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Abstract

Since causal evidence is often ambiguous, models of causal
learning should be able to represent uncertainty over causal
hypotheses. Uncertainty is especially important in
retrospective revaluation (the re-evaluation of ambiguous
evidence in light of subsequent learning). We examine how a
Bayesian model and an associative model (the modified SOP
model of Dickinson & Burke, 1996) deal with this
uncertainty. We tested the predictions of the models in an
experiment with retrospective revaluation of preventive
causes. Results were consistent with the predictions of the
Bayesian model, but inconsistent with the predictions of the
modified SOP model.

Introduction

Causal evidence is often ambiguous and causal inference
uncertain. When examining an isolated case of food
poisoning, it is difficult to identify the meal — never mind
the food item - that caused the illness. Uncertainty is
especially salient in retrospective revaluation (when
established but ambiguous evidence is re-evaluated after
subsequent learning). We examine how Bayesian and
associative models of causal learning represent and deal
with ambiguous evidence in retrospective revaluation.
Although Bayesian models naturally represent the
uncertainty of causal inference from ambiguous evidence,
associative models do not.

Examples of retrospective revaluation include reduced
overshadowing and backward blocking. In both of these
phenomena, there is one effect whose presence we denote as
+ and absence we denote as - and two cues that we will call
cue A and cue B. In both reduced overshadowing and
backward blocking, the initial evidence shows that the effect
occurs after the presentation of both cues (AB+). This
evidence is ambiguous because it could be that cue A alone
causes the effect, cue B alone causes the effect, or that both
cues A and B independently cause the effect. Of course, it is
also possible that cues A and B interact to cause the effect,
but we will not consider this possibility further. We assume
that, due to parsimony, this explanation is only considered
when the others are ruled out.

In reduced overshadowing, participants later learn that the
effect does not occur after cue A is presented on its own
(i.e., A- trials follow the AB+ trials). This new evidence
suggests that cue A does not cause the effect. By conditional
contrast or the process of elimination, this implies that cue

B caused the effect on the AB+ trials. In backward blocking,
the new evidence shows that the effect occurs when cue A is
presented alone (i.e., A+ trials follow the AB+ trials). Since
the knowledge that cue A causes the effect explains the AB+
trials, this new evidence should make it less likely that cue
B causes the effect. However, it is still possible that cue B
also causes the effect. Intuitively then, reduced
overshadowing — which implies that cue B must cause the
effect — should offer stronger evidence for re-evaluation
than backward blocking.

This intuition is reflected in studies that have compared
reduced overshadowing and backward blocking to a control
condition (just AB+ trials). These studies have shown that
reduced overshadowing is stronger and more robust than
backward blocking (Corlett et al.., 2004; Larkin, Aitken, &
Dickinson, 1998; see also Beckers, De Houwer, Pineno, &
Miller, 2005; Lovibond, Been, Mitchel, Bouton, & Frohardt,
2003; but see Wasserman & Berglan, 1998; Wasserman &
Castro, 2005).

In this paper, we consider how different models of causal
reasoning explain reduced overshadowing and backward
blocking. Our goals are two-fold. Firstly, we seek to provide
a principled explanation of reduced overshadowing and
backward blocking by representing uncertainty. In service of
this goal, we formalize our intuitions in a Bayesian model of
causal inference.

Secondly, we consider how associative models deal with
retrospective revaluation. We focus on the modified SOP
model (Dickinson & Burke, 1996) because it explains the
observed asymmetry between reduced overshadowing and
backward blocking. However, we will argue that the
modified SOP model predicts this asymmetry for arbitrary
reasons. Therefore, we tested the modified SOP and
Bayesian models in a situation where they make competing
predictions: the preventive analogs of reduced
overshadowing (A+, ABC-, AB+) and backward blocking
(A+, ABC-, AB-).

A Bayesian model of retrospective revaluation

Bayesian models have been applied to retrospective
revaluation in order to explain trial-order effects (e.g., Daw,
Courville, & Dayan, 2008; Kruschke, 2008; Lu, Rojas,
Beckers, & Yuille, 2008) and the influence of prior
knowledge (e.g., Sobel, Tenenbaum, & Gopnik, 2004).
These models, however, have not been contrasted with
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associative models that were designed to explain
retrospective revaluation. For this comparison, we adapt
Griffiths & Tenenbaum's (2005) model of causal inference.
The model represents each possible causal explanation as
a causal graph (e.g., Figure 1). In the causal graphs that we
consider, a causal link can be generative, preventive, or non-
existent. Since we assume that there are multiple cues and a
single effect, a causal graph can be represented as a vector

of causal links Z, letting /; = 1 denote a generative causal
relationship between cue i and the effect, /; = 0 denote the
absence of a causal relationship, and /; = -1 denote a
preventive causal relationship. We provide each causal link
with a weight that represents the strength of the causal
relationship, and we represent these weights as a vector w
where 0 <w; <1 for each w;.
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Figure 1: A causal graph where cue A causes the effect (as
indicated by an arrow) and cue B prevents the effect (as
indicated by a modified arrow terminating in a circle)

To represent a trial, we let the vector ¢ denote the
presence (c; = 1) or absence (¢; = 0) of the cues and let e
denote the presence (e+) or absence (e-) of the effect.

To specify the probability of the effect, we need to define
a generating function that describes how causes combine to
produce the effect. We adopt the noisy-or and noisy-and-not
generating functions, which can be derived from the
assumptions of causal power (Cheng, 1997) for generative
and preventive causation, respectively. Given the vectors C,

T, and W, let G be the set of indexes such that /;= 1 (i.e.,
generative causes of e), and let P be the set of indexes such
that /; = -1 (preventers of e). Using the noisy-or and noisy-
and-not function, the probability of the effect is:

P(et | 617 )= [1]_[ Eg(l-wgcg)] [ ep(1 = wpey) (1)
-4

Then, given data D that provides a frequency count
N (e, &) for each combination of the presence/absence of the
effect and the cues, the probability of the data as a function
of the causal graph and its weights is:

ro1wh =[] Percimved @
(e0)

We assume a uniform prior distribution on W and define a
prior distribution on [ as shown in equation 3. For each
causal link, we make the link generative with probability a,
preventive with probability [, and nonexistent with
probability 1 — a — B. We use a and B as model parameters.

For a causal graph with k& generative causes, j preventive
causes, and 7 cues, the priors are:

Pw,D) =P I DP()
P() = a*p/(1 — o — B) k=D ()
PW | D~unif

From Bayes’ theorem and our assumptions about the

priors, we have
PW,01D) =-P(D|W,DP@IDPD)  (4)

The variable Z represents a normalizing constant. The
model can be used to answer questions about the strength of
a causal link or about its existence and direction. To find the
posterior probability of a set of causal weights (i.c., causal
strengths), we can integrate equation 4 over the other causal
weights and sum over the causal graphs.

The experiment in this paper, however, asks about the
existence and direction of a causal link — not its strength.
Therefore, we are more interested in the probability that a
causal graph generated the data. This can be found by
integrating over the causal weights.

PA D)= [Pw,I|D)dw )

To calculate the probability that a cue is causal,
preventive, or noncausal, we sum the probabilities of each
causal graph that contains the desired relationship. If we let
L be the set of causal graphs such that /; = x (where x €
{—1,0,1} represents the existence and direction of the
causal relationship), then:

P(;=x1D) = iP(fID) (©6)
EL

Finally, to model causal judgments, we take the logit of
this probability to obtain a measure of causal support, which
is often viewed as a psychologically realistic measure of
causal judgment (Griffiths & Tenenbaum, 2005):

P (li=x |D)

causal support = log(m)

(7

Retrospective revaluation

To explain reduced overshadowing and backward blocking,
we consider the causal graphs with two cues and one effect.
Since we only allow causal relationships between cue A and
the effect and cue B and the effect, this gives us 9 (i.e., 3%)
causal graphs. We set the parameters such that the priors
across the graphs are uniform (i.e., a = p = 1/3). When the
model is given data where there are 4 trials of each type
(e.g., 4xAB+ 4xA+ in the backward blocking condition), it
can be used to generate a support measure for the hypothesis
that cue B causes the effect. The model predicts that the
difference between reduced overshadowing and a control
(AB+) is larger than the difference between backward
blocking and the control (see Table 1).

To understand these predictions, it is useful to consider
the posterior distribution of the weights. First, we consider
the joint posterior of cues A and B after the AB+ trials
conditional on both links being generative (see Figure 2).
This posterior suggests that there is considerable uncertainty
over the weights of cues A and B. However, it also suggests
a dependency between the weights of the cues: at least one
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of the cues must be causal. If w, is small, then w, must be
large. However, if w, is large, then there is still uncertainty
over wy. This dependency explains reduced overshadowing
and backward blocking. If subsequent evidence indicates
that cue A does not cause the effect (as is the case for
reduced overshadowing), then cue B must. However, if
subsequent evidence indicates that cue A causes the effect
(as is the case for backward blocking), then the influence of
cue B cannot be conclusively known.

Table 1: The causal support measure for the causal link
between cue B and the effect for reduced overshadowing,
control, and backward blocking

Condition support
reduced overshadowing (AB+, A-) 5.02
backward blocking (AB+, A+) 0.09
control (AB+) 1.05

P(Wa, Wy, | AB+)

Figure 2: The joint posterior distribution of w, and w;,

These predictions are reflected in the posterior weights of
cue B alone in the different retrospective revaluation
conditions (see Figure 3). In the reduced overshadowing
condition, it is clear that cue B must cause the effect: there
is almost no possibility that the weight from cue B to the
effect is zero. On the other hand, there is considerable
uncertainty about the weight of cue B in both the blocking
and control conditions: neither excludes the possibilities that
B is noncausal or that B is causal.

r. overshadowing blocking control
3 3 3
2r 2
1r- 1 ™ ~——
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Figure 3: The posterior of the weights of cue B when cue B
is a generative cause.

Associative models

Retrospective revaluation is notoriously problematic for
associative models, but two associative models have been
developed to explain it: Van Hamme & Wasserman's (1994)
modified RW (Rescorla-Wagner) model and the Dickinson
& Burke's (1996) modified SOP model. The problem for
standard associative models is that they only learn about
present cues. This precludes an explanation of reduced
overshadowing and backward blocking, where learning
about cue A leads participants to revise their beliefs about
the absent cue B. To surmount this difficulty, the modified
RW model and the modified SOP model utilize within-
compound associations: associations formed between
simultaneously-presented cues. On the initial AB+ trials,
these models learn an association between cues A and B.
Later, the within-compound associations are used to recall
associated cues that are absent on the trial, allowing the
model to learn about them. If an A+ trial followed, the
models would identify the absent cue B as an expected cue
and would use this identification to support re-evaluation.

Although within-compound associations allow the models
to learn about absent cues, it is not clear whether they offer
a genuine representation of uncertainty.

Since the modified RW model incorrectly predicts that
backward blocking will be at least as strong as reduced
overshadowing (see Larkin et al., 1998 for a detailed
explanation), we focus on the modified SOP model.

The modified SOP model

In the modified SOP model, there are three activation states:
the Al (observed), A2 (expected), and I (inactive) states.
Each cue is represented by a node that is made up of many
elements, so a node can be in more than one activation state.
For example, if a cue were presented on a trial and it was
expected on the basis of within-compound associations,
there might be 40% of its elements in the Al state, 40% in
the A2 state, and 20% inactive. Excitatory learning occurs
between two nodes to the extent that they are both in the Al
state or both in the A2 state. Inhibitory learning occurs
between two nodes to the extent that one is in the Al state
and the other is in the A2 state. No learning occurs
otherwise.

On AB+ trials, the modified SOP model learns that each
cue is associated with the effect and that there is a within-
compound association between cues A and B. When cue A is
presented alone, the within-compound association between
cues A and B leads cue B to enter the A2 activation state
(see Table 2). The state of the effect depends on the type of
retrospective revaluation. For reduced overshadowing, the
effect is expected but absent, so it will enter state A2. This
puts the effect in the same state as cue B, so learning will be
exclusively excitatory. For backward blocking, the effect is
both expected and present, so it will enter states Al and A2.
Since this means that cue B and the effect will be partly in
the same state and partly in a different state, there will be
conflicted learning that is both excitatory and inhibitory.
Therefore, the modified SOP model predicts the oft-

1078



observed asymmetry between reduced overshadowing and
backward blocking. When compared to a control condition,
the modified SOP model predicts that reduced
overshadowing will be a stronger and more robust effect
than backward blocking.

Table 2: Activation states and learning during retrospective
revaluation. The 1 symbol indicates excitatory learning (an
increase in associative strength) and the | symbol indicates
inhibitory learning (a decrease in associative strength).

condition Cue B Effect B-effect
learning

r. overshadowing (A-) A2 A2 1

b. blocking (A+) A2 Aland A2 1|

control - - none

However, these predictions seem arbitrary: the modified
SOP model predicts both excitatory and inhibitory learning
whenever the effect is both present and expected, but it is
not clear why this should be the case. To test the modified
SOP model, we designed an experiment where its
predictions diverged from those of the Bayesian model.

Method

To test the predictions of the modified SOP model, we
examined the preventive analogs of reduced overshadowing
(i.e., A+, ABC-, AB+) and backward blocking (i.e., A+,
ABC-, AB-). Until the final AB+ or AB- trials, the evidence
suggests that cue A causes the effect and that either cue B
alone prevents the effect, cue C alone prevents the effect, or
that cues B and C prevent the effect. Like its generative
analog, preventive reduced overshadowing eliminates two
of these explanations by showing that cue B does not
prevent the effect. By the process of elimination, one would
infer that cue C must have been responsible for preventing
the effect on the ABC- trials. The AB- trials in backward
blocking show that cue B prevents the effect, but these trials
do not fully clarify the influence of cue C: it is still possible
that C prevents the effect, and it is still possible that it does
not. Preventive reduced overshadowing should be a stronger
and more robust effect than preventive backward blocking.

The modified SOP model predicts the opposite. It predicts
that learning is conflicted whenever the effect is both
present and expected (as it is during reduced overshadowing
AB-+ trials), but that learning is clear whenever the effect is
expected but absent (as it is during backward blocking AB-
trials). According to the modified SOP model, preventive
reduced overshadowing should be weaker and less robust
than preventive backward blocking (see Table 3).

For our experimental task, we used a cover story where
participants were asked to discover which foods cause and
prevent allergic reactions in medical patients. We
manipulated the retrospective revaluation condition
(preventive reduced overshadowing, preventive backward

blocking, reduced overshadowing control, and blocking
control) within-subjects. We also manipulated expectations
about the probability that a randomly selected fruit would
prevent an allergic reaction. Bayesian models have a
mechanism for integrating prior knowledge and evidence
from observations, and we manipulated expectations to
assess whether prior knowledge influenced the participants.

Table 3: Predicted changes in associative strength according
to the modified SOP model for the preventive analogs of
reduced overshadowing and backward blocking.

Preventive analog Cue C Effect C-effect
learning

r. overshadowing (AB+) A2 Aland A2 1]

b. blocking (AB-) A2 A2 1

control - - none

Participants

Twenty-four undergraduates at the University of California,
Los Angeles participated for course credit. The participants
were randomly assigned to a infrequent (n = 7), occasional
(n=9), or frequent (n = 8) prevention condition.

Materials

We selected icons that pictorially represented 21 different
fruits.

Procedure

At the beginning of the experiment, participants were asked
to take the perspective of allergists specializing in patients
who have fruit allergies. They were informed that fruit
allergies can be both caused and prevented in these patients.
That is, some fruits might cause an allergic reaction in a
patient, but other fruits might prevent an allergic reaction.

Participants were told that they would read through the
“fruit journals” of patients. They were informed that a fruit
journal lists the fruits that a patient ate on a given day, and
also records whether the patient had an allergic reaction.

Each experimental trial corresponded to the record for one
day in the fruit journal. A trial began by displaying the icons
and names of whichever fruits the patient ate on that day.
These icons were displayed alone for 1.5 seconds, at which
point a cartoon face appeared. The cartoon face signified
whether the patient had an allergic reaction on that day: a
smiley face with the text “ok” meant that the patient did not
have a reaction and a frowning face with the text “allergic
reaction” meant that the patient had a reaction. The fruits
and cartoon face were displayed together for 2.0 seconds
before the trial ended.

Participants read the fruit journals of five different
patients. The journal of the first patient was used to
manipulate the priors. The other four journals represented
the four retrospective revaluation conditions. The fruits
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were randomly mapped to the different fruit journals, and
each fruit appeared in exactly one fruit journal.

When the first patient was introduced, participants were
told the approximate probability that a fruit prevents allergic
reactions (the bracketed phrases were selected according to
the infrequent, occasional, or frequent priors conditions):

As is often the case with fruit allergies, a small number
of fruits caused the patient's allergic reaction, [very few
/ some / many] prevented it, and [many / some / very
few] did nothing.

The first fruit journal provided evidence for this claim.
The patient experienced an allergic reaction after consuming
one of the fruits alone, but the other four fruits in the journal
did not cause the patient to experience an allergic reaction.
Zero, two, or four of the other fruits prevented the allergic
reaction (in the infrequent, occasional, and frequent priors
conditions, respectively). This was demonstrated by
showing, for each of the other fruits, whether the patient had
an allergic reaction after consuming that fruit and the causal
fruit at the same time.

To familiarize the participants with the causal questions,
the participants were then asked whether each fruit in the
first journal caused, prevented, or did nothing to influence
the patient's allergic reactions. Participants responded on a
sliding scale running from -6 to 6 where -6 was labeled
“definitely prevents”, -3 was labeled “maybe prevents”, 0
was labeled “neither”, 3 was labeled “maybe causes”, and 6
was labeled “definitely causes.”

After answering questions about the influence of fruits on
the first patient, participants viewed, in random order, a fruit
journal for each retrospective revaluation condition. In each
journal, the trials were divided into three stages, and the
data for each stage are shown in Table 4. Each of the listed
patterns was shown four times (e.g., fruit A caused an
allergic reaction four times in stage 1). Within each stage,
the trials were presented in a random order.

Table 4: The data (by retrospective revaluation condition)

condition stage 1 stage 2 stage 3
reduced A+ B-C-D- A+ABC- A+ AB+
overshadowing

backward A+B-C-D- A+ABC- A+ AB-
blocking

control (rOS) A+ B-C-D- A+ ABC- A+ AD+
control (BB) A+ B-C-D- A+ABC- A+ AD-

Following the presentation of the data for each
retrospective revaluation condition, participants were asked
to report whether each fruit caused, prevented, or did
nothing to influence the patient's allergic reactions. The
response scale was identical to the scale that was used in the
first fruit journal.

Results

The ratings for cue C are shown in Figure 4. The predicted
asymmetry between reduced overshadowing and backward
blocking was found. Compared to its control, reduced
overshadowing had a substantial influence: it led
participants to be much more certain that cue C prevented
allergic reactions. Ratings for cue C did not differ
substantially between the backward blocking and control
conditions. The priors manipulation did not seem to
substantially influence the causal ratings.

An ANOVA confirmed that the retrospective revaluation
condition influenced causal ratings, F(3, 63) = 23.84, p <
.001, and that there was no effect of the priors manipulation,
F(2, 21) = 0.29, p = .75, or interaction between the priors
condition and retrospective revaluation condition, F(6, 63) =
0.57, p = .75. Planned comparisons indicated that the effect
of retrospective revaluation condition was driven by the
difference between reduced overshadowing and its control,
#23) = 6.30, p < .001, and not by the difference between
blocking and its control, #(23) = 0.94, p = .36.

[ linfrequent
6 .. .
participant data I occasional
o -frequent
S 4 R
8
(©]
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o
0
5 6 ' model predictions * '
<
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o 2r 4
<
20
Q
>
@ 2 r r r r
ros BB Ctri(ros) Cctrl(BB)

Figure 4: Causal ratings and Bayesian model predictions for
cue C by retrospective revaluation condition and the prior
likelihood of prevention. On both graphs, higher points on
the y-axis correspond to greater certainty that cue C
prevents allergic reactions. (rOS = reduced overshadowing,
BB = backward blocking, Ctrl = control)

To derive the predictions of the model, we set o =.2 and
then set B depending on the priors condition (B = .2 for
infrequent, P = .4 for occasional, and = .6 for frequent).
The predictions of the model are shown for each condition
in Figure 4. The model offered a good quantitative fit to the
data, r = -.87.

Discussion

The results clearly contradict the predictions of the modified
SOP model. Preventive reduced overshadowing was a much
stronger effect than preventive backward blocking. The
Bayesian model predicts this finding, and also offers a
principled justification for its prediction.
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The priors manipulation did not influence the participants’
causal ratings, but the interpretation of this finding is
unclear. The Bayesian model predicts a limited effect of the
priors manipulation, and the small number of participants
per condition limited the experiment’s statistical power.
Furthermore, since the prior frequencies were merely
manipulated verbally, the manipulation may have been too
weak. Other research has shown that priors can influence
causal judgment (e.g., Sobel, Tenenbaum, & Gopnik, 2004).

A final possibility is that the participants only represented
approximate  probabilities.  Participants may have
categorized the probability of causation by tracking whether
a causal link definitely, maybe, or definitely does not exist.
Consistent with this possibility, participants did not seem to
differentiate between different degrees of maybe (e.g., see
Figure 4).!

The modified SOP model predicts the relative size of
reduced overshadowing and backward blocking, but the
preventive analogs of these findings illustrate that it does so
for the wrong reasons. In both the modified RW model and
modified SOP models, within-compound associations make
a poor substitute for a genuine representation of uncertainty.
Other associative models that use within-compound
associations may be capable of explaining these results (e.g.,
Denniston, Savastano, & Miller, 2001), so further
experimentation is necessary. However, the results of this
experiment raise serious questions about whether within-
compound associations offer a genuine representation of
uncertainty. As instantiated by the modified SOP model,
they clearly do not.
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