gave ratings of 100 for all of the P,
questions. We removed these responses from the dataset for
all subsequent analyses.

An additional 21 participants judged causal power (W,).
Methods were identical except that there was just one page
of questions. An example of a W, question is given in (g).

(g) How likely is it that John studying hard for the test causes
him to do well?

95 participants provided predictive and diagnostic
likelihood judgments, fully within-participant. Each of these
participants therefore answered 32 questions, one predictive
and one diagnostic for each conditional. In order to avoid
any reaction time differences due to reading time, the
wordings of the questions were modified such that each had
between 13 and 15 words and between 65 and 75 characters
and such that the mean number of words and characters was
equated across the four groups of conditionals. Examples of
predictive and diagnostic questions are given in (h) and (i):
(h) John studied hard. How likely is it that he did well on the

test?

(i) John did well on the test. How likely is it that he studied
hard?

This part of the experiment was administered on a computer

in the lab. For each question, participants input their answer

using the number keys and hit ‘return’ to move to the next

question. Reaction times were measured from the moment

the question appeared on the screen to when the participant
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hit ‘return’. Order of questions was randomly determined
for each participant.

Parameter Judgments and Modeling Results

For the following tests we collapsed over conditionals and
compared participant means, using Bonferroni correction to
control family-wise error rate. As expected, W, was judged
higher for many alternative items compared to few
alternative items (t(16)=13.4, p<0.001) and didn’t vary
across few and many disablers (t(16)=1.4, ns).

W, also varied across the number of alternatives
manipulation; W, was judged higher for few alternative
items (M=83.4) compared to many alternative items
M=73.9), t(20)=4.8, p<0.001). This was not intended by
Cummins, but confirmed our intuitions about the
unexplained trend in MP; weak alternative items seemed to
have lower causal powers despite being equated across
number of disablers. Surprisingly, W, did not vary across the
many/few disablers manipulation (t(20)=1.2, ns) suggesting
that number of disablers and causal power were not as
closely linked as we expected. The low correlation between
number of disablers and W, (r=-0.11, ns) also supported this
conclusion. P, did not vary across either manipulation.

Applying the Model Simply computing Equations 2 and 3
using item means would have been inappropriate because
the parameter judgments were collected between
participants. We therefore used a sampling procedure to
generate model predictions. For each conditional we took
10,000 samples each of W, P. and W, uniformly and
randomly from participant responses, and calculated
Equations 2 and 3 for each set of samples. We therefore
generated 10,000 samples of each probability for each
conditional and then took the mean over samples for each
conditional as the output of the model. Reruns of the model
yielded only negligible differences.

Fits to AC and Diagnostic Judgments Figure la depicts
Cummins’ acceptability ratings for AC on the X-axis plotted
against model fits (Equation 2) on the Y-Axis for each of
the 16 conditionals, along with the least squares regression
line. Figure 1b shows diagnostic judgments plotted against
model fits. The model predictions were highly correlated
with both Cummins’ acceptability ratings (AC) (r=0.87,
p<0.001) and the diagnostic judgments (D) (r=0.93,
p<0.001). To test whether the model is a better predictor of
AC and D than the number of alternatives, we performed
hierarchical multiple regression analyses of AC and D
responses using the model predictions and the number of
alternatives as predictors. The model accounted for a
significant amount of unique variance beyond what number
of alternatives accounted for, both for AC (F(1,14)=10.7,
p<0.01) and for D (F(1,14)=38.4, p<0.001). Number of
alternatives did not account for any unique variance for AC
(F(1,14)=0.24, ns) or for D (F(1,14)=0.46, ns).

Fits to MP and Predictive Judgments Figure lc depicts
Cummins’ acceptability ratings for MP plotted against

model fits (equal to W, according to Equation 3). Figure 1d
shows predictive judgments plotted against model fits.
Surprisingly, MP ratings and predictive judgments were not
highly correlated (r=0.30, ns), and each was correlated with
a different independent variable. MP ratings were
significantly correlated with number of disablers (r=0.53,
p=0.035)but not with the model (r=0.39, ns). Conversely,
predictive judgments were highly correlated with the model
(r=0.81, p<0.001) but not with number of disablers (r=0.04,
ns). As predicted, alternative strength did not add any
explanatory power; the full model was poorer than W, at
accounting for both MP and predictive judgments.
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Figure 1: (a) Model fits against Cummins’ AC acceptability
ratings. (b) Model fits against diagnostic likelihood
judgments. (c) Model fits against Cummins’ MP
acceptability ratings. (d) Model fits against predictive
likelihood judgments.

Reaction Time Results

For the sake of concision, the analyses of the predictive and
diagnostic judgments are described in the appendix and only
the reaction times results are presented in this section. All
statistical tests on reaction times used a log transform to
normalize the data. Outliers were removed by eliminating
all trials that fell more than four standard deviations above
or below the participant’s mean reaction time. Additionally
any trial faster than 1 second was removed.

The reaction time results are depicted in Figure 2. The
cleaned data were subjected to a 2 (direction of inference) X
2 (number of alternatives) X 2 (number of disablers)
repeated measures ANOVA. There was a main effect of
direction of inference; prediction (M=5.88 s) was faster than
diagnosis (M=6.21 s), F(1,95)=25.1, p<0.001. There was
also a significant interaction between number of alternatives
and direction of inference, F(1,95)=4.0, p<0.05. No other
main effects or interactions were significant.

The interaction between strength of alternatives and
direction of inference was driven by diagnostic judgments
being faster for items with few alternatives (M = 6.09 s)
than for items with many alternatives (M=6.32 s),
t(94)=1.95, p=0.05. Predictive judgments showed no
difference in reaction time across the number of alternatives
manipulation, t(94)=0.61, ns.
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Number of disablers had no effect on reaction times for
predictive judgments (t(94)=1.2, ns). Since W, accounted for
the predictive judgments better than number of alternatives,
we suspected it might also yield reaction time differences.
To test this we split the conditionals at the median based on
W, and compared reaction times. Confirming the prediction,
predictive judgments were faster for items with high W,
(M=5.71 s) than for items with low W. (M=6.05 s),
t(94)=4.19, p<0.0001.
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Figure 2: Reactions Times for Predictive and Diagnostic
Judgments by (a) number of alternatives, (b) number of
disablers and (c) strength of W.

General Discussion
Summary and Interpretation of Results

Model Fits The diagnostic model achieved very good fits to
both Cummins’ AC data and our diagnostic likelihood
judgments with zero free parameters. It also explained more
variance than the single parameter number of alternatives.
This confirmed the qualitative analysis indicating that AC
judgments were sensitive not just to number of alternatives,
but also to the other factors in the causal model in
approximately the right way. The model also accounted for
the previously unexplained trend in Cummins’ AC data for
higher AC ratings with more disablers. Altogether, it seems
that when judging AC for causal conditionals, people are
actually judging the likelihood of the cause (premise) given
the effect (conclusion).

The model also matched the predictive judgments closely
and differences in W, explained the previously unexplained
trend in Cummins’ MP judgments for higher MP judgments
with fewer alternatives, a pattern that also showed up in the
predictive likelihood judgments (see appendix). But the
model didn’t match the MP data that well and in fact was
slightly worse than the number of disablers at accounting
for the variance. Additionally, number of disablers was a
remarkably poor predictor of W, judgments. This was
surprising because we expected causal power to vary
inversely with number of disablers.

Reaction Times The reaction time data yielded three
noteworthy findings: First, predictive judgments were faster
than diagnostic ones. This corroborates De Neys et al.
(2002) who found that MP was faster than AC and it
supports the claim that reasoning from cause to effect is
easier in general than reasoning from effect to cause
(Tversky & Kahneman, 1982). This difference likely
reflects the time it takes to consider alternative causes and
prior probability in diagnostic judgment.

Second, diagnostic judgments were faster with few
alternatives. This also corroborates De Neys et al. (2002). It

implies that searching for alternative causes takes time. It
could also reflect the fact that when alternative causes are
very weak the judgment is very high and may not require as
much thought to calculate. Predictive judgments showed no
reaction time differences across number of alternatives. This
is more evidence that people don’t think of alternatives
when making predictions (Fernbach, Darlow & Sloman,
2010).

Finally, we found no reaction time differences for many
versus few disablers. This failed to corroborate De Neys et
al. (2002) who found that MP was faster for few versus
many disablers. We did however find an effect of W, on
reaction times. Prediction was faster for high versus low W..

Explaining MP

Both the model fitting and reaction times imply
dissociation between how people judged MP and how they
judged predictive likelihood. Predictive likelihood
judgments and reaction times were explained by differences
in W. but were uncorrelated with number of disablers.
Conversely, number of disablers was slightly better at
accounting for Cummins’ (1995) MP acceptability ratings
than W, and also yielded reaction time differences for MP in
De Neys et al.’s (2002) study. This leaves three open
questions: First, why is number of disablers such a poor
predictor of W,? Second, why is W, better at accounting for
predictive likelihood judgments and reaction times? Third,
why is it worse at accounting for MP?

A speculative answer to the first two questions comes
from the possibility that when making predictive likelihood
judgments people represent causal systems in terms of their
normal, common or prototypical components. If asked to list
disablers they may be able to come up with a relatively large
number, some of them being very uncommon or atypical.
But when asked to judge causal power or make a prediction
they think only of the most important disablers. The
‘depressed brake’ provides a good example. It is not too
hard to come up with disablers for why brakes would fail to
slow a car (e.g. cut brake lines) but none of them is
common. Thus, while number of disablers is relatively high,
many of those disablers make a small impact on actual
causal power and may have no effect on people’s estimates
of causal power. On this account, low causal power might
still correlate with slower reaction time on the assumption
that examples with a greater number of typical or high
probability disablers yield lower W, judgments, lower
predictive judgments, and take longer to reason about.

This leaves the question of why W, fails to account for
MP judgments and reaction times, while number of
disablers is somewhat better. We don’t have a conclusive
answer to this question, but we suspect it may be due to
people using a mixture of strategies when judging MP. In a
deductive context, people reason about MP more naturally
than other conditional schemata (Johnson-Laird & Byrne,
2002). This suggests that some participants may be
engaging in a different kind of thinking when judging MP in
comparison to the other schemata. Perhaps more abstract
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thinking leads to rejection of MP based on the ability to
think of specific counterexamples without regard to their
probability, in which case the number of disablers may be
more important than W,. This is consistent with work by
Verschueren, Schaeken and d’Ydewalle (2005) showing two
processes in causal conditional reasoning: A relatively
quicker intuitive process that arrives at judgments that are
highly correlated with conditional probability and a
relatively slower, analytic process that correlates with
number of alternatives or disablers. Of course, it’s important
not to jump to firm conclusions on the basis of so few
examples (the poor fit to MP was primarily driven by 4 data
points). Future work should aim to corroborate the
differences in ratings and reaction times for MP versus
predictive likelihood with a larger number of well-
controlled items.

Conclusions

Our work provides some evidence in favor of the
conditional probability approach to conditional reasoning
(Oaksford & Chater, 2001, 2003; Over et al., 2007). One
caveat to this is that the causal model we propose is
incorrect in some important senses. People tend to neglect
the strength of alternatives when making predictions, and
while aggregate data are fit really well by the diagnostic
model, individual data are less consistent. This suggests that
people are not actually computing probabilities. It is more
natural to think of the model as a computational solution
that people only approximate. The literature on probabilistic
causal reasoning tends to focus primarily on computational
models like this to the detriment of process level
implementations. The focus on semantic memory models in
the causal conditional reasoning literature is admirable, but
the downside of these models is that, as our work shows,
people are sophisticated causal reasoners. Simple memory
models based on the number of alternatives or disablers
won’t suffice. A complete model requires mechanisms for
judging prior probability, for integrating over the strengths
and probabilities of alternative causes, for judging causal
power and for combining these various pieces of
information in a reasonable way. These processes
undoubtedly rely on retrieval from semantic memory — our
reaction time data is strong evidence of that — but no current
memory model can accommodate the balance of empirical
evidence. Exploring how people construct their causal
models from remembered alternatives, disablers and other
parameters thus offers a promising avenue for future
research.
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Appendix

The predictive and diagnostic judgments were subjected to a 2 (direction of

inference) X 2 (number of alternatives) X 2 (number of disablers) repeated

measures ANOVA. All of the main effects and two-way interactions were
significant (p<0.01).

Further post hoc tests were performed on predictive and diagnostic
judgments separately. Diagnostic judgments were sensitive to number of
alternatives with higher judgments for the items with few alternatives
(M=90.7) than for the items with many alternatives (M=57.3), t(94)=27.9,
p<0.001. Diagnostic judgments also varied across number of disablers,
with higher judgments for many disablers (M=78.1) than few disablers
(M=70.1), t(94)=8.9, p<0.001.

As suggested by the differing . judgments, predictive judgments also
varied across the number of alternatives; Few alternative items (M=87.8)
yielded higher diagnostic judgments than those with many alternatives
(M=76.3), 1(94)=6.0, p<0.001. Predictive judgments did not vary with the
number of disablers (t<1, ns). We also tested whether predictive judgments
varied with the strength of W. by dividing the 16 conditionals into two
equal groups based on W, and comparing predictive judgments. As
expected, conditionals with high /7, obtained higher predictive judgments
(M=89.1) than those with low W. (M=75.2), t(94)=7.0, p<0.001.
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