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Abstract

Inference on the basis of recognition alone is assumed to
occur prior to accessing further information (Pachur &
Hertwig, 2006). A counterintuitive result of this is the “less-
is-more” effect: a drop in the accuracy with which choices are
made as to which of two or more items scores highest on a
given criterion as more items are learned (Frosch, Beaman &
McCloy, 2007; Goldstein & Gigerenzer, 2002). In this paper,
we show that less-is-more effects are not unique to
recognition-based inference but can also be observed with a
knowledge-based strategy provided two assumptions, limited
information and differential access, are met. The LINDA
model which embodies these assumptions is presented.
Analysis of the less-is-more effects predicted by LINDA and
by recognition-driven inference shows that these occur for
similar reasons and casts doubt upon the “special” nature of
recognition-based inference. Suggestions are made for
empirical tests to compare knowledge-based and recognition-
based less-is-more effects.
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The Less-is-more Effect

Suppose an individual is presented with the two cities Milan
and Modena and asked to choose between the two along
some criterion, for example to decide which has the larger
population. In the classic work of Goldstein and Gigerenzer
(2002), it is assumed that the participant will guess if they
recognize neither of the items, they will use whatever
additional knowledge is available to make a decision if they
recognize both of the items and if they recognize only one
of the items, they will choose this item as the larger without
consulting any other cues or searching for further
information about it (the Recognition Heuristic or RH).
Recognition-driven inference of this type predicts a less-is-
more effect, whereby individuals who recognize many of the
items often perform worse than individuals who recognize
fewer of the items (Goldstein & Gigerenzer, 2002). A
number of studies have shown that this effect can be
observed empirically (Frosch, Beaman & McCloy, 2007;
Goldstein & Gigerenzer, 2002; Reimer & Katsikopoulos,

2004). It occurs because items that are more prominent (e.g.,
larger, more populous cities) are more likely to be
encountered, hence more likely to be recognized.
Recognizing one of the two items is thus a useful cue for
choosing the recognized item; whereas if both items are
recognized, additional knowledge is needed to make the
decision and such additional knowledge may be very limited
in discriminative power. In the terms provided by Goldstein
and Gigerenzer (2002) a less-is-more effect, superior
performance by an individual who recognizes fewer of the
options, is expected when the recognition validity (the
probability that a correct decision is made based upon
recognition alone) exceeds the knowledge validity (the
probability that a correct decision is made based upon the
best available knowledge about the items).

The assumption underlying the RH is that items scoring
higher on the criterion under consideration (larger cities,
more successful ice-hockey teams, better tennis players etc).
are ordinarily encountered more frequently. The counter-
intuitive nature of the less-is-more effect makes its
prediction by recognition-driven inference interesting, and
has been used as a rhetorical device to promote the heuristic
(Borges, Goldstein, Ortmann & Gigerenzer, 1999;
Gigerenzer, 2007). Counter to this, failures to observe the
effect have been cited in attempts to refute the RH (e.g.,
Boyd, 2001; Dougherty, Franco-Watkins & Thomas, 2008;
Pohl, 2006). In describing the RH, Goldstein and
Gigerenzer (2002) use the example of recognizing a city
because it has appeared frequently in newspaper reports, a
larger city is more likely to be so mentioned. Any individual
who is presented with a city they recognize (but know
nothing more about) and one they do not is therefore well-
advised to choose the recognized city if judging which of
the two is more populous. However, the recognizability of a
particular city, for example, is a function of several factors,
including its physical distance from the individual as well as
its size. An appropriate analogy here might be the force of
gravity. Local towns, like nearby planetary bodies, might
have intrinsically less “pull” or prominence than distant
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cities (or distant galaxies) but their appearance in local news
reports is enhanced by their closer physical proximity and
both of these factors influence recognizability. A further
moderating factor is the way in which the individual might
shape the environment their own ends. In the newspaper
example, the individual receiving the newspaper is
implicitly assumed to be a fairly passive processor of the
information contained within the newspaper and no
consideration is given to the potential difference between an
individual who actively seeks out a newspaper and one who
does not or to potential differences between choice of
reading matter (e.g., the New York Review of Books versus
the National Enquirer) which may have very different
content, and each of which might be sought out, or passively
encountered, to different degrees by different individuals or
groups of individuals.

A basic premise in what follows is that, for any given
individual, there are several subgroups of items which the
individual is able to recognize and about which they may
also have partial knowledge. This is particularly likely if
they are local to the individual in some way or if they form
part of a set of items of special interest to that individual.
For example, American cities include large, famous cities
such as New York and New Orleans, and small cities
associated with famous universities, such as New Haven and
Palo Alto. The relative recognition of various subgroups
(such as those with famous Universities) may not be simply
correlated with size. Any individual with specialist
knowledge or affiliation with any special-interest group,
e.g., membership of a European academic community,
might be more likely to recognize small but academic cities
in the USA than all but the most famous large USA cities.
For this fictional individual®, there is a weaker relationship
between recognition and magnitude for the subset of US
cities with famous Universities than for the subset of US
cities that do not possess famous Universities.

This assumption that differential access to various sub-
groups of items may occur between individuals is not reliant
upon anecdotal evidence or arguments of plausibility as
above. By-item analysis of data taken from an experiment
by McCloy, Beaman, Frosch and Goddard (in press) shows,
when a group of 40 participants were asked to indicate
which of a group of famous individuals they recognize, a
significant interaction between the reason for the
individual’s celebrity and the participant’s gender, F(3, 43)
= 13.44, p < .001. For example, males recognized, on
average, sports personalities 78% of the time (females =
55%) and rock stars 75% of the time (females = 66%). In
contrast, females recognized fashion and show-business
professionals 57% of the time (males = 33%). In what
follows, we consider similar situations where, for an
individual within the environment, there is no simple
correlation between recognition and magnitude because
subsets of the items are prominent for reasons unconnected
to magnitude (e.g., the age, gender or special interests of the
individual). The question we wish to address is whether

1 Who bears a strong resemblance to the second author.

less-is-more effects still occur in such situations and what
forms of decision-rule, if any, will give rise to such effects.

LINDA

To formally examine the appearance of less-is-more
effects, we suppose a pool of N items, split into several
subsets A, B, C, .... Within each subset the participant is able
to recognize a, b, c, ... items, respectively. In a typical test
of recognition-driven inference, the experimenter selects
items quasi-randomly from the pool. Since the constraints
on the experimenter are unknown, a random selection from
N is assumed and the basic case considered is where pairs of
items are chosen, and the participant’s task is to say which
is larger. For purposes of exposition, attention is also
restricted to situations in which there are just three subsets.
The models can easily be extended to other cases (e.g., the
participant is asked to choose between more than two items
(Frosch et al., 2007; McCloy, Beaman & Smith, 2008)
and/or the pool is split into more than three subsets).

On a given trial, suppose the participant recognizes i items
from subset A, j items from subset B, and k items from
subset C. Only two items are presented, so 0 <i+j+k<2.
Pij is the probability of recognizing 0-2 items from A-C. pjx
is dependent on how many items the participant can
recognize in each of the subsets, but is independent of the
decision rule adopted. The probability of success is ajj,
given the recognition of i, j and k items from their respective
subsets. a; is dependent upon the decision rule adopted and
distinguishes between models. The overall probability of
success for any model is given by:

Zijic Pijk i 1)

The distinguishing feature of the RH model is that the
participant chooses the recognized item when only one item
is recognized. So g = 0.5 (no item recognized, pure
guess); oo, Ooro, and agoy reflect the success of the
reCOgnition heuristic; Ol110, Q101, Oo11, O200, Oo20, Ooo2 reflect
use of knowledge. The alternative against which the RH is
to be compared we refer to as LINDA (Limited INformation
and Differential Access). As the name implies, this model
requires two basic assumptions:

1. The limited information assumption. For each
recognized item, the individual has reliable but limited
information about its size (e.g. that the size is above the
population median).

2. The differential availability assumption. Some
subsets are more accessible than others so that subset A
contains items that are more readily recognizable than
subset B and so forth. The extent to which items in A are
larger than items in B implements the recognition-
criterion correlation which is the basis of the RH.

The limited information assumption is that some
information is available at the time of decision-making
against which to evaluate the usefulness of choosing the
recognized item in any given case. This is strictly limited:
above or below median knowledge corresponds in
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information theoretic terms (Shannon & Weaver, 1948) to
only 1 bit of information. The reliability of this information
may also vary. The differential availability assumption
states merely that, within any subset, a given individual may
recognize more or less items. Thus, a member of the UK
academic community may recognize more US cities with
famous Universities than a UK-based baseball fan. The
baseball fan, by contrast, may recognize more US cities with
famous baseball teams.

Existence-Proofs for Knowledge-Based Less-is-
more Effects.

For the LINDA model, consider the situation where the
individual has accurate median knowledge of items from
pool N, i.e., they accurately know whether each recognized
item is above or below median. Subset A includes items in
the top quartile of the size distribution, subset B includes
items in the second highest quartile of the size distribution,
and subset C contains all the remaining items. It is assumed
for purposes of exposition that median knowledge is perfect,
i.e., that the knowledge about a recognized item is accurate.
This assumption can be relaxed but the general conclusions
reported here hold for all reasonably high levels of accuracy
(to just above chance). The size of the pool from which the
test items are drawn is set at 100 but the same pattern of
results is obtained for all large values of N. The key
prediction is the relation between the proportion of correct
decisions (calculated by equation (1)) and n, the number of
items in the pool the participant can recognize. A less-is-
more effect occurs, according to Goldstein & Gigerenzer’s
(2002) definition whenever performance of the inference
task is demonstrably superior under conditions where fewer
items from the pool of test items are recognized. McCloy et
al. (2008) use a stricter definition, arguing that less-is-more
effects should be restricted only to those areas of the graph
where learning more items will continue to impair
performance. We use the latter definition for our examples,
although note that when this definition holds it necessarily
implies that Goldstein & Gigerenzer’s conditions are also
met.

Example 1: Low validity for complete recognition. One
way that less-is-more effects may be produced relates to
how decisions are made when both items are recognized (in
a 2-alternative forced choice task). LINDA is assumed to
access limited and possibly inaccurate knowledge about the
size of each recognized item, and use this knowledge to
choose the item she believes to be larger. Suppose that
choosing between two recognized items may, in some
instances, be extremely difficult. An extreme version of this
appears in Figure 1. When only one item is recognized,
LINDA makes decisions on the basis of whether the item is
judged above median (choose the recognized item) or below
the median (choose the unrecognized item), as given in the
appendix. Recognition-criterion correlations can be varied
by varying the availability of the items in the subsets
available to LINDA. For example, if all items in subset A

(top quartile of the criteria) are recalled before all items in
subset C (below median) then the recognition-criterion
correlation is obviously higher than when all items in subset
C are recalled before all items in subset A. In this
simulation, we manipulated the recognizability of individual
items within the subsets to obtain pre-set correlations
between recognition and criterion. For the current example,
we also assume that LINDA does not have the capacity to
make a decision when both items are recognized, and so is
0b||QEd to guess, that is o419, 0l101, Olo11. 0200, 0o20 and Oo2 Were
not calculated but all set at 0.5, as would be the case with
simulations of the RH. The situation resembles one outlined
in Goldstein and Gigerenzer (2002, pp. 84-85) in which
German participants were experimentally exposed to the
names of US cities without being presented with any further
information which might be of use, and is also comparable
with Schooler and Hertwig’s (2005) ACT-R implementation
of the recognition heuristic, which also assumed chance
level performance when both items were recognized
(Schooler & Hertwig, 2005, p. 614).
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Figure 1: Proportion correct for the LINDA model when
discrimination between two recognized items is at chance

Figure 1 shows clear less-is-more effects for all values of
the recognition-criterion correlation tested. As more items
are recognized (beyond a mid-point of 50% recognition
rate) the proportion of correct inferences drops.

Unlike the RH model, which requires quite large
criterion-recognition correlations to allow recognition
validity to exceed knowledge validity, LINDA shows less-
is-more effects for all values of the criterion recognition
correlation, p, although the largest less-is-more effects occur
for the largest values of p. For comparison, Figure 2 shows
the predicted performance of the RH when knowledge
validity is at chance and recognition validity takes the
values of p reported in Figure 1. The validity of recognition
is determined to some extent by p, which is determined for
LINDA by the orderings of subset availability, and she
experiences less-is-more effects occur even with low and
zero values of p.
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Figure 2: Predictions for the RH when recognition
validity (RV) takes the values of the recognition-criterion
correlation reported for LINDA. In this example, the RH is
followed despite below-chance levels of validity (RV<0.5)
which may not be realistic, but alternative strategies have
yet to be suggested for these situations and, in particular, the
point at which the RH is abandoned is not clearly outlined.

Example 1 relies upon the assumption that distinguishing
between two recognized items is sufficiently difficult as to
be effectively at chance. Both LINDA and RH are open to
the criticism that, if knowledge validity for full recognition
is chance, any non-random strategy able to operate when
only one item is recognized will outperform knowledge and
show less-is-more effects. This is a particular problem with
the RH, where both knowledge validity and recognition
validity are both set a priori for simulations such as this.
Example 2 shows that low knowledge validity for full
knowledge is not a necessary precondition for the
appearance of less-is-more effects.

Example 2: Variation in subset availability. In order to
formally compare LINDA with the RH model, we arranged
that the models perform equally well when all items are
recognized. Calculated probability of success when all items
were recognized was 0.7525 for LINDA so knowledge
validity was set at this level for the RH. The orderings of
subsets in terms of recognition provide a potential rationale
for variation in criterion-recognition correlation between
individuals. Different orderings of subsets (and hence
different recognition-criterion correlations) were simulated
and the expected proportions correct using LINDA and the
RH is given in Figure 2. We will use the notation ABC to
denote subset availability, where ABC means that items
from subset A are all more recognizable than the items from
subset B, which in turn are all more recognizable than the
items from subset C. A strict ABC recognition order
obviously implies a high recognition-criterion correlation.
Other recognition orderings (e.g., ACB) imply lower
criterion-recognition  correlations. ABC  ordering is
equivalent to a correlation between recognition and criterion
of p=.919 and ACB ordering is equivalent to p = .300.

Figure 3. Performance of LINDA and the RH according to a
recognition - criterion correlation determined by the
recognizability of subsets. ABC ordering results in a high
correlation and ACB a low (but still positive) correlation.

Figure 3 shows the performance of LINDA and the RH
model for two different criterion-recognition orderings:
ABC (items in the top quartile of the size distribution are
most recognizable and items below median are least
recognizable) and ACB (items in the top quartile are most
recognizable, then items from below the median and finally
items from the second quartile). ABC ordering corresponds
to a strong criterion-recognition correlation (p = .919) and
ACB ordering to a smaller, but still positive, correlation
between criterion and recognition (p =.3006).

The ABC ordering produces the expected effects from the
literature. The RH model shows the less-is-more effect,
while the knowledge-based LINDA model shows a
monotonic relation between proportion correct and number
of recognizable items. The situation is quite different for the
ACB ordering: here, LINDA produces an inverted-U shaped
function and a less-is-more effect. Less-is-more effects
therefore do not imply use of the recognition heuristic —
even given a positive criterion-recognition correlation — but
may occur for other reasons. The inverted-U shaped
functions that characterize the less-is-more effect indicate
that a task becomes more difficult once the number of
recognizable items passes a certain level. In the case of the
RH model and the ABC ordering, this is because “easy”
decisions (select the recognized item when only one item is
recognized) are gradually outnumbered by “difficult”
decisions (choose between items, both of which have been
recognized) as the number of recognizable items increases.
In the case of LINDA and the ACB ordering, moderate
levels of recognition produce many easy decisions
(discriminating a recognized item drawn from subset A
from a recognized item drawn from subset C) but the
decisions become more difficult when items of intermediate
size, from subset B, begin to join the pool of recognizable
items as the number of recognizable items increases.
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Discussion

Whilst the two models give less-is-more effects in different
circumstances, the effects are produced for essentially the
same reasons. When few items are recognizable, the task is
easier than when many items are recognizable. In the case of
the RH model, for both Examples 1 and 2, when few items
are recognizable the individual is more frequently
confronted with the easy decision of selecting the one item
recognized, rather than the problematic case of choosing
between two recognized items, and this position is reversed
when many items are recognizable. In Example 1 LINDA
benefits from knowledge about the single item recognized
which is not available to discriminate between two
recognized items. For LINDA, performance in Example 2
for intermediate levels of recognition (up to 75 items)
continues to improve as recognition rates rise because the
discrimination required is still more likely to be between an
item drawn from top quartile (subset A) and an item drawn
from the bottom quartiles (subset C). Adding items from the
second highest quartile (subset B), however makes the task
more difficult this and leads to a drop in performance, and
hence a less-is-more effect, at this point.

The fluency rule (discussed by Schooler & Hertwig, 2005)
produces similar results and, once again, for similar reasons.
Those items which are retrieved more quickly, dependent
upon memory activation-level, are presumed to score more
highly on the criterion (e.g., large cities are more quickly
retrieved). For the fluency rule, intermediate rates of decay
of activation allow for better discrimination between
activated items than either fast or slow rates of decay. Over
time, both slow and fast forgetting producing similar
activation levels for dissimilar items (e.g., very large and
very small cities). However, the fluency rule does not
require or use any knowledge beyond the fact of fast
retrieval. Thus, although it produces less-is-more effects of
a kind, these are arguably recognition-driven based upon
speed of access, rather than knowledge-driven, based upon
some item-specific knowledge. The fluency rule is also
reliant upon a fixed rate of decay from memory, an
assumption which has recently been challenged (Berman,
Jonides & Lewis, 2009; Lewandowsky & Oberauer, 2009;
Lewandowsky, Oberauer & Brown, 2009; Nairne, 2002).

Testing LINDA.

LINDA demonstrates that less-is-more effects can occur
for knowledge-based decisions and also that, when
discrimination between two recognized items is sufficiently
difficult, these effects can occur regardless of the
recognition-criterion correlation. She therefore stands as an
existence proof that less-is-more effects need not imply the
use of recognition-driven inference but can be produced by
strategies that invoke criterion knowledge. Any model that
makes use of limited knowledge is likely to produce
LINDA-like behavior.

Although LINDA reproduces the less-is-more effects
observed with the RH, it is also worth noting that
knowledge-based and recognition-based less-is-more effects

are, or should be, empirically distinguishable. LINDA
produces less-is-more effects similar to the RH when full
knowledge has validity only slightly higher than chance but,
unlike the RH, LINDA produces such effects regardless of
the size of the recognition-criterion correlation (Figure 1).
She also shows less inclination to produce such effects
when knowledge validity is not artificially constrained and
the recognition-criterion correlation is particularly high.
Indeed, LINDA is more likely to show less-is-more effects
when the recognition-criterion correlation is rather more
moderate (Figure 3). Thus, although LINDA provides a
plausible alternative account of existing less-is-more effects,
there are experimental manipulations not yet investigated
which should provide data that favor either one account or
the other.
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Appendix

1. Derivation of the values of pj in Equation (1):

Probability of recognizing no items:
Pooo =[(N—a—-b—-c)/IN]x[[N-a-b-c—-1)/(N-1)]
=(N-a-b-c)(N-a—-b-c—1)/[N(N-1)]
Probabilities associated with the recognition of only one
item:

P00 = [28/N] X [[N—a—b—c)/(N-1)]
=2a(N-a-b-c)/[[N(N-1)]
Probability of recognizing one item from the top quartile.

Similarly for second quartile and below median:
Po1o = 2b(N-a-b-c)/[N(N - 1)]
Poor = 2¢(N-a-b-C)/[N(N - 1)]

Probabilities associated with the recognition of both items:
P110 = 2ab/[N(N-1)]
(one item is in the top quartile and one item is in
the second quartile)
P1o1 = 2ac/[N(N-1)]
Po11 = 2bC/[N(N-1)]
(as above, substituting v and w where appropriate)
P20o = a(a — 1)/[N(N-1)]
(both items are in the top quartile)
Pozo = b(b — 1)/[N(N-1)]
Pooz = €(¢ — 1)/[N(N-1)]
(as above, substituting v and w where appropriate)

2. w;jk parameters for the LINDA model demonstrated in
Example 2.

Qoo — 0.5
No items are recognized, performance is chance.

ag00 = [0.5 % (0.25N —a)/(N—a—b —c)]
+[(0.75N-b-c)/(N-a—-b-c)]

Probability correct if one item from the top quartile is
recognized.

Ooo = 0.5x (025N - b)/(N —-a-bh- C)
+(0.5N-c)/(N-a-b-c)
Probability correct if the recognized item is in the second
quartile.

Ooo1 = (05N —a 'b)/(N —a—-b- C)
+0.5%x(05N-c)/(N-a-b-c)
Probability correct if the recognized item is below median.

Q110 = 0.5
Two items are recognized: one item is in the first quartile
and the second item is in the second quartile, so with
median knowledge, performance is chance.

Q101 = Og11 =1
One recognized item is above median and one is below so
success is certain.

0200 = Olo20 = Ogpz = 0.5
Both recognized items are from the same quartile, and so
cannot be distinguished.

3. 0jjx parameters for the Recognition Heuristic model
demonstrated in Example 2.

Qoo = 0.5

a300 =0.5x (0.25N -a)/((N-a—-b—c)
+(0.75N-b-c)/(N-a-b-c)
=(0.875N-0.5a-b-c)/ (N-a-b-c)
There is only one item recognized, it is in the top quartile.

o0 =0
+0.5x(0.25N - b)/(N-a—-b-c)]
+(0.5N-c)/(N-a—-b-c)
=(0.625N-a-b-c)/(N-a-b-c)
The recognized item is in the second quartile.

0oo1 = 0
+05%x(05N-c)/(N-a—-b-c)
=(0.25N-0.5c)/ (N—a—-b-c)

The recognized item is below median.

Q110 = Ol101 = Olg11 = Ol2o0 = Olo2o0 = Oloo2

All these cases involve recognition of both items, and it is
assumed knowledge can be used with a certain probability
of success. In the Example 2, this probability was chosen to
ensure that the LINDA and RH models produced the same
probability of success when all items were recognized.
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