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Abstract 

Inference on the basis of recognition alone is assumed to 
occur prior to accessing further information (Pachur & 
Hertwig, 2006). A counterintuitive result of this is the “less-
is-more” effect: a drop in the accuracy with which choices are 
made as to which of two or more items scores highest on a 
given criterion as more items are learned (Frosch, Beaman & 
McCloy, 2007; Goldstein & Gigerenzer, 2002). In this paper, 
we show that less-is-more effects are not unique to 
recognition-based inference but can also be observed with a 
knowledge-based strategy provided two assumptions, limited 
information and differential access, are met. The LINDA 
model which embodies these assumptions is presented. 
Analysis of the less-is-more effects predicted by LINDA and 
by recognition-driven inference shows that these occur for 
similar reasons and casts doubt upon the “special” nature of 
recognition-based inference. Suggestions are made for 
empirical tests to compare knowledge-based and recognition-
based less-is-more effects. 
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The Less-is-more Effect 

Suppose an individual is presented with the two cities Milan 

and Modena and asked to choose between the two along 

some criterion, for example to decide which has the larger 

population. In the classic work of Goldstein and Gigerenzer 

(2002), it is assumed that the participant will guess if they 

recognize neither of the items, they will use whatever 

additional knowledge is available to make a decision if they 

recognize both of the items and if they recognize only one 

of the items, they will choose this item as the larger  without 

consulting any other cues or searching for further 

information about it (the Recognition Heuristic or RH). 

Recognition-driven inference of this type predicts a less-is-

more effect, whereby individuals who recognize many of the 

items often perform worse than individuals who recognize 

fewer of the items (Goldstein & Gigerenzer, 2002). A 

number of studies have shown that this effect can be 

observed empirically (Frosch, Beaman & McCloy, 2007; 

Goldstein & Gigerenzer, 2002; Reimer & Katsikopoulos, 

2004). It occurs because items that are more prominent (e.g., 

larger, more populous cities) are more likely to be 

encountered, hence more likely to be recognized. 

Recognizing one of the two items is thus a useful cue for 

choosing the recognized item; whereas if both items are 

recognized, additional knowledge is needed to make the 

decision and such additional knowledge may be very limited 

in discriminative power. In the terms provided by Goldstein 

and Gigerenzer (2002) a less-is-more effect, superior 

performance by an individual who recognizes fewer of the 

options, is expected when the recognition validity (the 

probability that a correct decision is made based upon 

recognition alone) exceeds the knowledge validity (the 

probability that a correct decision is made based upon the 

best available knowledge about the items). 

The assumption underlying the RH is that items scoring 

higher on the criterion under consideration (larger cities, 

more successful ice-hockey teams, better tennis players etc). 

are ordinarily encountered more frequently. The counter-

intuitive nature of the less-is-more effect makes its 

prediction by recognition-driven inference interesting, and 

has been used as a rhetorical device to promote the heuristic 

(Borges, Goldstein, Ortmann & Gigerenzer, 1999; 

Gigerenzer, 2007). Counter to this, failures to observe the 

effect have been cited in attempts to refute the RH (e.g., 

Boyd, 2001; Dougherty, Franco-Watkins & Thomas, 2008; 

Pohl, 2006). In describing the RH, Goldstein and 

Gigerenzer (2002) use the example of recognizing a city 

because it has appeared frequently in newspaper reports, a 

larger city is more likely to be so mentioned. Any individual 

who is presented with a city they recognize (but know 

nothing more about) and one they do not is therefore well-

advised to choose the recognized city if judging which of 

the two is more populous. However, the recognizability of a 

particular city, for example, is a function of several factors, 

including its physical distance from the individual as well as 

its size. An appropriate analogy here might be the force of 

gravity. Local towns, like nearby planetary bodies, might 

have intrinsically less “pull” or prominence than distant 
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cities (or distant galaxies) but their appearance in local news 

reports is enhanced by their closer physical proximity and 

both of these factors influence recognizability. A further 

moderating factor is the way in which the individual might 

shape the environment their own ends. In the newspaper 

example, the individual receiving the newspaper is 

implicitly assumed to be a fairly passive processor of the 

information contained within the newspaper and no 

consideration is given to the potential difference between an 

individual who actively seeks out a newspaper and one who 

does not or to potential differences between choice of 

reading matter (e.g., the New York Review of Books versus 

the National Enquirer) which may have very different 

content, and each of which might be sought out, or passively 

encountered, to different degrees by different individuals or 

groups of individuals. 

A basic premise in what follows is that, for any given 

individual, there are several subgroups of items which the 

individual is able to recognize and about which they may 

also have partial knowledge. This is particularly likely if 

they are local to the individual in some way or if they form 

part of a set of items of special interest to that individual. 

For example, American cities include large, famous cities 

such as New York and New Orleans, and small cities 

associated with famous universities, such as New Haven and 

Palo Alto. The relative recognition of various subgroups 

(such as those with famous Universities) may not be simply 

correlated with size. Any individual with specialist 

knowledge or affiliation with any special-interest group, 

e.g., membership of a European academic community, 

might be more likely to recognize small but academic cities 

in the USA than all but the most famous large USA cities. 

For this fictional individual
1
, there is a weaker relationship 

between recognition and magnitude for the subset of US 

cities with famous Universities than for the subset of US 

cities that do not possess famous Universities.  

This assumption that differential access to various sub-

groups of items may occur between individuals is not reliant 

upon anecdotal evidence or arguments of plausibility as 

above. By-item analysis of data taken from an experiment 

by McCloy, Beaman, Frosch and Goddard (in press) shows, 

when a group of 40 participants were asked to indicate 

which of a group of famous individuals they recognize, a 

significant interaction between the reason for the 

individual’s celebrity and the participant’s gender, F(3, 43) 

= 13.44, p < .001. For example, males recognized, on 

average, sports personalities 78% of the time (females = 

55%) and rock stars 75% of the time (females = 66%). In 

contrast, females recognized fashion and show-business 

professionals 57% of the time (males = 33%). In what 

follows, we consider similar situations where, for an 

individual within the environment, there is no simple 

correlation between recognition and magnitude because 

subsets of the items are prominent for reasons unconnected 

to magnitude (e.g., the age, gender or special interests of the 

individual). The question we wish to address is whether 

                                                           
1 Who bears a strong resemblance to the second author. 

less-is-more effects still occur in such situations and what 

forms of decision-rule, if any, will give rise to such effects. 

LINDA 

To formally examine the appearance of less-is-more 

effects, we suppose a pool of N items, split into several 

subsets A, B, C, .... Within each subset the participant is able 

to recognize a, b, c, ... items, respectively. In a typical test 

of recognition-driven inference, the experimenter selects 

items quasi-randomly from the pool. Since the constraints 

on the experimenter are unknown, a random selection from 

N is assumed and the basic case considered is where pairs of 

items are chosen, and the participant’s task is to say which 

is larger. For purposes of exposition, attention is also 

restricted to situations in which there are just three subsets. 

The models can easily be extended to other cases (e.g., the 

participant is asked to choose between more than two items 

(Frosch et al., 2007; McCloy, Beaman & Smith, 2008) 

and/or the pool is split into more than three subsets). 

On a given trial, suppose the participant recognizes i items 

from subset A, j items from subset B, and k items from 

subset C. Only two items are presented, so 0 ≤ i + j + k ≤ 2. 

pijk is the probability of recognizing 0-2 items from A-C. pijk 

is dependent on how many items the participant can 

recognize in each of the subsets, but is independent of the 

decision rule adopted. The probability of success is αijk, 

given the recognition of i, j and k items from their respective 

subsets. αijk is dependent upon the decision rule adopted and 

distinguishes between models. The overall probability of 

success for any model is given by: 

 

Σijk pijk αijk (1) 

 

The distinguishing feature of the RH model is that the 

participant chooses the recognized item when only one item 

is recognized. So α000 = 0.5 (no item recognized, pure 

guess); α100, α010, and α001 reflect the success of the 

recognition heuristic; α110, α101, α011, α200, α020, α002 reflect 

use of knowledge. The alternative against which the RH is 

to be compared we refer to as LINDA (Limited INformation 

and Differential Access). As the name implies, this model 

requires two basic assumptions: 

1. The limited information assumption. For each 

recognized item, the individual has reliable but limited 

information about its size (e.g. that the size is above the 

population median). 

2. The differential availability assumption. Some 

subsets are more accessible than others so that subset A 

contains items that are more readily recognizable than 

subset B and so forth. The extent to which items in A are 

larger than items in B implements the recognition-

criterion correlation which is the basis of the RH. 

The limited information assumption is that some 

information is available at the time of decision-making 

against which to evaluate the usefulness of choosing the 

recognized item in any given case. This is strictly limited: 

above or below median knowledge corresponds in 
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information theoretic terms (Shannon & Weaver, 1948) to 

only 1 bit of information. The reliability of this information 

may also vary. The differential availability assumption 

states merely that, within any subset, a given individual may 

recognize more or less items. Thus, a member of the UK 

academic community may recognize more US cities with 

famous Universities than a UK-based baseball fan. The 

baseball fan, by contrast, may recognize more US cities with 

famous baseball teams. 

Existence-Proofs for Knowledge-Based Less-is-

more Effects. 

For the LINDA model, consider the situation where the 

individual has accurate median knowledge of items from 

pool N, i.e., they accurately know whether each recognized 

item is above or below median. Subset A includes items in 

the top quartile of the size distribution, subset B includes 

items in the second highest quartile of the size distribution, 

and subset C contains all the remaining items. It is assumed 

for purposes of exposition that median knowledge is perfect, 

i.e., that the knowledge about a recognized item is accurate. 

This assumption can be relaxed but the general conclusions 

reported here hold for all reasonably high levels of accuracy 

(to just above chance). The size of the pool from which the 

test items are drawn is set at 100 but the same pattern of 

results is obtained for all large values of N. The key 

prediction is the relation between the proportion of correct 

decisions (calculated by equation (1)) and n, the number of 

items in the pool the participant can recognize. A less-is-

more effect occurs, according to Goldstein & Gigerenzer’s 

(2002) definition whenever performance of the inference 

task is demonstrably superior under conditions where fewer 

items from the pool of test items are recognized. McCloy et 

al. (2008) use a stricter definition, arguing that less-is-more 

effects should be restricted only to those areas of the graph 

where learning more items will continue to impair 

performance. We use the latter definition for our examples, 

although note that when this definition holds it necessarily 

implies that Goldstein & Gigerenzer’s conditions are also 

met. 

 

Example 1:  Low validity for complete recognition. One 

way that less-is-more effects may be produced relates to 

how decisions are made when both items are recognized (in 

a 2-alternative forced choice task). LINDA is assumed to 

access limited and possibly inaccurate knowledge about the 

size of each recognized item, and use this knowledge to 

choose the item she believes to be larger. Suppose that 

choosing between two recognized items may, in some 

instances, be extremely difficult. An extreme version of this 

appears in Figure 1. When only one item is recognized, 

LINDA makes decisions on the basis of whether the item is 

judged above median (choose the recognized item) or below 

the median (choose the unrecognized item), as given in the 

appendix. Recognition-criterion correlations can be varied 

by varying the availability of the items in the subsets 

available to LINDA. For example, if all items in subset A 

(top quartile of the criteria) are recalled before all items in 

subset C (below median) then the recognition-criterion 

correlation is obviously higher than when all items in subset 

C are recalled before all items in subset A. In this 

simulation, we manipulated the recognizability of individual 

items within the subsets to obtain pre-set correlations 

between recognition and criterion. For the current example, 

we also assume that LINDA does not have the capacity to 

make a decision when both items are recognized, and so is 

obliged to guess, that is α110, α101, α011. α200, α020 and α002 were 

not calculated but all set at 0.5, as would be the case with 

simulations of the RH. The situation resembles one outlined 

in Goldstein and Gigerenzer (2002, pp. 84-85) in which 

German participants were experimentally exposed to the 

names of US cities without being presented with any further 

information which might be of use, and is also comparable 

with Schooler and Hertwig’s (2005) ACT-R implementation 

of the recognition heuristic, which also assumed chance 

level performance when both items were recognized 

(Schooler & Hertwig, 2005, p. 614). 

 

 
 

Figure 1: Proportion correct for the LINDA model when 

discrimination between two recognized items is at chance 

 

Figure 1 shows clear less-is-more effects for all values of 

the recognition-criterion correlation tested. As more items 

are recognized (beyond a mid-point of 50% recognition 

rate) the proportion of correct inferences drops.  

Unlike the RH model, which requires quite large 

criterion-recognition correlations to allow recognition 

validity to exceed knowledge validity, LINDA shows less-

is-more effects for all values of the criterion recognition 

correlation, ρ, although the largest less-is-more effects occur 

for the largest values of ρ. For comparison, Figure 2 shows 

the predicted performance of the RH when knowledge 

validity is at chance and recognition validity takes the 

values of ρ reported in Figure 1. The validity of recognition 

is determined to some extent by ρ, which is determined for 

LINDA by the orderings of subset availability, and she 

experiences less-is-more effects occur even with low and 

zero values of ρ. 
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Figure 2: Predictions for the RH when recognition 

validity (RV) takes the values of the recognition-criterion 

correlation reported for LINDA. In this example, the RH is 

followed despite below-chance levels of validity (RV<0.5) 

which may not be realistic, but alternative strategies have 

yet to be suggested for these situations and, in particular, the 

point at which the RH is abandoned is not clearly outlined. 

 

Example 1 relies upon the assumption that distinguishing 

between two recognized items is sufficiently difficult as to 

be effectively at chance. Both LINDA and RH are open to 

the criticism that, if knowledge validity for full recognition 

is chance, any non-random strategy able to operate when 

only one item is recognized will outperform knowledge and 

show less-is-more effects. This is a particular problem with 

the RH, where both knowledge validity and recognition 

validity are both set a priori for simulations such as this. 

Example 2 shows that low knowledge validity for full 

knowledge is not a necessary precondition for the 

appearance of less-is-more effects. 

 

Example 2: Variation in subset availability. In order to 

formally compare LINDA with the RH model, we arranged 

that the models perform equally well when all items are 

recognized. Calculated probability of success when all items 

were recognized was 0.7525 for LINDA so knowledge 

validity was set at this level for the RH. The orderings of 

subsets in terms of recognition provide a potential rationale 

for variation in criterion-recognition correlation between 

individuals. Different orderings of subsets (and hence 

different recognition-criterion correlations) were simulated 

and the expected proportions correct using LINDA and the 

RH is given in Figure 2. We will use the notation ABC to 

denote subset availability, where ABC means that items 

from subset A are all more recognizable than the items from 

subset B, which in turn are all more recognizable than the 

items from subset C. A strict ABC recognition order 

obviously implies a high recognition-criterion correlation. 

Other recognition orderings (e.g., ACB) imply lower 

criterion-recognition correlations. ABC ordering is 

equivalent to a correlation between recognition and criterion 

of ρ = .919 and ACB ordering is equivalent to ρ = .306.  

 

 
 

Figure 3. Performance of LINDA and the RH according to a 

recognition - criterion correlation determined by the 

recognizability of subsets. ABC ordering results in a high 

correlation and ACB a low (but still positive) correlation. 

 

Figure 3 shows the performance of LINDA and the RH 

model for two different criterion-recognition orderings: 

ABC (items in the top quartile of the size distribution are 

most recognizable and items below median are least 

recognizable) and ACB (items in the top quartile are most 

recognizable, then items from below the median and finally 

items from the second quartile). ABC ordering corresponds 

to a strong criterion-recognition correlation (ρ = .919) and 

ACB ordering to a smaller, but still positive, correlation 

between criterion and recognition (ρ = .306). 

The ABC ordering produces the expected effects from the 

literature. The RH model shows the less-is-more effect, 

while the knowledge-based LINDA model shows a 

monotonic relation between proportion correct and number 

of recognizable items. The situation is quite different for the 

ACB ordering: here, LINDA produces an inverted-U shaped 

function and a less-is-more effect. Less-is-more effects 

therefore do not imply use of the recognition heuristic – 

even given a positive criterion-recognition correlation – but 

may occur for other reasons. The inverted-U shaped 

functions that characterize the less-is-more effect indicate 

that a task becomes more difficult once the number of 

recognizable items passes a certain level. In the case of the 

RH model and the ABC ordering, this is because “easy” 

decisions (select the recognized item when only one item is 

recognized) are gradually outnumbered by “difficult” 

decisions (choose between items, both of which have been 

recognized) as the number of recognizable items increases. 

In the case of LINDA and the ACB ordering, moderate 

levels of recognition produce many easy decisions 

(discriminating a recognized item drawn from subset A 

from a recognized item drawn from subset C) but the 

decisions become more difficult when items of intermediate 

size, from subset B, begin to join the pool of recognizable 

items as the number of recognizable items increases. 
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Discussion 

Whilst the two models give less-is-more effects in different 

circumstances, the effects are produced for essentially the 

same reasons. When few items are recognizable, the task is 

easier than when many items are recognizable. In the case of 

the RH model, for both Examples 1 and 2, when few items 

are recognizable the individual is more frequently 

confronted with the easy decision of selecting the one item 

recognized, rather than the problematic case of choosing 

between two recognized items, and this position is reversed 

when many items are recognizable. In Example 1 LINDA 

benefits from knowledge about the single item recognized 

which is not available to discriminate between two 

recognized items. For LINDA, performance in Example 2 

for intermediate levels of recognition (up to 75 items) 

continues to improve as recognition rates rise because the 

discrimination required is still more likely to be between an 

item drawn from top quartile (subset A) and an item drawn 

from the bottom quartiles (subset C). Adding items from the 

second highest quartile (subset B), however makes the task 

more difficult this and leads to a drop in performance, and 

hence a less-is-more effect, at this point.  

The fluency rule (discussed by Schooler & Hertwig, 2005) 

produces similar results and, once again, for similar reasons. 

Those items which are retrieved more quickly, dependent 

upon memory activation-level, are presumed to score more 

highly on the criterion (e.g., large cities are more quickly 

retrieved). For the fluency rule, intermediate rates of decay 

of activation allow for better discrimination between 

activated items than either fast or slow rates of decay. Over 

time, both slow and fast forgetting producing similar 

activation levels for dissimilar items (e.g., very large and 

very small cities). However, the fluency rule does not 

require or use any knowledge beyond the fact of fast 

retrieval. Thus, although it produces less-is-more effects of 

a kind, these are arguably recognition-driven based upon 

speed of access, rather than knowledge-driven, based upon 

some item-specific knowledge. The fluency rule is also 

reliant upon a fixed rate of decay from memory, an 

assumption which has recently been challenged (Berman, 

Jonides & Lewis, 2009; Lewandowsky & Oberauer, 2009; 

Lewandowsky, Oberauer & Brown, 2009; Nairne, 2002).  

Testing LINDA. 

LINDA demonstrates that less-is-more effects can occur 

for knowledge-based decisions and also that, when 

discrimination between two recognized items is sufficiently 

difficult, these effects can occur regardless of the 

recognition-criterion correlation. She therefore stands as an 

existence proof that less-is-more effects need not imply the 

use of recognition-driven inference but can be produced by 

strategies that invoke criterion knowledge. Any model that 

makes use of limited knowledge is likely to produce 

LINDA-like behavior. 

Although LINDA reproduces the less-is-more effects 

observed with the RH, it is also worth noting that 

knowledge-based and recognition-based less-is-more effects 

are, or should be, empirically distinguishable. LINDA 

produces less-is-more effects similar to the RH when full 

knowledge has validity only slightly higher than chance but, 

unlike the RH, LINDA produces such effects regardless of 

the size of the recognition-criterion correlation (Figure 1). 

She also shows less inclination to produce such effects 

when knowledge validity is not artificially constrained and 

the recognition-criterion correlation is particularly high. 

Indeed, LINDA is more likely to show less-is-more effects 

when the recognition-criterion correlation is rather more 

moderate (Figure 3). Thus, although LINDA provides a 

plausible alternative account of existing less-is-more effects, 

there are experimental manipulations not yet investigated 

which should provide data that favor either one account or 

the other. 
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Appendix 

1. Derivation of the values of pijk in Equation (1): 

Probability of recognizing no items: 

p000 = [(N – a – b – c)/N] x [(N – a – b – c – 1)/(N – 1)] 

= (N – a – b – c)(N – a – b – c – 1)/[N(N – 1)] 

Probabilities associated with the recognition of only one 

item: 

 

p100 = [2a/N] x [(N – a – b – c )/(N – 1)] 

 = 2a(N – a – b – c)/[N(N – 1)] 

Probability of recognizing one item from the top quartile. 

 

Similarly for second quartile and below median: 

p010 = 2b(N-a-b-c)/[N(N - 1)] 

p001 = 2c(N-a-b-c)/[N(N - 1)] 

 

Probabilities associated with the recognition of both items: 

p110 = 2ab/[N(N-1)] 

(one item is in the top quartile and one item is in 

the second quartile) 

p101 = 2ac/[N(N-1)] 

p011 = 2bc/[N(N-1)] 

(as above, substituting v and w where appropriate) 

p200 = a(a – 1)/[N(N-1)] 

(both items are in the top quartile)  

p020 = b(b – 1)/[N(N-1)] 

p002 = c(c – 1)/[N(N-1)] 

(as above, substituting v and w where appropriate) 

2. αijk parameters for the LINDA model demonstrated in 

Example 2. 

α000 = 0.5 

No items are recognized, performance is chance. 

 

α100 = [0.5 x (0.25N – a)/(N – a – b – c)] 

 + [(0.75N – b - c)/(N – a – b – c)] 

Probability correct if one item from the top quartile is 

recognized. 

 

α010 = 0.5 x (0.25N – b)/(N – a – b – c)  

 + (0.5N – c)/(N – a – b – c) 

Probability correct if the recognized item is in the second 

quartile. 

 

α001 = (0.5N – a -b)/(N – a – b – c) 

 + 0.5 x (0.5N – c)/(N – a – b – c) 

Probability correct if the recognized item is below median. 

 

α110 = 0.5 

Two items are recognized: one item is in the first quartile 

and the second item is in the second quartile, so with 

median knowledge, performance is chance. 

 

α101 = α011 = 1 

One recognized item is above median and one is below so 

success is certain. 

 

α200 = α020 = α002 = 0.5  

Both recognized items are from the same quartile, and so 

cannot be distinguished. 

 

3. αijk parameters for the Recognition Heuristic model 

demonstrated in Example 2. 

α000 = 0.5  

 

α100 = 0.5 x (0.25N - a)/(N – a – b – c)   

+ (0.75N - b - c)/(N – a – b – c)  

= (0.875N - 0.5a – b - c)/ (N – a – b – c) 

There is only one item recognized, it is in the top quartile. 

 

α010 = 0 

 + 0.5 x (0.25N – b)/(N – a – b – c)]  

 + (0.5N – c)/(N – a – b – c)  

 = (0.625N – a – b – c)/ (N – a – b – c) 

The recognized item is in the second quartile. 

 

α001 = 0 

 + 0.5 x (0.5N – c)/(N – a – b – c) 

 = (0.25N – 0.5c)/ (N – a – b – c) 

The recognized item is below median. 

 

α110 = α101 = α011 = α200 = α020 = α002  

All these cases involve recognition of both items, and it is 

assumed knowledge can be used with a certain probability 

of success. In the Example 2, this probability was chosen to 

ensure that the LINDA and RH models produced the same 

probability of success when all items were recognized.  
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