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Abstract

How do we learn causal structures? All current approaches
use scenarios in which trials are temporally independent;
however, people often learn about scenarios unfolding over
time. In such cases, people may assume that other variables
don’t change at the same instant as an intervention. In
Experiment 1, participants were much more successful at
learning causal structures when this assumption was upheld
than violated. In Experiment 2, participants were less
influenced by such temporal information when they believed
the trials to be temporally independent, but still used the
temporal strategy to some extent. People seem to be inclined
to learn causal structures by connecting events over time.
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Introduction

How do our concepts of event units influence how we learn
causal structures? Despite the surge of research on causal
structure learning, there has been little attention to how
learners “connect” streams of information over time.

Existing theories of how people learn causal structures
have focused on cases with events considered to be
independent. For example, suppose we are trying to learn
the causal relationships between three economic variables:
employment, GDP, and consumption.  Existing
psychological theories suggest that one looks at the
relationships among the variables across many separate
countries to determine the causal structure. We call this
strategy the independent events strategy because the
countries are assumed to be independent.

An alternative approach is to pick one country and follow
the three variables over time. We could track whether GDP
goes up when employment goes up, etc. We call this
strategy the dependent events or temporal strategy because
the state of each variable is dependent on its prior state.

Psychologically, the temporal strategy may be pervasive
and perhaps a default. As temporal beings we often perform
or witness sequences of actions on one entity. For example,
a car mechanic or computer technician can repair different
components until the problem is solved. A psychotherapist
can attempt to change one person's beliefs, emotions, and
behaviors systematically over time. A physician can
intervene on heart rate, breathing, and blood pressure to
stabilize a patient. In many real-world situations we do
interact with causal systems repeatedly over time, and thus
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the temporal strategy may be common if not a default for
learning causal structures.

In formal statistics we have developed specialized
procedures for independent cases (e.g., between-subjects)
and dependent cases (e.g., repeated-measures, time-series).
Analogously, do people use different learning strategies for
the two scenarios? In the following sections we detail the
different inferences people might make.

Interventions with Independent Trials

Consider first one prominent account of how people learn
causal structures from interventions when trials are
independent (e.g., Gopnik et al., 2004; Pearl, 2000; Steyvers
et al., 2003). According to this model, when you intervene
upon a variable such that you control its state, that variable
is assumed to be independent from its other causes, but its
effects are still dependent on that variable. Consider again
the example of learning the causal relationships between
employment (E), GPD (G), and consumption (C). Pretend
that a priori it is possible that any of these factors could
influence or be influenced by any of the other factors. To
learn the causal structure, one could intervene on each of the
three variables to determine which other variables are
influenced by (dependent upon) the intervention.

Suppose that the true causal structure is a chain; £
influences G, which influences C; E—~G—C. If we could
institute jobs-creation programs in 10 countries, we would
expect them to have high G and C. If, hypothetically, we
instituted a mass lay-off of government employees, we
would expect comparatively low G and low C. These
opposite interventions demonstrate how G and C are
dependent on E. If we somehow selectively boosted G forl0
new countries, they would have high C, but the same FE as if
we decreased G for 10 other countries; C is dependent on G
but £ is not. And if we gave 10 countries a boost in C, and
another 10 countries a decrease in C, the two countries
should have the same F and G; neither is dependent upon C.

If instead the true causal structure is a common cause
such that E influences both G and C, G<—E—C, we would
expect a different pattern of (in)dependence. If we increase
or decrease G, the respective countries would have the same
levels of £ and C because they are independent of G.

This strategy can identify the precise causal structure
because each causal structure has a different pattern of
(in)dependence when the variables are intervened upon.



Importantly, however, this strategy requires that the
observations be independent. This strategy does not look at
whether one country's GDP improves after increasing
employment compared to before (a within-subjects design).
It only compares the outcome of countries with increased
vs. decreased employment.

Repeated Interventions Over Time

In contrast to the case just described, there are many
scenarios in which a person intervenes repeatedly on one
entity, and states of variables are fairly stable over time
(e.g., car mechanic, physician). Consider a case in which we
repeatedly intervene to increase or decrease E, G, and C
within the United States. Suppose that the true causal
structure is E—=G—C, and initially the country is in a
recession and all three variables are low. If we start a jobs-
creation program, we would expect G, and C to increase
compared to before the intervention. Then, suppose that we
decreased G. We would expect E to stay high, but C to
decrease. Finally, suppose that we encouraged consumption.
We would expect £ and G to stay the same. In contrast,
suppose that the true causal structure is G<—E—C. Now, if
we increase G, we would expect £ and C to stay the same,
but we would expect both to change if we intervened on E.
In sum, if we repeatedly intervene on one entity, we
expect variables that are not influenced by the intervention
to remain constant. If we intervene upon a variable X, and
another variable Y changes from the previous state, it is a
sign that X causes Y. If Y does not change when X is
manipulated, it is a sign that X does not cause Y. These
inferences are intuitive given the assumption that causes are
generally stable and don’t happen to change at the same
moment that another cause is manipulated. This temporal
assumption of “stability” is analogous to the atemporal
assumption that interventions are independent of other
causes (e.g., Pearl, 2000; see also Rottman & Ahn, 2009a).

Testing Whether People Use the Two Strategies

The temporal strategy is very different from the strategy
appropriate for independent observations. Only in the
temporal case are the changes in variables over time
important for learning causal structure and thus the order of
the trials is critical.

To determine whether people are sensitive to the temporal
information, we created pairs of data that have the same sets
of 24 intervention trials, but with different trial orders. For
example, consider the chain data in Figure 1. There are three
variables (X, Y, and Z) and two possible values (0, and 1).
Bold represents an intervention. For example, on Trial 1 for
the useful chain condition, X was intervened upon and set to
1. Y and Z consequently have the value 1.

According to the independent trials strategy, both orders
suggest the chain X—Y—Z. When X is intervened and set to
1, Yand Z are also 1. When Yis set at 1, Zis 1, but X can be
either at 0 or 1 because X is not dependent on Y. Finally, if Z
is set to 1, X and Y could both be 0 or 1 because they are
independent of Z.
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However, according to the temporal strategy, the two
orders lead to very different inferences because the useful
condition wupholds the stability assumption but the
misleading condition violates it. The “useful” condition
suggests the X—Y—Z causal structure. Whenever X is
changed, Y and Z also change (e.g. the transition from Trials
1 to 2). Whenever Y is changed, Z also changes, but X stays
the same (e.g., Trials 2-3). When Z changes, X and Y stay
the same (e.g., Trials 4-5). In contrast, misleading
conditions were designed to suggest the presence of links
that do not exist. For example, on Trial 2, Z is changed from
1 to 0, and X and Y also change to 0, suggesting that Z
causes X and Y. Additionally, causal links are not consistent.
On Trial 2, Z appears to cause X and Y to change to 0, but
on Trial 3 it does not cause them to change back to 1.
Finally, the existence of real links is obscured. For example,
on Trial 5, X is changed from 0 to 1, but Y is already at 1,
obscuring that X influences Y. In sum, the “misleading”
condition suggests different links from the '"useful"
condition, and does not clearly identify one causal structure.

We used this order manipulation in two experiments. In
Experiment 1, we tested whether people do in fact use the
temporal strategy. In Experiment 2, we tested whether
people appropriately switch between the two strategies
based on the causal scenario.

Y4 4
Chain Common/
Cause
X—pY X—pY
useful misleading| useful misleading
Trial | X Y Z XY 2z XY Z XY 2z
1 111 111 111 111
2 000 00O 00O 000
3 011 001 111 111
4 00O 011 101 00O
5 001 111 111 111
6 00O 00O 110 000
7 111 111 111 001
8 100 000 000 110
9 111 001 010 001
10 110 011 000 110
11 111 111 001 000
12 000 00O 00O 111
13 111 111 111 000
14 000 110 00O 111
15 001 100 001 000
16 o00oO0 000 00O 111
17 011 111 010 101
18 000 000 00O 010
19 111 111 111 101
20 100 110 110 010
21 111 100 111 111
22 110 00O 101 000
23 111 111 111 111
24 000 00O 000 00O

Figure 1: Summary of Data for Two Causal Structures in
Experiment 1.



Experiment 1

In Experiment 1, we created a scenario in which one causal
setup is repeatedly intervened upon over time. Thus
participants would likely think that the temporal information
was relevant. We presented participants with data generated
by five causal structures. For each causal structure, there
was a useful and misleading set of data. If participants use
the temporal strategy, they will learn the causal structures
more accurately in the useful condition.

Methods

Twenty undergraduates completed the study for payment at
$10 per hour or partial course credit. Participants first read a
cover story about three light bulbs. Participants were told
that they would be instructed to turn on or off specific lights
and should try to “learn how each light affects the others.”

Next, participants saw 10 scenarios created by crossing
the Order of the Data (useful vs. misleading) x Causal
Structure (chain, X—Y—Z; common cause, Y<—X—Z,
common effect, X—Z<Y; one link, X—7Y, Z is unrelated; no
links, X, Y, and Z, are unrelated). The 10 scenarios were
ordered in a Latin square grouped by causal structure such
that each scenario appeared first for some participants.

a. Intervention Instruction c. Causal Structure Selection

9 g
\Y m
no relationship ? g<--m [we]
Pre§s 'v' to turn v \ m
light v on
—_—
b. Result of Intervention ~_no relationship
[vv-—>m T
9 v<--m |
v<-=>m
\ m

Figure 2. Example Screenshots from Experiment 1.

During each scenario, participants saw three light bulbs.
Each bulb was named by a letter, and different letter triads
were used across the 10 scenarios. Initially, all three bulbs
were off. Then participants were instructed to intervene to
turn on or off specific bulbs (e.g., Figure 2a). To intervene,
participants pressed the key associated with the letter for the
given bulb. After the intervention, participants observed the
outcome of the intervention (which bulbs were on or off) for
2 seconds (e.g., Figure 2b). Then, while the bulbs were still
visible, instructions appeared for the next intervention.

Each scenario had 24 interventions total, 8 per bulb; 4 on
and 4 off. The data were determined in the following way.
The causal relations were deterministic, when a bulb was
intervened upon, all its effects (and all of their effects)
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assumed the same value. Exogenous variables had a base-
rate of .5. For the common effect structure, the effect was on
if either of the causes was on.

For the “useful” conditions, the trials were ordered in a
way that upheld the stability assumption explained in the
introduction whereas the “misleading” conditions violated
it. Figure 1 displays a summary of the data for the chain and
common cause scenarios. The data for the other three causal
structures can be obtained from the authors.

After each scenario, participants selected the causal
structure that they believed to have generated the pattern of
data for the given scenario (e.g., Figure 2c). Participants
selected arrows indicating the direction of the causal
relationships between the three light bulbs. For each pair of
bulbs (e.g., X and Y), participants chose between “no
relationship; neither light influences the other”, “X—Y; X
influences Y, “X<-Y; Y influences X, or “X<»Y; X and Y
both influence each other.” Participants did not receive
feedback of the accuracy of their causal model. Finally,
participants started the next scenario.

Results

Accuracy in causal structure inferences was assessed in the
following way. For each pair of bulbs, X and Y, X can cause
Y or not, and Y can cause X or not. Thus for each pair of
bulbs, participants had the possibility of identifying zero,
one, or two correct causal relations. Across the three bulbs
in a given scenario, participants had the possibility of
identifying zero to six correct causal relations.

For all of the five causal structures, participants identified
more correct causal relations in the useful than misleading
conditions #s(19)>8.32, ps<.01 (Figure 3), suggesting that
they used the trial order for learning causal structures.

Tw:s 6
5.9
§ g 4.7 5.7 i 5.8
= s B -
o 3
S P
(0] . 5 &
E 0_ 3 2.0 24
a2 1.9 1.8
ES
zZ s
(0]
% o 0.4
(0]
s 0
Chain Comm. Comm. One No
Effect Cause Link Links

[ ] Useful [] Misleading

Figure 3: Mean Accuracy (Std. Errors) in Experiment 1.

There are two trends in participants’ mistakes. First, in the
useful chain condition (X—=Y—Z), participants had
difficulty learning that ¥ was a mediator between X and Z.
This requires noticing that when Y is manipulated, X has no



influence on Z. Eighteen out of the 20 participants thought
that X also caused Z directly, probably because when X was
turned on and off, Z also changed state. Similar findings
have been interpreted to suggest that people sequentially
learn individual causal links rather than simultaneously
learn an entire causal structure (Fernbach & Sloman, 2009).

Second, in the misleading conditions, participants
frequently correctly identified true causal links, but they
also mistakenly thought that other links existed. They often
thought that links were bidirectional, even though they were
just unidirectional. In the one link and no link conditions,
they also frequently inferred relationships between variables
with no causal relations. These inferences resulted in
participants often misidentifying the majority of the causal
links; the accuracy in all misleading conditions was below
chance responding of 3, all 75(19)>2.4, ps<.03. However,
these inferences make sense according to the temporal
strategy; the misleading orders were designed so that
variables that were not effects of a manipulated variable
frequently change at the same time as the intervention,
suggesting additional causal relationships.

In sum, the results strongly suggest that participants were
sensitive to the order of the trials and were using the
transitions between trials to infer causal relationships.

Experiment 2

In Experiment 1, it was rational for participants to use a
temporal strategy to learn causal structures because
participants observed entities change over time. The purpose
of Experiment 2 was to determine how flexibly people apply
the temporal vs. independent strategies given different
scenarios. We created two scenarios intended to give
maximal cues to participants that the trials were either
independent (analogous to a between subject design) or
dependent (analogous to a within-subjects design). Previous
studies have successfully used such a manipulation
(Rottman & Ahn, 2009b). We then tested whether
participants would infer different causal structures in useful
vs. misleading orders. If participants use the temporal
strategy for the dependent case, they would be more
accurate in the useful than misleading order, as in
Experiment 1. Additionally, if they do not use temporal
information in the independent scenario, they would not
have different levels of accuracy for the two orders.

Methods

Sixteen students from the same population participated.

Participants first read a cover study story asking them to
pretend that they are assistants in a biology lab studying
hormones in amoebas. They would “produce” or “suppress”
hormones by injecting chemicals into the amoebas and
“learn how each hormone affects the others.” They were
told that the “hormones work immediately... without any
perceivable delay.™

! This statement about no delay was intended to rule out the
possibility of second order causal relationships (e.g., if Hormone A
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Next, participants saw eight scenarios. Each scenario
presented three hormones. “+” and “-” signs denoted the
results of the hormones, presence and absence respectively.
The eight scenarios were created by crossing Number of
Amoebas (one vs. many) x Trial Order (useful vs.
misleading) x Causal Structure (common cause, Y<-X—Z
vs. one link, X—=7Y, Z is unrelated). The design was entirely
within subjects. The 8 scenarios were ordered in a Latin
square such that each scenario appeared first for some
participants, and the scenarios were grouped by number of
amoebas. The trial order and causal structure manipulations
were the same as in Experiment 1, so the following
paragraphs focus on the number of amoebas manipulation.

One-Amoeba Condition Many-Amoebas Condition
a. Result of Previous Intervention
and Next Intervention Instruction

9

55

Press 'v' to PRODUCE
hormone v.

¢. Result of Previous Interv-
ention and Get New Amoeba

g

v
Press the spacebar to
get the next amoeba.

d. Intervention Instruction

9

i

Press 'v' to PRODUCE
hormone v in this amoeba.

e. Result of Intervention

9

%
i

b. Result of Intervention

g

+
B

\"

+

m

+

\

+

m

+

Figure 4: Example Screenshots from Experiment 2.

The one-amoeba condition, analogous to a within-subjects
design, emphasized the dependent nature of the data. The
one-amoeba procedures were similar to those in Experiment
1; participants repeatedly intervened on one amoeba. While
the result of the previous intervention was displayed,
participants were instructed to “PRODUCE” or “INHIBIT”

is produced and suppressed twice in a row, then Hormone B would
be produced), which some participants reported in pretesting. In
both the dependent and independent conditions, the interventions
do work immediately after the intervention key is pressed.
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a specific hormone (e.g., Press “y” to PRODUCE hormone
y; e.g., Figure 4a). After the intervention, participants
observed the result of the intervention for 2 seconds (e.g.,
Figure 4b). While the results were visible, instructions for
the next intervention appeared. Additionally, a picture of
one amoeba was present for the entire scenario to emphasize
the repeated interventions on a single entity over time.

The many-amoebas condition, analogous to a between-
subjects design, emphasized the independent nature of the
data. Participants made 24 interventions on 24 different
amoebas. After the results of a given intervention were
displayed, participants were instructed to “Press the
spacebar to get the next amoeba” (e.g., Figure 4c). When the
spacebar was pressed, a picture of a new amoeba appeared.
Simultaneously, the results of the intervention on the
previous amoeba (“+” and “-” marks) disappeared (e.g.
Figure 4d). We removed the previous results to make it
perceptually difficult to track the changes of the hormones
over time. Two seconds later, the prompt for the next
intervention appeared (e.g., Press “y” to PRODUCE
hormone y in this amoeba). When the intervention key was
pressed, the hormone results appeared for the current
amoeba (e.g., Figure 4e). All of these modifications were
intended to signal that the hormones within one amoeba
were independent of the hormones within other amoebas.

After each scenario, participants selected the causal
structure that they believed to have generated the data.

Results

The dependent variable was the same as in Experiment 1 —
the number of correctly identified causal relations per
scenario (zero to six).

A 2 (one vs. many amoebas) x 2 (trial order) x 2 (causal
structure) repeated-measures ANOVA was performed.
There was a main effect of trial order; participants correctly
identified more causal relationships in the temporally useful
than misleading orders, F(1,15)=45.28, p<.01, np2=.75
(Figure 5). However, the most critical result for this
experiment is a significant interaction between number of
amoebas and trial order, F(1,15)=12.61, p<.01, 771,2:.46.2
Though there was a large difference between the useful and
misleading orders for the one-amoeba condition, there was a
smaller difference between the many-amoebas conditions,
suggesting that participants were less sensitive to the
temporal order of trials in the many-amoebas condition.
This finding makes sense if participants believed that the
trials were independent in the many-amoebas condition.

However, even though participants used the temporal
strategy less in the many-amoebas condition, they still used
it to some extent; there was still a significant difference
between the wuseful and misleading, many-amoebas
conditions, #(15)=3.59, p<.01. Furthermore, participants did

% The only other finding was a marginally significant interaction
between causal structure and trial order, F(1,15)=4.03, p<=.06,
np2=.21. The difference between the useful and misleading orders
was slightly larger for the common cause than one link conditions.
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not simply transfer the temporal strategy from the one-
amoeba condition; they were more accurate in the useful
than misleading many-amoebas conditions even before
experiencing the one-amoeba scenarios, #(7)=3.21, p=.02.

— 6
3 : [] Useful [[] Misleading
32 5.8 T
O g T
o 8 47 | 3.0
3P 4 25 T
o8 T i
S t
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Z3
c (0]

o
5 0
= One Amoeba Many Amoebas

Figure 5: Mean Accuracy (Std. Errors) in Experiment 2.

There are two other important patterns. First, participants
did worse in the many-amoeba than one-amoeba, useful
condition, #15)=2.57, p=.02. This finding makes sense if
participants were using the temporal strategy less in the
many-amoebas condition. However, according to the
independent trials strategies (e.g., Gopnik et al., 2004;
Steyvers et al., 2003), participants should have been able to
correctly identify the causal structures in the many-entity
conditions. Second, participants were not even above chance
in the many-amoebas, misleading condition, #(15)<l. Yet
again, participants should have been able to identify the
correct causal structures according to the independent trials
strategy. The low accuracy in both many-amoebas
conditions suggests that participants may have difficulty
applying such statistical strategies.

In sum, participants are able to switch between the
temporal vs. independent strategies to some extent based on
knowledge of the learning scenario. However, even in the
many-amoebas condition, participants used the temporal
information to some extent, suggesting that it is a common
strategy for learning causal structures.

General Discussion

In two experiments, we demonstrated that people learn
causal structures very well when entities are repeatedly
manipulated over time (i.e. within-subjects or repeated
measures situations). In Experiment 1, participants were
much more accurate at learning causal structures when the
data were ordered to reflect causes that are stable over time
(don’t happen to change at the moment another variable is
intervened upon), a plausible real-world assumption. In
Experiment 2, participants were less sensitive to the
temporal order of trials when they were given reason to
believe that the trials were independent (i.e. between-
subjects situation).



Predominance of the Temporal Strategy

Why did participants in the many-amoebas condition in
Experiment 2 still make use of the temporal information to
some extent? There are two possible explanations. First,
people may have still thought that the hormones within
different amoebas were dependent upon one another. (For
example, if all the amoebas were physically adjacent,
perhaps hormones could mix across the amoebas.)
Alternatively, people might have been able to learn that the
trials were dependent from the data itself. In reality, in the
many-amoebas, useful condition, the order was statistically
dependent. For example, exogenous variables (e.g., X in
X—Y—Z7) only changed state when X was intervened upon.
For long periods of time, X stayed the same (e.g., Trials 2-6
in Figure 1, Chain, Useful) even though its baserate is .5.
However, there is also a second possibility — the temporal
strategy is likely simpler than the statistical strategies
proposed for independent events (e.g., Gopnik et al., 2004;
Steyvers et al., 2003). Thus, it is possible that people tend to
use this strategy even in cases when the independent
strategy is more appropriate. Perhaps the time-based
strategy serves as a useful heuristic that is often accurate. In
the real world, much of our causal reasoning involves
manipulating and observing sequences of events unfolding
over time (e.g., a car mechanic repairing different
components until the problem is solved or a physician
manipulating a patient's heart rate, breathing, and blood
pressure to stabilize the patient). Given how frequently we
engage in temporal reasoning, it may be hard to ignore
temporal information such as the order of trials in these
experiments even when we should for independent events.

Learning Causal Structure from Temporal Delay

Lagnado and Sloman (2004, 2006; see also Burns &
McCormack, 2009; Meder et al., 2008; White, 2006)
showed how people use temporal delays when learning
causal structures. For example, if you intervene upon X, and
then Y appears, and later Z appears, you would likely infer
X—Y—Z. This strategy pertains to the time course of how a
causal signal propagates through a network and the order in
which the reasoner becomes aware of the states of the
nodes. This strategy is entirely consistent with the current
one, and they likely often work in parallel in the real world.
However, they are distinct. In the current studies, both of the
non-manipulated variables appear simultaneously for all
causal structures. Additionally, in the previous studies (e.g.,
Lagnado & Sloman, 2006), the trials were independent and
were often randomized.

Summary

Overall, people learn causal structures over time quite
fluently and indeed seem biased to assume that this is the
default mode of causal interpretation. Instead of treating
trials as independent, which has been assumed by many
approaches of causal structure learning, people weave
together information across trials into larger event units.
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The use of a temporal strategy can result in very quick
and accurate causal structure learning when the trials are
ordered in a temporally useful way. However, applying an
incorrect causal strategy can result in substantially worse
performance. For example, applying a more independent
events strategy for events that were truly dependent and
ordered in a useful fashion resulted in considerably worse
performance than when participants applied the temporal
strategy (Experiment 2). One intriguing possibility is that
applying the temporal strategy when the events are truly
independent could also likely result in reduced performance.
Elaborating when and how people apply different learning
strategies for diverse scenarios is an important future aim.
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