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Abstract 

Since causal evidence is often ambiguous, models of causal 
learning should be able to represent uncertainty over causal 
hypotheses. Uncertainty is especially important in 
retrospective revaluation (the re-evaluation of ambiguous 
evidence in light of subsequent learning). We examine how a 
Bayesian model and an associative model (the modified SOP 
model of Dickinson & Burke, 1996) deal with this 
uncertainty. We tested the predictions of the models in an 
experiment with retrospective revaluation of preventive 
causes. Results were consistent with the predictions of the 
Bayesian model, but inconsistent with the predictions of the 
modified SOP model. 

Introduction 

Causal evidence is often ambiguous and causal inference 

uncertain. When examining an isolated case of food 

poisoning, it is difficult to identify the meal – never mind 

the food item - that caused the illness. Uncertainty is 

especially salient in retrospective revaluation (when 

established but ambiguous evidence is re-evaluated after 

subsequent learning). We examine how Bayesian and 

associative models of causal learning represent and deal 

with ambiguous evidence in retrospective revaluation. 

Although Bayesian models naturally represent the 

uncertainty of causal inference from ambiguous evidence, 

associative models do not.  

Examples of retrospective revaluation include reduced 

overshadowing and backward blocking. In both of these 

phenomena, there is one effect whose presence we denote as 

+ and absence we denote as - and two cues that we will call 

cue A and cue B. In both reduced overshadowing and 

backward blocking, the initial evidence shows that the effect 

occurs after the presentation of both cues (AB+). This 

evidence is ambiguous because it could be that cue A alone 

causes the effect, cue B alone causes the effect, or that both 

cues A and B independently cause the effect. Of course, it is 

also possible that cues A and B interact to cause the effect, 

but we will not consider this possibility further. We assume 

that, due to parsimony, this explanation is only considered 

when the others are ruled out. 

In reduced overshadowing, participants later learn that the 

effect does not occur after cue A is presented on its own 

(i.e., A- trials follow the AB+ trials). This new evidence 

suggests that cue A does not cause the effect. By conditional 

contrast or the process of elimination, this implies that cue 

B caused the effect on the AB+ trials. In backward blocking, 

the new evidence shows that the effect occurs when cue A is 

presented alone (i.e., A+ trials follow the AB+ trials). Since 

the knowledge that cue A causes the effect explains the AB+ 

trials, this new evidence should make it less likely that cue 

B causes the effect. However, it is still possible that cue B 

also causes the effect. Intuitively then, reduced 

overshadowing – which implies that cue B must cause the 

effect – should offer stronger evidence for re-evaluation 

than backward blocking. 

This intuition is reflected in studies that have compared 

reduced overshadowing and backward blocking to a control 

condition (just AB+ trials). These studies have shown that 

reduced overshadowing is stronger and more robust than 

backward blocking (Corlett et al.., 2004; Larkin, Aitken, & 

Dickinson, 1998; see also Beckers, De Houwer, Pineno, & 

Miller, 2005; Lovibond, Been, Mitchel, Bouton, & Frohardt, 

2003; but see Wasserman & Berglan, 1998; Wasserman & 

Castro, 2005). 

In this paper, we consider how different models of causal 

reasoning explain reduced overshadowing and backward 

blocking. Our goals are two-fold. Firstly, we seek to provide 

a principled explanation of reduced overshadowing and 

backward blocking by representing uncertainty. In service of 

this goal, we formalize our intuitions in a Bayesian model of 

causal inference. 

Secondly, we consider how associative models deal with 

retrospective revaluation. We focus on the modified SOP 

model (Dickinson & Burke, 1996) because it explains the 

observed asymmetry between reduced overshadowing and 

backward blocking. However, we will argue that the 

modified SOP model predicts this asymmetry for arbitrary 

reasons. Therefore, we tested the modified SOP and 

Bayesian models in a situation where they make competing 

predictions: the preventive analogs of reduced 

overshadowing (A+, ABC-, AB+) and backward blocking 

(A+, ABC-, AB-). 

A Bayesian model of retrospective revaluation 

Bayesian models have been applied to retrospective 

revaluation in order to explain trial-order effects (e.g., Daw, 

Courville, & Dayan, 2008; Kruschke, 2008; Lu, Rojas, 

Beckers, & Yuille, 2008) and the influence of prior 

knowledge (e.g., Sobel, Tenenbaum, & Gopnik, 2004). 

These models, however, have not been contrasted with 
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associative models that were designed to explain 

retrospective revaluation. For this comparison, we adapt 

Griffiths & Tenenbaum's (2005) model of causal inference. 

The model represents each possible causal explanation as 

a causal graph (e.g., Figure 1). In the causal graphs that we 

consider, a causal link can be generative, preventive, or non-

existent. Since we assume that there are multiple cues and a 

single effect, a causal graph can be represented as a vector 

of causal links 𝑙, letting li = 1 denote a generative causal 

relationship between cue i and the effect, li = 0 denote the 

absence of a causal relationship, and li = -1 denote a 

preventive causal relationship. We provide each causal link 

with a weight that represents the strength of the causal 

relationship, and we represent these weights as a vector 𝑤⃗⃗⃗ 

where 0 ≤ wi  ≤ 1 for each wi. 

 

 
Figure 1: A causal graph where cue A causes the effect (as 

indicated by an arrow) and cue B prevents the effect (as 

indicated by a modified arrow terminating in a circle) 

 

To represent a trial, we let the vector 𝑐 denote the 

presence (ci = 1) or absence (ci = 0) of the cues and let e 

denote the presence (e+) or absence (e-) of the effect. 

To specify the probability of the effect, we need to define 

a generating function that describes how causes combine to 

produce the effect. We adopt the noisy-or and noisy-and-not 

generating functions, which can be derived from the 

assumptions of causal power (Cheng, 1997) for generative 

and preventive causation, respectively. Given the vectors 𝑐, 

𝑙, and 𝑤⃗⃗⃗, let G be the set of indexes such that li = 1 (i.e., 

generative causes of e), and let P be the set of indexes such 

that li = -1 (preventers of e). Using the noisy-or and noisy-

and-not function, the probability of the effect is: 

P( e+ ∣∣ 𝑐, 𝑙, 𝑤⃗⃗⃗ )= [1- ∏ (1-wgcg)
g∈G

] ∏ (1 − 𝑤𝑝𝑐𝑝)𝑝 ∈𝑃   (1) 

Then, given data D that provides a frequency count 

𝑁(𝑒, 𝑐) for each combination of the presence/absence of the 

effect and the cues, the probability of the data as a function 

of the causal graph and its weights is: 

𝑃(𝐷 ∣ 𝑤⃗⃗⃗, 𝑙) = ∏ 𝑃(𝑒 ∣ 𝑐, 𝑙, 𝑤⃗⃗⃗)𝑁(𝑒,c⃗⃗)

(𝑒,c⃗⃗)
          (2) 

We assume a uniform prior distribution on 𝑤⃗⃗⃗ and define a 

prior distribution on 𝑙 as shown in equation 3. For each 

causal link, we make the link generative with probability α, 

preventive with probability β, and nonexistent with 

probability 1 – α – β. We use α and β as model parameters. 

For a causal graph with k generative causes, j preventive 

causes, and n cues, the priors are: 

𝑃(𝑤⃗⃗⃗, 𝑙) = 𝑃(𝑤⃗⃗⃗ ∣ 𝑙)𝑃(𝑙)

𝑃(𝑙) = α𝑘β𝑗(1 − α − β)(𝑛−𝑘−𝑗)

𝑃(𝑤⃗⃗⃗ ∣ 𝑙)~𝑢𝑛𝑖𝑓

                   (3) 

From Bayes’ theorem and our assumptions about the 

priors, we have 

𝑃(𝑤⃗⃗⃗, 𝑙 ∣ 𝐷) =
1

𝑍
𝑃(𝐷|𝑤⃗⃗⃗, 𝑙)𝑃(𝑤⃗⃗⃗|𝑙)𝑃(𝑙)      (4) 

The variable Z represents a normalizing constant. The 

model can be used to answer questions about the strength of 

a causal link or about its existence and direction. To find the 

posterior probability of a set of causal weights (i.e., causal 

strengths), we can integrate equation 4 over the other causal 

weights and sum over the causal graphs. 

The experiment in this paper, however, asks about the 

existence and direction of a causal link – not its strength. 

Therefore, we are more interested in the probability that a 

causal graph generated the data. This can be found by 

integrating over the causal weights. 

𝑃(𝑙 ∣ 𝐷) = ∫ 𝑃(𝑤⃗⃗⃗, 𝑙 ∣ 𝐷)𝑑𝑤⃗⃗⃗                  (5) 

To calculate the probability that a cue is causal, 

preventive, or noncausal, we sum the probabilities of each 

causal graph that contains the desired relationship. If we let 

L be the set of causal graphs such that li = x (where 𝑥 ∈
*−1, 0, 1+ represents the existence and direction of the 

causal relationship), then: 

𝑃(𝑙𝑖 = 𝑥 ∣ 𝐷) = ∑ 𝑃(𝑙 ∣ 𝐷)
𝑙∈𝐿

                 (6) 

Finally, to model causal judgments, we take the logit of 

this probability to obtain a measure of causal support, which 

is often viewed as a psychologically realistic measure of 

causal judgment (Griffiths & Tenenbaum, 2005): 

causal support = log(
𝑃(𝑙𝑖=𝑥∣𝐷)

1−𝑃(𝑙𝑖=𝑥∣𝐷)
)         (7) 

Retrospective revaluation 

To explain reduced overshadowing and backward blocking, 

we consider the causal graphs with two cues and one effect.  

Since we only allow causal relationships between cue A and 

the effect and cue B and the effect, this gives us 9 (i.e., 3
2
) 

causal graphs. We set the parameters such that the priors 

across the graphs are uniform (i.e., α = β = 1/3). When the 

model is given data where there are 4 trials of each type 

(e.g., 4xAB+ 4xA+ in the backward blocking condition), it 

can be used to generate a support measure for the hypothesis 

that cue B causes the effect. The model predicts that the 

difference between reduced overshadowing and a control 

(AB+) is larger than the difference between backward 

blocking and the control (see Table 1). 

To understand these predictions, it is useful to consider 

the posterior distribution of the weights. First, we consider 

the joint posterior of cues A and B after the AB+ trials 

conditional on both links being generative (see Figure 2). 

This posterior suggests that there is considerable uncertainty 

over the weights of cues A and B. However, it also suggests 

a dependency between the weights of the cues: at least one 
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of the cues must be causal. If wa is small, then wb must be 

large. However, if wa is large, then there is still uncertainty 

over wb. This dependency explains reduced overshadowing 

and backward blocking. If subsequent evidence indicates 

that cue A does not cause the effect (as is the case for 

reduced overshadowing), then cue B must. However, if 

subsequent evidence indicates that cue A causes the effect 

(as is the case for backward blocking), then the influence of 

cue B cannot be conclusively known. 

 

Table 1: The causal support measure for the causal link 

between cue B and the effect for reduced overshadowing, 

control, and backward blocking 

 

Condition support 

reduced overshadowing (AB+, A-) 5.02 

backward blocking (AB+, A+) 0.09 

control (AB+) 1.05 

 

 
Figure 2: The joint posterior distribution of wa and wb. 

 

These predictions are reflected in the posterior weights of 

cue B alone in the different retrospective revaluation 

conditions (see Figure 3). In the reduced overshadowing 

condition, it is clear that cue B must cause the effect: there 

is almost no possibility that the weight from cue B to the 

effect is zero. On the other hand, there is considerable 

uncertainty about the weight of cue B in both the blocking 

and control conditions: neither excludes the possibilities that 

B is noncausal or that B is causal. 

 

 
 

Figure 3: The posterior of the weights of cue B when cue B 

is a generative cause. 

Associative models 

Retrospective revaluation is notoriously problematic for 

associative models, but two associative models have been 

developed to explain it: Van Hamme & Wasserman's (1994) 

modified RW (Rescorla-Wagner) model and the Dickinson 

& Burke's (1996) modified SOP model. The problem for 

standard associative models is that they only learn about 

present cues. This precludes an explanation of reduced 

overshadowing and backward blocking, where learning 

about cue A leads participants to revise their beliefs about 

the absent cue B. To surmount this difficulty, the modified 

RW model and the modified SOP model utilize within-

compound associations: associations formed between 

simultaneously-presented cues. On the initial AB+ trials, 

these models learn an association between cues A and B. 

Later, the within-compound associations are used to recall 

associated cues that are absent on the trial, allowing the 

model to learn about them. If an A+ trial followed, the 

models would identify the absent cue B as an expected cue 

and would use this identification to support re-evaluation. 

Although within-compound associations allow the models 

to learn about absent cues, it is not clear whether they offer 

a genuine representation of uncertainty. 

Since the modified RW model incorrectly predicts that 

backward blocking will be at least as strong as reduced 

overshadowing (see Larkin et al., 1998 for a detailed 

explanation), we focus on the modified SOP model. 

The modified SOP model 

In the modified SOP model, there are three activation states: 

the A1 (observed), A2 (expected), and I (inactive) states. 

Each cue is represented by a node that is made up of many 

elements, so a node can be in more than one activation state. 

For example, if a cue were presented on a trial and it was 

expected on the basis of within-compound associations, 

there might be 40% of its elements in the A1 state, 40% in 

the A2 state, and 20% inactive. Excitatory learning occurs 

between two nodes to the extent that they are both in the A1 

state or both in the A2 state. Inhibitory learning occurs 

between two nodes to the extent that one is in the A1 state 

and the other is in the A2 state. No learning occurs 

otherwise. 

On AB+ trials, the modified SOP model learns that each 

cue is associated with the effect and that there is a within-

compound association between cues A and B. When cue A is 

presented alone, the within-compound association between 

cues A and B leads cue B to enter the A2 activation state 

(see Table 2). The state of the effect depends on the type of 

retrospective revaluation. For reduced overshadowing, the 

effect is expected but absent, so it will enter state A2. This 

puts the effect in the same state as cue B, so learning will be 

exclusively excitatory. For backward blocking, the effect is 

both expected and present, so it will enter states A1 and A2. 

Since this means that cue B and the effect will be partly in 

the same state and partly in a different state, there will be 

conflicted learning that is both excitatory and inhibitory. 

Therefore, the modified SOP model predicts the oft-
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observed asymmetry between reduced overshadowing and 

backward blocking. When compared to a control condition, 

the modified SOP model predicts that reduced 

overshadowing will be a stronger and more robust effect 

than backward blocking. 

 

Table 2: Activation states and learning during retrospective 

revaluation. The ↑ symbol indicates excitatory learning (an 

increase in associative strength) and the ↓ symbol indicates 

inhibitory learning (a decrease in associative strength).  

 

condition Cue B Effect B-effect 

learning 

r. overshadowing (A-) A2 A2 ↑ 

b. blocking (A+) A2 A1 and A2 ↑↓ 

control - - none 

 

However, these predictions seem arbitrary: the modified 

SOP model predicts both excitatory and inhibitory learning 

whenever the effect is both present and expected, but it is 

not clear why this should be the case. To test the modified 

SOP model, we designed an experiment where its 

predictions diverged from those of the Bayesian model. 

Method 

To test the predictions of the modified SOP model, we 

examined the preventive analogs of reduced overshadowing 

(i.e., A+, ABC-, AB+) and backward blocking (i.e., A+, 

ABC-, AB-). Until the final AB+ or AB- trials, the evidence 

suggests that cue A causes the effect and that either cue B 

alone prevents the effect, cue C alone prevents the effect, or 

that cues B and C prevent the effect. Like its generative 

analog, preventive reduced overshadowing eliminates two 

of these explanations by showing that cue B does not 

prevent the effect. By the process of elimination, one would 

infer that cue C must have been responsible for preventing 

the effect on the ABC- trials. The AB- trials in backward 

blocking show that cue B prevents the effect, but these trials 

do not fully clarify the influence of cue C: it is still possible 

that C prevents the effect, and it is still possible that it does 

not. Preventive reduced overshadowing should be a stronger 

and more robust effect than preventive backward blocking. 

The modified SOP model predicts the opposite. It predicts 

that learning is conflicted whenever the effect is both 

present and expected (as it is during reduced overshadowing 

AB+ trials), but that learning is clear whenever the effect is 

expected but absent (as it is during backward blocking AB- 

trials). According to the modified SOP model, preventive 

reduced overshadowing should be weaker and less robust 

than preventive backward blocking (see Table 3). 

For our experimental task, we used a cover story where 

participants were asked to discover which foods cause and 

prevent allergic reactions in medical patients. We 

manipulated the retrospective revaluation condition 

(preventive reduced overshadowing, preventive backward 

blocking, reduced overshadowing control, and blocking 

control) within-subjects. We also manipulated expectations 

about the probability that a randomly selected fruit would 

prevent an allergic reaction. Bayesian models have a 

mechanism for integrating prior knowledge and evidence 

from observations, and we manipulated expectations to 

assess whether prior knowledge influenced the participants. 

 

Table 3: Predicted changes in associative strength according 

to the modified SOP model for the preventive analogs of 

reduced overshadowing and backward blocking. 

 

Preventive analog Cue C Effect C-effect 

learning 

r. overshadowing (AB+) A2 A1 and A2 ↑↓ 

b. blocking (AB-) A2 A2 ↑ 

control - - none 

 

Participants 

Twenty-four undergraduates at the University of California, 

Los Angeles participated for course credit. The participants 

were randomly assigned to a infrequent (n = 7), occasional 

(n = 9), or frequent  (n = 8) prevention condition. 

Materials 

We selected icons that pictorially represented 21 different 

fruits. 

Procedure 

At the beginning of the experiment, participants were asked 

to take the perspective of allergists specializing in patients 

who have fruit allergies. They were informed that fruit 

allergies can be both caused and prevented in these patients. 

That is, some fruits might cause an allergic reaction in a 

patient, but other fruits might prevent an allergic reaction. 

Participants were told that they would read through the 

“fruit journals” of patients. They were informed that a fruit 

journal lists the fruits that a patient ate on a given day, and 

also records whether the patient had an allergic reaction. 

Each experimental trial corresponded to the record for one 

day in the fruit journal. A trial began by displaying the icons 

and names of whichever fruits the patient ate on that day. 

These icons were displayed alone for 1.5 seconds, at which 

point a cartoon face appeared. The cartoon face signified  

whether the patient had an allergic reaction on that day: a 

smiley face with the text “ok” meant that the patient did not 

have a reaction and a frowning face with the text “allergic 

reaction” meant that the patient had a reaction. The fruits 

and cartoon face were displayed together for 2.0 seconds 

before the trial ended. 

Participants read the fruit journals of five different 

patients. The journal of the first patient was used to 

manipulate the priors. The other four journals represented 

the four retrospective revaluation conditions. The fruits 
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were randomly mapped to the different fruit journals, and 

each fruit appeared in exactly one fruit journal. 

When the first patient was introduced, participants were 

told the approximate probability that a fruit prevents allergic 

reactions (the bracketed phrases were selected according to 

the infrequent, occasional, or frequent priors conditions): 

 

As is often the case with fruit allergies, a small number 

of fruits caused the patient's allergic reaction, [very few 

/ some / many] prevented it, and [many / some / very 

few] did nothing. 

The first fruit journal provided evidence for this claim. 

The patient experienced an allergic reaction after consuming 

one of the fruits alone, but the other four fruits in the journal 

did not cause the patient to experience an allergic reaction. 

Zero, two, or four of the other fruits prevented the allergic 

reaction (in the infrequent, occasional, and frequent priors 

conditions, respectively). This was demonstrated by 

showing, for each of the other fruits, whether the patient had 

an allergic reaction after consuming that fruit and the causal 

fruit at the same time. 

To familiarize the participants with the causal questions, 

the participants were then asked whether each fruit in the 

first journal caused, prevented, or did nothing to influence 

the patient's allergic reactions. Participants responded on a 

sliding scale running from -6 to 6 where -6 was labeled 

“definitely prevents”, -3 was labeled “maybe prevents”, 0 

was labeled “neither”, 3 was labeled “maybe causes”, and 6 

was labeled “definitely causes.” 

After answering questions about the influence of fruits on 

the first patient, participants viewed, in random order, a fruit 

journal for each retrospective revaluation condition. In each 

journal, the trials were divided into three stages, and the 

data for each stage are shown in Table 4. Each of the listed 

patterns was shown four times (e.g., fruit A caused an 

allergic reaction four times in stage 1). Within each stage, 

the trials were presented in a random order. 

 

Table 4: The data (by retrospective revaluation condition) 

 

condition stage 1 stage 2 stage 3 

reduced 

overshadowing 

A+ B- C- D- A+ ABC- A+ AB+ 

backward 

blocking 

A+ B- C- D- A+ ABC- A+ AB- 

control (rOS) A+ B- C- D- A+ ABC- A+ AD+ 

control (BB) A+ B- C- D- A+ ABC- A+ AD- 

 

Following the presentation of the data for each 

retrospective revaluation condition, participants were asked 

to report whether each fruit caused, prevented, or did 

nothing to influence the patient's allergic reactions. The 

response scale was identical to the scale that was used in the 

first fruit journal. 

Results 

The ratings for cue C are shown in Figure 4. The predicted 

asymmetry between reduced overshadowing and backward 

blocking was found. Compared to its control, reduced 

overshadowing had a substantial influence: it led 

participants to be much more certain that cue C prevented 

allergic reactions. Ratings for cue C did not differ 

substantially between the backward blocking and control 

conditions. The priors manipulation did not seem to 

substantially influence the causal ratings. 

An ANOVA confirmed that the retrospective revaluation 

condition influenced causal ratings, F(3, 63) = 23.84, p < 

.001, and that there was no effect of the priors manipulation, 

F(2, 21) = 0.29, p = .75, or interaction between the priors 

condition and retrospective revaluation condition, F(6, 63) = 

0.57, p = .75. Planned comparisons indicated that the effect 

of retrospective revaluation condition was driven by the 

difference between reduced overshadowing and its control, 

t(23) = 6.30, p < .001, and not by the difference between 

blocking and its control, t(23) = 0.94, p = .36. 

 

 
Figure 4: Causal ratings and Bayesian model predictions for 

cue C by retrospective revaluation condition and the prior 

likelihood of prevention. On both graphs, higher points on 

the y-axis correspond to greater certainty that cue C 

prevents allergic reactions. (rOS = reduced overshadowing, 

BB = backward blocking, Ctrl = control) 

 

To derive the predictions of the model, we set  α = .2 and 

then set β depending on the priors condition (β = .2 for 

infrequent,  β = .4 for occasional, and  β = .6 for frequent). 

The predictions of the model are shown for each condition 

in Figure 4. The model offered a good quantitative fit to the 

data, r = -.87. 

Discussion 

The results clearly contradict the predictions of the modified 

SOP model. Preventive reduced overshadowing was a much 

stronger effect than preventive backward blocking. The 

Bayesian model predicts this finding, and also offers a 

principled justification for its prediction. 
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The priors manipulation did not influence the participants’ 

causal ratings, but the interpretation of this finding is 

unclear. The Bayesian model predicts a limited effect of the 

priors manipulation, and the small number of participants 

per condition limited the experiment’s statistical power. 

Furthermore, since the prior frequencies were merely 

manipulated verbally, the manipulation may have been too 

weak. Other research has shown that priors can influence 

causal judgment (e.g., Sobel, Tenenbaum, & Gopnik, 2004). 

A final possibility is that the participants only represented 

approximate probabilities. Participants may have 

categorized the probability of causation by tracking whether 

a causal link definitely, maybe, or definitely does not exist. 

Consistent with this possibility, participants did not seem to 

differentiate between different degrees of maybe (e.g., see 

Figure 4).
1
 

The modified SOP model predicts the relative size of 

reduced overshadowing and backward blocking, but the 

preventive analogs of these findings illustrate that it does so 

for the wrong reasons. In both the modified RW model and 

modified SOP models, within-compound associations make 

a poor substitute for a genuine representation of uncertainty. 

Other associative models that use within-compound 

associations may be capable of explaining these results (e.g., 

Denniston, Savastano, & Miller, 2001), so further 

experimentation is necessary. However, the results of this 

experiment raise serious questions about whether within-

compound associations offer a genuine representation of 

uncertainty. As instantiated by the modified SOP model, 

they clearly do not. 
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