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Abstract

Human beings show a robust nonindependence effect in causal
reasoning: they predict that collateral effects should be corre-
lated even given a common cause. This presents a problem for
existing models of causal reasoning, as most predict indepen-
dence. To deal with this problem, we propose an edge replace-
ment process that builds up apparently probabilistic causal re-
lations using hidden deterministic causes. This model allows
us to fit nonindependence effects, and shows promise for mod-
eling other phenomena, such as how causal relations change
over time.
Keywords: Markov violations; nonindependence; causal rea-
soning; models of causal reasoning

Introduction
Causation is only as simple as we make it. Consider the ex-
ample of sending an email to two colleagues: You push send,
which causes them to see text on their screen. The relation
seems simple enough, but in reality, there is a complex chain
of events that connects cause and effect, which most of us un-
derstand only vaguely (Keil, 2003). These details are usually
not worth considering, but they are useful when the causal re-
lations fail. For instance, most of us know to check our spam
filter when we fail to receive an expected email. Such de-
tails also tell you about correlations between events: If one
colleague calls to say she has not received the message, you
know to call the other one as well. Still, more detail is not
always better – it would be absurd reason about email at a
molecular level. Choosing the right level of detail is impor-
tant, and human beings seem to do it easily. Models of causal
inference must solve this problem as well.

Causal graphical models (hereafter, “CGMs”), (Pearl,
2000; Spirtes, Glymour, & Scheines, 2000) give us a lan-
guage in which to express this problem formally. Under this
framework, nodes in a graph represent events, and directed
edges represent causal relations. Figure 1 gives an example
of three graphs that capture the common cause scenario de-
scribed above: person C sends an email, causing persons E1
and E2 to receive it. Under the assumptions of CGMs, un-
connected nodes must be statistically independent, but other-
wise there are a wide range of possible functional relation-
ships that can be instantiated by an edge. There is also no
limit to the number of hidden nodes that can exist in a graph.

Figure 1: Examples of three different graphs that all capture
the common cause relation. Minimality prescribes that we
should begin by using a).

Thus, CGMs are enormously powerful, defining an infinite
space of possible graphs for any given causal relation.

In order to make use of CGMs, we need some way of
choosing which graph to use. The principle currently most
used is called minimality: use the simplest graph that fits the
data, in the sense that no other candidate graph has fewer
edges. This means that given a common cause of two effects,
the minimal graph is shown in Figure1a. It is often acknowl-
edged (i.e. Pearl, 2000) that minimality creates problems, but
in the absence of an alternative, it is widely used.

Within the literature on causal reasoning, the most acute
problem with minimality is known as nonindependence. The
simplest example of this phenomenon is found in a com-
mon cause scenario. If two effects of a common cause
are related according to the minimal graph (Figure 1a) then
the two effects should be independent given their common
cause. That is, if C directly causes each of E1 and E2, then
P(E1|C,¬E2)1= P(E1|C) = P(E1|C,E2). If we see evidence
that violates this expectation, then minimality allows us to use

1This notation means: The probability that E1 occurs given that
C occurred, but E2 did not.
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a slightly more complex graph that better fits the data. But
according to minimality, independence should be our initial
expectation.

Human beings do not have this expectation. In several ex-
periments (Mayrhofer, Hagmayer, & Waldmann, 2008; Re-
hder & Burnett, 2005; Walsh & Sloman, 2004) participants
robustly predict that P(C|E1,¬E2) < P(E1|C) < P(E1|C,E2),
even in novel scenarios, and even when independence is ex-
plicitly emphasized. Such nonindependence effects show that
if people respect CGMs, they do not respect minimality. This
raises the question of what principle, if any, people do respect.

Rehder and Burnett (2005) proposed an “underlying mech-
anism model” to address this problem, in which people repre-
sent hidden intermediate causal structure. In its current form,
this model allows only qualitative fits to the data. Our model
is one way of formalizing and extending Rehder and Burnett’s
proposal in order to make quantitative predictions. Further,
Mayrhofer et al. (2008) modeled nonindependence effects
using a source of common preventative noise, whose strength
they fit to the data. Again, we hope to build on this initial
step, and account formally for the source of this noise in a
more principled way, while using fewer parameters to fit ex-
perimental data.

We propose a generative model of causation, which we
call the causal edge replacement process (CERP). Theoret-
ically, it is motivated by the hypothesis that causal reasoning
involves representations of intermediate causal structure, or
mechanisms (Shultz, 1982). Formally, CERP assigns a prob-
ability distribution to an infinite space of possible graphs,
depending on how likely each is to be generated using re-
peated application of a specific edge replacement rule, and a
restricted function set. The model’s key contribution is that in
the generative process, each edge has a length; longer edges
tend to generate more hidden structure. While the graphs pre-
ferred by the model tend to be simple, they are not minimal.
In particular, graphs generated by CERP have a characteristic
branching structure that gives good quantitative fits to human
data on nonindependence. CERP also provides a formal way
of addressing questions about causal mechanisms.

We will begin by explaining exactly how the generative
model operates, then show how the model fits three indepen-
dently collected data sets, using the same parameter settings.
Finally, we will discuss directions for future work.

Generative model
We will describe the generative model in three indepen-
dent ways: In this section, we will give an informal verbal
overview of the edge replacement process. Figure 2 also
shows the process visually. Finally, we will describe the
model in complete formal detail.

CERP begins with an edge between two nodes, which rep-
resents a causal relation between two events of interest. The
process then moves down this edge, randomly generating re-
placements as it goes. Each replacement incorporates the in-
fluence of a new node. Because of the branching structure

Figure 2: A series of edge replacements leading to a graph.
The star indicates the location of the next replacement, as the
process moves down each edge. Dashed edges indicate in-
hibitory relations.

created by CERP, it is helpful to think of causation as flowing
down a stream from causes to effects.

To perform a replacement, we first replace the edge with an
edge-node-edge path combination that has the same length.
We call this middle node the “bridge node.” Then we add
a new edge (of randomly determined length) connecting the
bridge node and a new node. The meaning of “length” here
is more functional than physical – it does not correspond to
the spatial distance between cause and effect, but to how vul-
nerable the relation is to other events. The replacement is
randomly determined to be one of three types: If it is an
inhibitory replacement, then causation at this point follows
an AND NOT relation: causal power will flow through the
bridge node only if the new node is off. For instance, in
Figure 2, X is generated by an inhibitory replacement. This
might be a failure in the server that sends your email. (These
specific cover stories are not generated by CERP; they are
only used to illustrate the principles involved.) Replacements
can also be generative: For instance, E2 is generated next
– it fires whenever causation reaches the bridge node. We
call these “side effects”: For instance, sending an email may
leave a record on the server. The third type of replacement
is also generative, but causation flows inward rather than out-
ward. We call these “alternative generative causes,” because
they follow an OR relation: the effect fires either if causa-
tion reaches the bridge node, or if the alternative generative
cause fires. For instance, see Y in Figure 2: this might repre-
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sent the fact that you can cause a given colleague to see the
text on their screen via another method, like directing them
to a website. In principle, outward inhibitory replacements
are also possible, but are usually irrelevant – we only include
them for the sake of formal completeness results discussed
below. When the new node (not the bridge node) is gener-
ated, it is assigned some random probability of firing – this
is the only source of randomness in the causal structures de-
fined by CERP. Thus CERP is committed to determinism, in
the weak sense that variability arises from hidden causes, not
from intrinsic randomness in causal relations.

After a replacement, the same process continues along the
old path, and along the new edge created by the replacement.
Thus, graphs can become arbitrarily complex if replacements
are common enough. The process eventually stops when it
reaches the end of all edges, yielding a graph. We can “run”
the graph by deciding (again, randomly) whether each exoge-
nous node is on, then propagating causation deterministically
through the graph.

Formal Description of CERP
This section describes the model in complete formal detail.
Readers who are not interested in implementing CERP can
skip this section. A graph with n nodes consists of the fol-
lowing components: 1. An n× n matrix G that encodes
the causal relations (edges) between nodes. (1=generative,
-1=inhibitory, 0=no relation) 2. An n× n matrix L of edge
lengths. 3. A vector S of length n that encodes the spon-
taneous activation probabilities of each node. Together, <
G,L,S > defines a graph.

The generative process begins with an edge of length 1 be-
tween two nodes, which we will call A and B. We perform
replacements by moving along each edge and generating re-
placements according to a Poisson process with rate λ. This is
done by sampling x from Exponential(1/λ). If x > L(A,B),
then stop. Otherwise do a replacement at point x: Create a
new node M as the (n+1)th node. With probability ρ, desig-
nate a previously generated non-bridge node as E, otherwise
create a new node E as the (n+2)th node (For our purposes in
this paper, ρ = 0). Set G(A,M) = 1 and G(M,B) = G(A,B).
Set L(A,M) = x and L(M,B) = L(A,B)− x. If E already ex-
ists, and it is exogenous, set G(E,M), and if it is endoge-
nous, set G(M,E). Otherwise, with equal probability, choose
to set either G(E,M) or G(M,E). Set this relation as −1 or 1
with equal probability. Also sample L(M,E) or L(E,M) from
Exponential(γ). Set S(n + 1) = 0 and sample S(n + 2) from
Beta(α,β). Finally, set G(A,B) = 0, eliminating the original
edge. Initiate two new Poisson processes, along MB and ME,
and repeat until all processes have stopped.

To sample from the graph, determine whether each node
is on, according to S, then propagate causation deterministi-
cally through the graph to determine the values of each non-
exogenous node. A node is on if and only if all of its in-
hibitory connections are off, and at least one of its generative
connections is on, or it fires spontaneously. This instantiates
the OR (for generative) and AND NOT (for inhibitory) func-

tions originally applied to causation by Cheng (1997).

Completeness and Validity

We can use CERP to construct any logical relation: OR can
be created by an inward generative replacement, AND NOT
from an inward inhibitory replacement, while AND can be
created by an inhibitory replacement on the negation of a
variable. In particular, the inward inhibitory replacement acts
as a “causal transistor,” letting us construct a wide range of
logical “circuits.” We can also use the presence of a hid-
den inhibitor to generate any apparently probabilistic rela-
tion between two variables: To generate any P(B|A), per-
form a hidden inhibitory replacement on the edge AB, with
spontaneous activation probability 1−P(B|A). Similarly, for
any P(B|¬A), perform a hidden generative replacement with
spontaneous activation probability P(B|¬A).

Yuille and Lu (2008) show that their noisy-logical graphs
can capture any causal-functional relation. If we addition-
ally allow CERP to reuse existing exogenous nodes when
performing replacements (i.e. ρ > 0), then it is easy to see
that CERP can be used to mirror any noisy-logical graph, as
we can construct any logical or apparently probabilistic re-
lation as described above. Thus, we can extend Yuille and
Lu’s (2008) completeness result to CERP. Some such rela-
tions will be generated with low probability by CERP, but all
relations will have nonzero probability of being generated.
Thus, CERP defines a prior distribution over the hypothesis
space of all possible causal-functional relations.

The model also preserves validity: Because it introduces
no undirected edges or cycles, it will always produce a di-
rected acyclic graph when given a directed acyclic graph. To
introduce a cycle, the model would have to introduce a path
from a descendant to an ancestor. But this is not possible,
because all new paths are either from nodes that have no an-
cestors, or to nodes that have no descendants.

Overall, CERP provides a way of expressing causal-
functional relations using a compact set of rules. The re-
striction to deterministic OR and AND NOT functions means
that complex relations must be expressed graphically, where
the complexity is easier to see and measure, than it is in the
complex conditional probability tables often used in existing
instantiations of CGMs.

The model has two key components: the idea of edge re-
placement, and the use of deterministic causal relations. It is
conceivable that we could use edge replacement with proba-
bilistic relations. For instance, edges could begin with prob-
abilistic values that change as replacements are made. How-
ever, this introduces a great deal of complexity, which is un-
warranted unless necessary to fit human data. Given evidence
(e.g. Schulz & Sommerville, 2006) that even children seem
to be determinists in the relevant sense, we believe it is a good
assumption. Future work will focus on testing this determin-
ism commitment directly. In this paper, we will instead focus
on testing the structural predictions that arise primarily from
the use of length in the generative process.
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Fitting nonindependence effects
Walsh and Sloman (2004)
Walsh and Sloman (2004) showed a nonindependence effect
that provides the simplest test of our model. They told adult
participants simple common effect cover stories, in which
event C caused both events E1 and E2. For instance, some
participants were told that jogging (C) caused both increased
fitness (E1) and weight loss (E2). They then asked partici-
pants to judge P(E1|C) and P(E1|C,¬E2). Figure 3 shows
their data averaged across experiments. Participants reliably
judged that P(E1|C) > P(E1|C,¬E2). This is a nonindepen-
dence effect: If both effects are generated independently from
the cause (as in Figure 1a), both values should be the same.

CERP’s predictions are also shown in Figure 3. In fit-
ting this and subsequent experiments, we used Monte Carlo
sampling on causal structures as generated by CERP. One ap-
proach would be to generate a large set of graphs using CERP,
keeping only the small subset that are consistent with the
cover story and data presented to participants. In this case, we
would accept only graphs that had exactly two visible effects.
A sufficiently large sample will reflect the properties of the
probability distribution defined by CERP. Such an approach
is correct but computationally expensive, prohibitively so as
we add complexity to the cover story.

We used a more efficient, but equivalent procedure: Be-
gin with a single edge between the cause C and effect E1 de-
scribed to participants. Then generate the single visible side
effect described to participants. This is equally likely to have
been generated from any given point on the path from cause
to effect, so we generate the second effect by choosing a ran-
dom point x ∼U [0,1].2 Call the branch point M, and set the
length of ME1 to (1−x) in order to ensure that E1 and E2 have
the same path length from C and hence the same expected
P(En|C). This is in order to meet the condition, common in
nonindependence experiments, that effects are equally likely
given the cause. Because of this equivalence, the choice of
initial effect in CERP is arbitrary. This process creates three
edges: CM, ME1, and ME2.

At this point, we have generated all the visible causes and
effects described to participants. Therefore, we are licensed
in using a computational shortcut to do simultaneous infer-
ence over all the further (hidden) replacements that could be
generated by CERP. In this case, all that matters are inward
hidden replacements that occur along each edge. Active re-
placements on CM (like X in Figures 1 and 2) change both
relations (creating a correlation); active replacements on MEi
(like Y and Z in figures 1 and 2) change only the relation CEi,
and inactive replacements have no effect.

We introduce the parameter h to describe a Poisson pro-
cess that moves along the edge of interest, generating only
active inward hidden replacements whose causal power ac-
tually reaches the path, with rate −ln(h). This means that
the probability of having zero active replacements along an

2This means: “x was sampled from a uniform distribution be-
tween 0 and 1.” We will use similar notation throughout the paper.

Figure 3: Data from Walsh and Sloman (2004), averaged over
experiments, along with model predictions. Predictions are
robust across alternative parameter settings.

edge of length l is hl . We also introduce the parameter a to
capture the probability that a given visible event fires spon-
taneously, as a result of causal processes not captured in the
graph (Cheng, 1997). Together, h and a replace all the param-
eters described above in the full formal model. For instance,
for most values of h and a, there are many settings of λ, γ, α

and β that produce the same predictions. As long as we are
not interested in the specific causal structure that generated
each effect, this process is equivalent to generating a larger
sample of more detailed graphs.3Crucially, it also uses fewer
parameters.

After generating causal structures with branch points at
various lengths, we used h = 0.5 and a = 0.3 to generate sam-
ples of the co-occurrence of the three events, by generating
a set of replacements and propagating causation through the
graph. Figure 3 shows the proportion of times that events
occurred together, along with human probability judgments.
We continued generating samples until we had at least 10000
samples for each entry. Predictions were resistant to changes
in parameters; Figure 3 also shows other settings for h.

CERP can also easily make predictions about P(E|¬C),
which Walsh and Sloman did not directly ask participants.
However, they did ask participants a related question: the
probability of an effect given a disabler that inhibited both
effects (0.34). We sampled this by generating an active com-
mon inhibitor at a randomly chosen point y ∼ U [0,1], then
choosing the branch point x from U [y,1], because it would be
incoherent for the branch point to occur before the common
disabler. This gave us a P(E|y) of 0.35. This value is lower
than P(E|¬C) because there is less of the path remaining on
which a generative cause could fire.

Overall, the model explains the data well. Because there
were few data points (three) in comparison to the number of
parameters in the model (two), we will look at more experi-
ments using the same parameters that best fit these data.

3We verified this by running the full generative model with a
variety of parameter settings – several produced the same results as
in Figure 3.
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Rehder and Burnett (2005)
Another dataset is provided by Rehder and Burnett (2005),
who found a nonindependence effect in the domain of feature
inference. They told adult participants that one novel feature
of a category (C), caused three other novel features (E1,2,3).
They then asked participants to judge the probability of one
feature in a member of the category, given some value of C,
and some number of other collateral effects. In Experiment 1,
participants were given a cover story involving natural kinds.
In Experiment 2, participants were not given a cover story at
all – they were told that abstract features caused each other.
Across multiple experiments, participants predicted that the
values of collateral effects would be correlated, showing a
nonindependence effect even with no cover story. The results
of their Experiments 1 and 2 are shown in Figure 4.

We modeled this much like Walsh & Sloman, 2004, except
that there were two branch points and thus five edges. Again,
we ensured that all paths from C to En had the same length,
because participants were told that all effects had the same
probability. All parameters were the same as in fitting Walsh
and Sloman: h = 0.5, and a = 0.3. Because there was al-
ways one node with a longer branch than the others, we also
randomly permuted the role of each node.

Results are shown in Figure 4. The model provides a good
fit to the data, especially when the cause is present. In the
absence of the cause, the model predicts slightly higher prob-
ability judgments than participants’ responses. This is prob-
ably due to the effect of categorization: Other data show that
participants in this paradigm were significantly less likely to
believe that a given instance was actually a member of the
category when C was not present (Rehder & Burnett, 2005).
This well-known “causal status effect” (Ahn, Kim, Lassaline,
& Dennis, 2000) probably lowered their judgments of the
other characteristic features of the category. Put another way,
we assumed that feature C was uncaused, but participants
may have assumed that all features had a hidden common
cause that was present only in category members. CERP can
model the effect of such an additional hidden common cause,
but that was not our goal in the present investigation. We
model an experiment below that replicated Rehder and Bur-
nett’s findings outside the domain of categorization, where
we do not find this problem.

Mayrhofer, Hagmayer, and Waldmann (2008)
One strength of CERP is that it predicts how descriptions of
the causal mechanism should affect the degree of noninde-
pendence observed. Mayrhofer, Hagmayer, and Waldmann
(2008) did just this. They told adult participants about four
telepathic aliens; we will call them C, E1, E2 and E3. The
“cause” alien sometimes causes the “effect” aliens to think
of food when he thinks of food. In the transmit condition,
the instructions said that C sent his thoughts to each En, but
sometimes C had difficulty concentrating. In the receive con-
dition, instructions said that each En read the thoughts of C,
but each effect alien sometimes had difficulty concentrating.

Figure 4: Data from Rehder and Burnett (2005) along with
model predictions. Lower judgments in the absence of the
cause feature are probably due to categorization, which is ex-
ternal to our model.

Like Rehder and Burnett (2005), they asked participants to
judge P(E) given different numbers of collateral effects. Data
show a much stronger nonindependence effect in the transmit
than in the receive condition (See Figure 5).

As before, we used a process which was equivalent to gen-
erating a large sample of graphs, and keeping only those con-
sistent with the cover story. The cover story describes three
similar effects, so we began by generating all three from the
same branch point x∼U [0,1]. We generated an inhibitor, ex-
plicitly mentioned in the cover story (“failure concentrating”)
at point y∼U [0,1], assigning it probability a = 0.3 of firing.
In the receive condition, we kept only those samples in which
y > x, since the inhibitor was described as applying to each
alien individually. We generated one instance of the inhibitor
on each branch. In the transmit condition, we kept only sam-
ples in which y < x, since only one inhibitor was described.
We know of no other way to generate graphs consistent with
both CERP and the cover story. Otherwise, we sampled as
before, using h = 0.5 and a = 0.3.

As shown in in Figure 5, the model provides a good fit to
the data. One exception is the point in the transmit condition
in which two collateral effects occur, but the cause does not
(the last entry in the “transmit” graph): The model predicted a
medium probability judgment, while participants gave a low
judgment. This may be due to a random anomaly in human
responses, because the data are hard to explain under any
account: As collateral effects were added, participants low-
ered, rather than raised, their probability judgment. This is
not replicated in any other condition or experiment.

Mayrhofer et al. fit the qualitative difference between the
conditions by adjusting a quantitative parameter: strength of
inhibitory noise, which was strong in the transmit condition
and weak in the receive condition. As they show, this param-
eter can be used to fit a wide range of data. Our model used
a qualitative structural change instead, while the quantitative
parameters have relatively little effect on the predictions, and
remained constant between conditions and experiments. The
model captures how changes to the mechanism description
change the source and structure of the noise.
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Figure 5: Data from Mayrhofer et al. (2008) along with
model predictions. No parameters were varied between con-
ditions –only the constraints given by the different cover sto-
ries.

Conclusion and Further Work
We use CERP to fit three independently collected data sets
on nonindependence, using the same parameters between ex-
periments, and even between conditions within experiments.
Over all three data sets, we fit 21 data points using 2 free pa-
rameters, with a correlation of greater than 0.99.4 The power
of CERP seems to come not from its use of free parameters,
but from the fact that structural aspects may mirror some im-
portant aspect of the way that human beings represent cau-
sation. Further work will focus on exploring these aspects
more closely. For instance, we can generalize our explana-
tion for Mayrhofer et al., 2008’s data to make a novel predic-
tions: Early inhibitors in a causal stream should create more
nonindependence than late inhibitors. We call this a stream
location effect. We have recently tested this on preschoolers,
with positive results (Buchanan & Sobel, 2010).

Our main intent with CERP is to test predictions that go
well beyond nonindependence effects. For instance, its com-
mitment to a form of determinism (namely, that apparent ran-
domness always comes from hidden causes) has implications
for how we reason about data that varies over time. Imagine
your car fails to start one morning. Is it more likely to start
tomorrow morning, or on a morning one year from now? If
the relation were truly random, there should be no difference
in judgment between these two times. If we introduce time
into CERP, it should be able to rationally justify and fit our

4In data sets with multiple experiments, we correlated the
model’s predictions with the average over the experiments.

intuition that the car is more likely to start a year from now,
than it is tomorrow. This is because variability arises from
hidden causes that have persistence in time and space.

Finally, because it can generate any functional relation,
CERP represents one way of defining a prior distribution over
logical graphs. This may be useful to researchers (i.e. Lucas
& Griffiths, 2010) who are interested in how people learn
about the functional form of causal relations. An interest-
ing question that arises from this research program is whether
something like CERP could itself be learned – for instance,
children might start with more general causal expectations,
and come to realize that the world follows some or all of the
commitments of CERP, such as determinism, and the stream-
like character of causation.
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